StrongIRFET™ IRFH8201PbF HEXFET® Power MOSFET VDSS RDS(on) max (@ VGS = 10V) (@ VGS = 4.5V) 25 V 0.95 m 1.60 Qg (typical) 56 nC ID (@TC (Bottom) = 25°C) 100 A PQFN 5X6 mm Applications OR-ing MOSFET for 12V (typical) Bus in-Rush Current Battery Operated DC Motor Inverters Features Low RDSon (<0.95m) Low Thermal Resistance to PCB (<0.8°C/W) Low Profile (<0.9 mm) Industry-Standard Pinout Compatible with Existing Surface Mount Techniques RoHS Compliant, Halogen-Free MSL1, Industrial Qualification Base part number Package Type IRFH8201PbF PQFN 5mm x 6 mm Benefits Lower Conduction Losses Enable better thermal dissipation results in Increased Power Density Multi-Vendor Compatibility Easier Manufacturing Environmentally Friendlier Increased Reliability Standard Pack Form Quantity Tape and Reel 4000 Orderable Part Number IRFH8201TRPbF Absolute Maximum Ratings Parameter Max. Units V VGS Gate-to-Source Voltage ± 20 ID @ TA = 25°C Continuous Drain Current, VGS @ 10V 49 ID @ TC (Bottom) = 25°C Continuous Drain Current, VGS @ 10V 324 ID @ TC (Bottom) = 100°C Continuous Drain Current, VGS @ 10V 205 ID @ TC(Bottom) = 25°C 100 IDM Continuous Drain Current, VGS @ 10V (Source Bonding Technology Limited) Pulsed Drain Current PD @TA = 25°C Power Dissipation 3.6 PD @TC (Bottom) = 25°C Power Dissipation 156 Linear Derating Factor TJ Operating Junction and TSTG Storage Temperature Range A 700 0.029 -55 to + 150 W W/°C °C Notes through are on page 9 1 2017-01-24 IRFH8201PbF Static @ TJ = 25°C (unless otherwise specified) Parameter BVDSS Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient BVDSS/TJ gfs Qg Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Total Gate Charge Min. 25 ––– ––– ––– 1.35 ––– ––– ––– ––– ––– 181 ––– Typ. ––– 20 0.80 1.20 1.80 -6.1 ––– ––– ––– ––– ––– 111 Max. Units Conditions ––– V VGS = 0V, ID = 250µA ––– mV/°C Reference to 25°C, ID = 1mA 0.95 VGS = 10V, ID = 50A m 1.60 VGS = 4.5V, ID = 50A 2.35 V V = VGS, ID = 150µA ––– mV/°C DS 1.0 VDS = 20V, VGS = 0V µA 150 VDS = 20V, VGS = 0V, TJ=125°C 100 VGS = 20V nA -100 VGS = -20V ––– S VDS = 10V, ID = 50A ––– nC VGS = 10V, VDS = 13V, ID = 50A Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss RG td(on) tr td(off) tf Ciss Coss Crss Total Gate Charge Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) Output Charge Gate Resistance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 56 16 7.0 18 15 25 39 1.1 27 54 31 22 7330 1730 850 84 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– RDS(on) Static Drain-to-Source On-Resistance VGS(th) VGS(th) Gate Threshold Voltage Gate Threshold Voltage Coefficient IDSS Drain-to-Source Leakage Current IGSS nC nC VDS = 13V VGS = 4.5V ID = 50A VDS = 16V, VGS = 0V ns VDD = 13V, VGS = 4.5V ID = 50A RG=4.7 pF VGS = 0V VDS = 13V ƒ = 1.0MHz Avalanche Characteristics Parameter Single Pulse Avalanche Energy EAS Diode Characteristics Parameter IS Continuous Source Current (Body Diode) Pulsed Source Current ISM (Body Diode) Diode Forward Voltage VSD Reverse Recovery Time trr Qrr Reverse Recovery Charge Typ. ––– Max. 437 Min. Typ. Max. ––– ––– 100 ––– ––– 700 ––– ––– ––– ––– 25 57 1.0 38 86 Units mJ Units Conditions MOSFET symbol showing the integral reverse p-n junction diode. TJ = 25°C, IS = 50A, VGS = 0V TJ = 25°C, IF = 50A, VDD = 13V di/dt = 400A/µs D A G S V ns nC Thermal Resistance Parameter RJC (Bottom) Junction-to-Case Typ. 0.5 RJC (Top) Junction-to-Case ––– 21 RJA Junction-to-Ambient ––– 35 RJA (<10s) Junction-to-Ambient ––– 20 2 Max. 0.8 Units °C/W 2017-01-24 IRFH8201PbF 1000 1000 100 BOTTOM BOTTOM 100 10 2.5V 2.5V 60µs PULSE WIDTH 60µs PULSE WIDTH Tj = 25°C 0.1 1 Tj = 150°C 10 1 10 0.1 100 100 1.8 RDS(on) , Drain-to-Source On Resistance (Normalized) 1000 100 TJ = 150°C 10 TJ = 25°C VDS = 15V 60µs PULSE WIDTH ID = 50A VGS = 10V 1.6 1.4 1.2 1.0 0.8 0.6 1.0 1.0 2.0 3.0 4.0 -60 -40 -20 0 5.0 Fig 3. Typical Transfer Characteristics 100000 VGS, Gate-to-Source Voltage (V) ID= 50A C oss = C ds + C gd Ciss Coss 1000 Fig 4. Normalized On-Resistance vs. Temperature 14.0 VGS = 0V, f = 1 MHZ C iss = Cgs + C gd , Cds SHORTED C rss = Cgd 10000 20 40 60 80 100 120 140 160 TJ , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) Crss 100 12.0 10.0 VDS= 20V VDS= 13V 8.0 6.0 4.0 2.0 0.0 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage 3 10 Fig 2. Typical Output Characteristics Fig 1. Typical Output Characteristics ID, Drain-to-Source Current (A) 1 VDS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) C, Capacitance (pF) VGS 10V 7.0V 5.0V 4.5V 3.5V 3.0V 2.75V 2.5V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 10V 7.0V 5.0V 4.5V 3.5V 3.0V 2.75V 2.5V 0 20 40 60 80 100 120 140 QG, Total Gate Charge (nC) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 2017-01-24 IRFH8201PbF ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 100 TJ = 150°C TJ = 25°C 10 1 OPERATION IN THIS AREA LIMITED BY R DS (on) 1000 100µsec 100 1msec Limited by Package 10 10msec 1 VGS = 0V Tc = 25°C Tj = 150°C Single Pulse 0.1 0.1 0.2 0.4 0.6 0.8 1.0 1.2 0.1 1.4 1 10 VDS , Drain-toSource Voltage (V) VSD, Source-to-Drain Voltage (V) Fig 8. Maximum Safe Operating Area Fig 7. Typical Source-Drain Diode Forward Voltage 2.8 300 VGS(th), Gate threshold Voltage (V) 350 ID, Drain Current (A) DC Limited by package 250 200 150 100 50 2.4 2.0 1.6 1.2 ID = 150µA ID = 250µA ID = 1.0mA ID = 1A 0.8 0 25 50 75 100 125 -75 -50 -25 150 0 25 50 75 100 125 150 TJ , Temperature ( °C ) TC , Case Temperature (°C) Fig 10. Threshold Voltage Vs. Temperature Fig 9. Maximum Drain Current vs. Case Temperature 1 Thermal Response ( ZthJC ) °C/W D = 0.50 0.1 0.20 0.10 0.05 0.02 0.01 0.001 0.0001 1E-006 0.01 SINGLE PULSE ( THERMAL RESPONSE ) Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 2017-01-24 2000 4.0 EAS , Single Pulse Avalanche Energy (mJ) RDS(on), Drain-to -Source On Resistance (m) IRFH8201PbF ID = 50A 3.0 2.0 TJ = 125°C 1.0 TJ = 25°C ID 15A 24A BOTTOM 50A TOP 1600 1200 800 400 0 0.0 2 4 6 8 10 12 14 16 18 25 20 50 75 100 125 150 Starting TJ , Junction Temperature (°C) VGS, Gate -to -Source Voltage (V) Fig 12. On– Resistance vs. Gate Voltage Fig 13. Maximum Avalanche Energy vs. Drain Current Avalanche Current (A) 1000 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 125°C and Tstart =25°C (Single Pulse) 100 10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming j = 25°C and Tstart = 125°C. 1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Single Avalanche Event: Pulse Current vs. Pulse Width 5 2017-01-24 IRFH8201PbF Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS tp 15V L VDS D.U.T RG IAS 20V tp DRIVER + V - DD A 0.01 I AS Fig 16a. Unclamped Inductive Test Circuit Fig 16b. Unclamped Inductive Waveforms Fig 17a. Switching Time Test Circuit Fig 17b. Switching Time Waveforms Id Vds Vgs Vgs(th) Qgs1 Qgs2 Fig 18a. Gate Charge Test Circuit 6 Qgd Qgodr Fig 18b. Gate Charge Waveform 2017-01-24 IRFH8201PbF PQFN 5x6 Outline "B" Package Details PQFN 5x6 Outline "G" Package Details For more information on board mounting, including footprint and stencil recommendation, please refer to application note AN-1136: http://www.infineon.com/technical-info/appnotes/an-1136.pdf For more information on package inspection techniques, please refer to application note AN-1154: http://www.infineon.com/technical-info/appnotes/an-1154.pdf Note: For the most current drawing please refer to IR website at http://www.infineon.com/package/ 7 2017-01-24 IRFH8201PbF PQFN 5x6 Part Marking INTERNATIONAL RECTIFIER LOGO DATE CODE XXXX XYWWX XXXXX ASSEMBLY SITE CODE (Per SCOP 200-002) PIN 1 IDENTIFIER PART NUMBER (“4 or 5 digits”) MARKING CODE (Per Marking Spec) LOT CODE (Eng Mode - Min last 4 digits of EATI#) (Prod Mode - 4 digits of SPN code) PQFN 5x6 Tape and Reel REEL DIMENSIONS TAPE DIMENSIONS CODE Ao Bo Ko W P1 DESCRIPTION Dimension design to accommodate the component width Dimension design to accommodate the component lenght Dimension design to accommodate the component thickness Overall width of the carrier tape Pitch between successive cavity centers QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE Note: All dimension are nominal Package Type Reel Diameter (Inch) QTY Reel Width W1 (mm) Ao (mm) Bo (mm) Ko (mm) P1 (mm) W (mm) Pin 1 Quadrant 5 X 6 PQFN 13 4000 12.4 6.300 5.300 1.20 8.00 12 Q1 Note: For the most current drawing please refer to IR website at http://www.infineon.com/package/ 8 2017-01-24 IRFH8201PbF Qualifiction Information† Industrial† Qualification Level (per JEDEC JESD47F†† guidelines) Moisture Sensitivity Level PQFN 5mm x 6mm MSL1 (per JEDEC J-STD-020D††) Yes RoHS Compliant † Qualification standards can be found at International Rectifier’s web site: http://www.infineon.com/product-info/reliability/ †† Applicable version of JEDEC standard at the time of product release. Notes: Starting TJ = 25°C, L = 0.35mH, RG = 50, IAS = 50A. Pulse width 400µs; duty cycle 2%. R is measured at TJ of approximately 90°C. When mounted on 1 inch square PCB (FR-4). Please refer to AN-994 for more details: http://www.infineon.com/technical-info/appnotes/an-994.pdf Calculated continuous current based on maximum allowable junction temperature. Current is limited to 100A by source bonding technology. Calculated based on maximum allowable junction temperature; Pulse width 200µs, Vgs= 10V. Revision History Date 9 Comments 10/23/2013 Added Rdson @ 4.5V-page1, 2 07/30/2014 Updated IDM from “400A” to “700A” on page1, 2. Updated Fig1, Fig2, Fig3, Fig7 & Fig8 on page 3, 4. 03/11/2015 Updated package outline and tape and reel on pages 7 and 8. 01/24/2017 Changed datasheet with Infineon logo - all pages Added package outline for “option G” on page 7. Added disclaimer on last page 2017-01-24 IRFH8201PbF Trademarks of Infineon Technologies AG µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™, OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™ Trademarks updated November 2015 Other Trademarks All referenced product or service names and trademarks are the property of their respective owners. Edition 2016-04-19 Published by Infineon Technologies AG 81726 Munich, Germany © 2016 Infineon Technologies AG. All Rights Reserved. Do you have a question about this document? Email: [email protected] Document reference ifx1 IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”) . With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer’s products and any use of the product of Infineon Technologies in customer’s applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. 10 For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com). Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council. WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury. 2017-01-24