IRF IRF6610 Hexfet power mosfet silicon technology with the advanced directfettm Datasheet

PD - 97012
IRF6610
DirectFET™ Power MOSFET
Typical values (unless otherwise specified)
Lead and Bromide Free
Low Profile (<0.7 mm)
Dual Sided Cooling Compatible
Ultra Low Package Inductance
Optimized for High Frequency Switching
Ideal for CPU Core DC-DC Converters
Optimized for both Sync.FET and some Control FET
application
Low Conduction and Switching Losses
Compatible with existing Surface Mount Techniques
VDSS
VGS
RDS(on)
RDS(on)
20V max ±20V max 5.2mΩ@ 10V 8.2mΩ@ 4.5V
Qg
tot
11nC
Qgd
Qgs2
Qrr
Qoss
Vgs(th)
3.6nC
1.3nC
6.4nC
5.9nC
2.1V
DirectFET™ ISOMETRIC
SQ
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
SQ
SX
ST
MQ
MX
MT
MP
Description
The IRF6610 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the
lowest on-state resistance in a package that has the footprint of a MICRO-8 and only 0.7 mm profile. The DirectFET package is compatible
with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering
techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows
dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF6610 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching
losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors
operating at higher frequencies. The IRF6610 has been optimized for parameters that are critical in synchronous buck operating from 12 volt
buss converters including Rds(on) and gate charge to minimize losses in the control FET socket.
Absolute Maximum Ratings
Parameter
VDS
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
VGS
ID @ TA = 25°C
ID @ TA = 70°C
ID @ TC = 25°C
IDM
EAS
IAR
Typical RDS(on) (mΩ)
30
ID = 15A
25
20
15
T J = 125°C
10
5
T J = 25°C
0
3
4
5
6
7
8
9
10
VGS, Gate -to -Source Voltage (V)
Fig 1. Typical On-Resistance vs. Gate Voltage
Notes:
Click on this section to link to the appropriate technical paper.
Click on this section to link to the DirectFET Website.
Surface mounted on 1 in. square Cu board, steady state.
www.irf.com
VGS, Gate-to-Source Voltage (V)
Pulsed Drain Current
Single Pulse Avalanche Energy
Avalanche Current
Max.
Units
20
±20
15
12
66
120
13
12
V
A
mJ
A
6.0
ID= 12A
5.0
VDS= 16V
VDS= 10V
4.0
3.0
2.0
1.0
0.0
0
2
4
6
8
10
12
14
16
QG Total Gate Charge (nC)
Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage
TC measured with thermocouple mounted to top (Drain) of part.
Repetitive rating; pulse width limited by max. junction temperature.
Starting TJ = 25°C, L = 0.18mH, RG = 25Ω, IAS = 12A.
1
05/25/05
IRF6610
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
BVDSS
Drain-to-Source Breakdown Voltage
∆ΒVDSS/∆TJ
RDS(on)
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
–––
20
V
–––
–––
15
–––
–––
5.2
6.8
mV/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 15A
8.2
10.7
VGS = 4.5V, ID = 12A
VGS(th)
Gate Threshold Voltage
1.65
2.1
2.55
V
Gate Threshold Voltage Coefficient
–––
-5.2
–––
mV/°C
Drain-to-Source Leakage Current
–––
–––
1.0
µA
–––
–––
150
Gate-to-Source Forward Leakage
–––
–––
100
Gate-to-Source Reverse Leakage
–––
–––
-100
Forward Transconductance
41
–––
–––
gfs
Qg
VGS = 0V, ID = 250µA
–––
∆VGS(th)/∆TJ
IDSS
IGSS
Conditions
Typ. Max. Units
VDS = VGS, ID = 250µA
VDS = 16V, VGS = 0V
VDS = 16V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
VGS = -20V
S
VDS = 10V, ID = 12A
Total Gate Charge
–––
11
17
Qgs1
Pre-Vth Gate-to-Source Charge
–––
3.9
–––
Qgs2
Post-Vth Gate-to-Source Charge
–––
1.3
–––
Qgd
Gate-to-Drain Charge
–––
3.6
–––
ID = 12A
Qgodr
–––
2.4
–––
See Fig. 15
Qsw
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
4.9
–––
Qoss
Output Charge
–––
5.9
–––
nC
RG
Gate Resistance
–––
2.0
–––
Ω
td(on)
Turn-On Delay Time
–––
12
–––
VDD = 16V, VGS = 4.5V
tr
Rise Time
–––
51
–––
ID = 12A
td(off)
Turn-Off Delay Time
–––
15
–––
tf
Fall Time
–––
5.7
–––
Ciss
Input Capacitance
–––
1520
VDS = 10V
nC
VGS = 4.5V
VDS = 10V, VGS = 0V
ns
Clamped Inductive Load
–––
VGS = 0V
pF
VDS = 10V
Coss
Output Capacitance
–––
440
–––
Crss
Reverse Transfer Capacitance
–––
220
–––
Min.
Typ. Max. Units
–––
–––
ƒ = 1.0MHz
Diode Characteristics
Parameter
IS
Continuous Source Current
(Body Diode)
ISM
Pulsed Source Current
A
–––
–––
Conditions
MOSFET symbol
2.8
showing the
120
integral reverse
VSD
Diode Forward Voltage
–––
–––
1.0
V
p-n junction diode.
TJ = 25°C, IS = 12A, VGS = 0V
trr
Reverse Recovery Time
–––
12
18
ns
TJ = 25°C, IF = 12A
Qrr
Reverse Recovery Charge
–––
2.4
3.6
nC
di/dt = 100A/µs
(Body Diode)
Notes:
Pulse width ≤ 400µs; duty cycle ≤ 2%.
Repetitive rating; pulse width limited by max. junction temperature.
2
www.irf.com
IRF6610
Absolute Maximum Ratings
Max.
Units
2.2
1.4
42
270
-40 to + 150
W
Parameter
Power Dissipation
Power Dissipation
Power Dissipation
Peak Soldering Temperature
Operating Junction and
Storage Temperature Range
PD @TA = 25°C
PD @TA = 70°C
PD @TC = 25°C
TP
TJ
TSTG
°C
Thermal Resistance
Parameter
RθJA
RθJA
RθJA
RθJC
RθJ-PCB
Typ.
Max.
Units
–––
12.5
20
–––
1.4
58
–––
–––
3.0
–––
°C/W
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Case
Junction-to-PCB Mounted
Linear Derating Factor
0.017
W/°C
100
Thermal Response ( Z thJA )
D = 0.50
10
0.20
0.10
0.05
1
0.02
0.01
τJ
0.1
0.01
R1
R1
τJ
τ1
R2
R2
R3
R3
R4
R4
R5
R5
τA
τ2
τ1
τ2
τ3
τ3
τ4
τ4
τ5
τA
τ5
Ci= τi/Ri
Ci= τi/Ri
SINGLE PULSE
( THERMAL RESPONSE )
Ri (°C/W)
τi (sec)
1.6195
0.000126
2.14056
0.001354
22.2887
0.375850
20.0457
7.41
11.9144
99
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
Notes:
Surface mounted on 1 in. square Cu board, steady state.
Used double sided cooling , mounting pad.
Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
Surface mounted on 1 in. square Cu
board (still air).
www.irf.com
TC measured with thermocouple incontact with top (Drain) of part.
Rθ is measured at TJ of approximately 90°C.
Mounted to a PCB with
small clip heatsink (still air)
Mounted on minimum
footprint full size board with
metalized back and with small
clip heatsink (still air)
3
IRF6610
1000
1000
100
BOTTOM
10
TOP
100
1
≤60µs PULSE WIDTH
Tj = 25°C
0.1
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
BOTTOM
10
2.5V
1
≤60µs PULSE WIDTH
2.5V
Tj = 150°C
0.1
0.01
0.1
1
10
0.1
100
100
1.5
VDS = 10V
≤60µs PULSE WIDTH
ID = 15A
Typical RDS(on) (Normalized)
ID, Drain-to-Source Current (Α)
10
Fig 5. Typical Output Characteristics
1000
100
T J = 150°C
T J = 25°C
T J = -40°C
10
1
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
Fig 4. Typical Output Characteristics
1
0.1
V GS = 10V
V GS = 4.5V
1.0
0.5
1
2
3
4
5
-60 -40 -20 0
Fig 6. Typical Transfer Characteristics
10000
20 40 60 80 100 120 140 160
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
Fig 7. Normalized On-Resistance vs. Temperature
40
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
T J = 25°C
Typical RDS(on) ( mΩ)
C oss = C ds + C gd
C, Capacitance(pF)
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
Ciss
1000
Coss
Vgs = 3.5V
Vgs = 4.0V
Vgs = 4.5V
Vgs = 5.0V
Vgs = 10V
30
20
10
Crss
0
100
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage
4
0
20
40
60
80
100
120
140
ID, Drain Current (A)
Fig 9. Typical On-Resistance Vs.
Drain Current and Gate Voltage
www.irf.com
IRF6610
1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
100
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
10
T J = 150°C
T J = 25°C
T J = -40°C
1
10
100µsec
1
T A = 25°C
T J = 150°C
Single Pulse
VGS = 0V
0
10msec
0.1
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
0.10
1.00
VSD, Source-to-Drain Voltage (V)
10.00
100.00
VDS, Drain-to-Source Voltage (V)
Fig 10. Typical Source-Drain Diode Forward Voltage
Fig11. Maximum Safe Operating Area
70
Typical VGS(th) Gate threshold Voltage (V)
2.5
60
ID, Drain Current (A)
1msec
50
40
30
20
10
0
2.0
ID = 250µA
1.5
1.0
25
50
75
100
125
150
-75 -50 -25
T C , Case Temperature (°C)
0
25
50
75 100 125 150
T J , Temperature ( °C )
Fig 12. Maximum Drain Current vs. Case Temperature
Fig 13. Typical Threshold Voltage vs. Junction
Temperature
EAS , Single Pulse Avalanche Energy (mJ)
60
ID
TOP
3.6A
5.3A
BOTTOM 12A
50
40
30
20
10
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 14. Maximum Avalanche Energy Vs. Drain Current
www.irf.com
5
IRF6610
Current Regulator
Same Type as D.U.T.
Id
Vds
50KΩ
Vgs
.2µF
12V
.3µF
+
V
- DS
D.U.T.
Vgs(th)
VGS
3mA
IG
ID
Qgs1 Qgs2
Current Sampling Resistors
Fig 15a. Gate Charge Test Circuit
Qgd
Qgodr
Fig 15b. Gate Charge Waveform
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
V
RGSG
+
V
- DD
IAS
20V
tp
A
I AS
0.01Ω
Fig 16c. Unclamped Inductive Waveforms
Fig 16b. Unclamped Inductive Test Circuit
LD
VDS
VDS
90%
+
VDD D.U.T
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
Fig 17a. Switching Time Test Circuit
6
10%
VGS
td(on)
tr
td(off)
tf
Fig 17b. Switching Time Waveforms
www.irf.com
IRF6610
D.U.T
Driver Gate Drive
+
-
-
-
RG
•
•
•
•
D.U.T. ISD Waveform
Reverse
Recovery
Current
VDD
P.W.
Period
*
+
di/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D=
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
Period
P.W.
+
-
Re-Applied
Voltage
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 18. Diode Reverse Recovery Test Circuit for N-Channel
HEXFET® Power MOSFETs
DirectFET™ Substrate and PCB Layout, SQ Outline
(Small Size Can, Q-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes
all recommendations for stencil and substrate designs.
www.irf.com
7
IRF6610
DirectFET™ Outline Dimension, SQ Outline
(Small Size Can, Q-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes
all recommendations for stencil and substrate designs.
DIMENSIONS
METRIC
MAX
CODE MIN
4.85
A
4.75
3.95
B
3.70
2.85
C
2.75
0.45
D
0.35
0.52
E
0.48
0.52
F
0.48
0.92
G
0.88
0.82
H
0.78
N/A
J
N/A
0.97
K
0.93
2.10
L
2.00
0.70
M
0.59
0.08
N
0.03
0.17
P
0.08
IMPERIAL
MIN
MAX
0.187
0.191
0.146
0.156
0.108
0.112
0.014
0.018
0.019
0.020
0.019
0.020
0.035
0.036
0.031
0.032
N/A
N/A
0.037
0.038
0.079
0.083
0.023
0.028
0.001
0.003
0.003
0.007
DirectFET™ Part Marking
8
www.irf.com
IRF6610
DirectFET™ Tape & Reel Dimension
(Showing component orientation).
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6610). For 1000 parts on 7" reel,
order IRF6610TR1
REEL DIMENSIONS
STANDARD OPTION (QTY 4800)
TR1 OPTION (QTY 1000)
IMPERIAL
IMPERIAL
METRIC
METRIC
MIN
MIN
MAX
CODE
MAX
MIN
MAX
MAX
MIN
12.992
6.9
A
N.C
N.C
177.77 N.C
330.0
N.C
0.795
0.75
B
N.C
19.06
20.2
N.C
N.C
N.C
0.504
0.53
C
0.50
0.520
13.5
12.8
13.2
12.8
0.059
0.059
D
1.5
1.5
N.C
N.C
N.C
N.C
3.937
2.31
E
58.72
100.0
N.C
N.C
N.C
N.C
F
N.C
N.C
0.53
N.C
N.C
0.724
18.4
13.50
G
0.488
0.47
11.9
12.4
N.C
0.567
14.4
12.01
H
0.469
0.47
11.9
11.9
N.C
0.606
15.4
12.01
Loaded Tape Feed Direction
NOTE: CONTROLLING
DIMENSIONS IN MM
CODE
A
B
C
D
E
F
G
H
DIMENSIONS
IMPERIAL
METRIC
MIN
MAX
MIN
MAX
0.311
0.319
7.90
8.10
0.154
0.161
3.90
4.10
0.469
0.484
11.90
12.30
0.215
0.219
5.45
5.55
0.158
0.165
4.20
4.00
0.197
0.205
5.20
5.00
0.059
1.50
N.C
N.C
0.059
1.50
0.063
1.60
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.05/05
www.irf.com
9
Similar pages