PD - 97012 IRF6610 DirectFET™ Power MOSFET Typical values (unless otherwise specified) Lead and Bromide Free Low Profile (<0.7 mm) Dual Sided Cooling Compatible Ultra Low Package Inductance Optimized for High Frequency Switching Ideal for CPU Core DC-DC Converters Optimized for both Sync.FET and some Control FET application Low Conduction and Switching Losses Compatible with existing Surface Mount Techniques VDSS VGS RDS(on) RDS(on) 20V max ±20V max 5.2mΩ@ 10V 8.2mΩ@ 4.5V Qg tot 11nC Qgd Qgs2 Qrr Qoss Vgs(th) 3.6nC 1.3nC 6.4nC 5.9nC 2.1V DirectFET™ ISOMETRIC SQ Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) SQ SX ST MQ MX MT MP Description The IRF6610 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has the footprint of a MICRO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF6610 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors operating at higher frequencies. The IRF6610 has been optimized for parameters that are critical in synchronous buck operating from 12 volt buss converters including Rds(on) and gate charge to minimize losses in the control FET socket. Absolute Maximum Ratings Parameter VDS Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V VGS ID @ TA = 25°C ID @ TA = 70°C ID @ TC = 25°C IDM EAS IAR Typical RDS(on) (mΩ) 30 ID = 15A 25 20 15 T J = 125°C 10 5 T J = 25°C 0 3 4 5 6 7 8 9 10 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage Notes: Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. Surface mounted on 1 in. square Cu board, steady state. www.irf.com VGS, Gate-to-Source Voltage (V) Pulsed Drain Current Single Pulse Avalanche Energy Avalanche Current Max. Units 20 ±20 15 12 66 120 13 12 V A mJ A 6.0 ID= 12A 5.0 VDS= 16V VDS= 10V 4.0 3.0 2.0 1.0 0.0 0 2 4 6 8 10 12 14 16 QG Total Gate Charge (nC) Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage TC measured with thermocouple mounted to top (Drain) of part. Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.18mH, RG = 25Ω, IAS = 12A. 1 05/25/05 IRF6610 Static @ TJ = 25°C (unless otherwise specified) Parameter Min. BVDSS Drain-to-Source Breakdown Voltage ∆ΒVDSS/∆TJ RDS(on) Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance ––– 20 V ––– ––– 15 ––– ––– 5.2 6.8 mV/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 15A 8.2 10.7 VGS = 4.5V, ID = 12A VGS(th) Gate Threshold Voltage 1.65 2.1 2.55 V Gate Threshold Voltage Coefficient ––– -5.2 ––– mV/°C Drain-to-Source Leakage Current ––– ––– 1.0 µA ––– ––– 150 Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 Forward Transconductance 41 ––– ––– gfs Qg VGS = 0V, ID = 250µA ––– ∆VGS(th)/∆TJ IDSS IGSS Conditions Typ. Max. Units VDS = VGS, ID = 250µA VDS = 16V, VGS = 0V VDS = 16V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V S VDS = 10V, ID = 12A Total Gate Charge ––– 11 17 Qgs1 Pre-Vth Gate-to-Source Charge ––– 3.9 ––– Qgs2 Post-Vth Gate-to-Source Charge ––– 1.3 ––– Qgd Gate-to-Drain Charge ––– 3.6 ––– ID = 12A Qgodr ––– 2.4 ––– See Fig. 15 Qsw Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– 4.9 ––– Qoss Output Charge ––– 5.9 ––– nC RG Gate Resistance ––– 2.0 ––– Ω td(on) Turn-On Delay Time ––– 12 ––– VDD = 16V, VGS = 4.5V tr Rise Time ––– 51 ––– ID = 12A td(off) Turn-Off Delay Time ––– 15 ––– tf Fall Time ––– 5.7 ––– Ciss Input Capacitance ––– 1520 VDS = 10V nC VGS = 4.5V VDS = 10V, VGS = 0V ns Clamped Inductive Load ––– VGS = 0V pF VDS = 10V Coss Output Capacitance ––– 440 ––– Crss Reverse Transfer Capacitance ––– 220 ––– Min. Typ. Max. Units ––– ––– ƒ = 1.0MHz Diode Characteristics Parameter IS Continuous Source Current (Body Diode) ISM Pulsed Source Current A ––– ––– Conditions MOSFET symbol 2.8 showing the 120 integral reverse VSD Diode Forward Voltage ––– ––– 1.0 V p-n junction diode. TJ = 25°C, IS = 12A, VGS = 0V trr Reverse Recovery Time ––– 12 18 ns TJ = 25°C, IF = 12A Qrr Reverse Recovery Charge ––– 2.4 3.6 nC di/dt = 100A/µs (Body Diode) Notes: Pulse width ≤ 400µs; duty cycle ≤ 2%. Repetitive rating; pulse width limited by max. junction temperature. 2 www.irf.com IRF6610 Absolute Maximum Ratings Max. Units 2.2 1.4 42 270 -40 to + 150 W Parameter Power Dissipation Power Dissipation Power Dissipation Peak Soldering Temperature Operating Junction and Storage Temperature Range PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C TP TJ TSTG °C Thermal Resistance Parameter RθJA RθJA RθJA RθJC RθJ-PCB Typ. Max. Units ––– 12.5 20 ––– 1.4 58 ––– ––– 3.0 ––– °C/W Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case Junction-to-PCB Mounted Linear Derating Factor 0.017 W/°C 100 Thermal Response ( Z thJA ) D = 0.50 10 0.20 0.10 0.05 1 0.02 0.01 τJ 0.1 0.01 R1 R1 τJ τ1 R2 R2 R3 R3 R4 R4 R5 R5 τA τ2 τ1 τ2 τ3 τ3 τ4 τ4 τ5 τA τ5 Ci= τi/Ri Ci= τi/Ri SINGLE PULSE ( THERMAL RESPONSE ) Ri (°C/W) τi (sec) 1.6195 0.000126 2.14056 0.001354 22.2887 0.375850 20.0457 7.41 11.9144 99 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Notes: Surface mounted on 1 in. square Cu board, steady state. Used double sided cooling , mounting pad. Mounted on minimum footprint full size board with metalized back and with small clip heatsink. Surface mounted on 1 in. square Cu board (still air). www.irf.com TC measured with thermocouple incontact with top (Drain) of part. Rθ is measured at TJ of approximately 90°C. Mounted to a PCB with small clip heatsink (still air) Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) 3 IRF6610 1000 1000 100 BOTTOM 10 TOP 100 1 ≤60µs PULSE WIDTH Tj = 25°C 0.1 ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V BOTTOM 10 2.5V 1 ≤60µs PULSE WIDTH 2.5V Tj = 150°C 0.1 0.01 0.1 1 10 0.1 100 100 1.5 VDS = 10V ≤60µs PULSE WIDTH ID = 15A Typical RDS(on) (Normalized) ID, Drain-to-Source Current (Α) 10 Fig 5. Typical Output Characteristics 1000 100 T J = 150°C T J = 25°C T J = -40°C 10 1 V DS, Drain-to-Source Voltage (V) V DS, Drain-to-Source Voltage (V) Fig 4. Typical Output Characteristics 1 0.1 V GS = 10V V GS = 4.5V 1.0 0.5 1 2 3 4 5 -60 -40 -20 0 Fig 6. Typical Transfer Characteristics 10000 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) Fig 7. Normalized On-Resistance vs. Temperature 40 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd T J = 25°C Typical RDS(on) ( mΩ) C oss = C ds + C gd C, Capacitance(pF) VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V Ciss 1000 Coss Vgs = 3.5V Vgs = 4.0V Vgs = 4.5V Vgs = 5.0V Vgs = 10V 30 20 10 Crss 0 100 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs.Drain-to-Source Voltage 4 0 20 40 60 80 100 120 140 ID, Drain Current (A) Fig 9. Typical On-Resistance Vs. Drain Current and Gate Voltage www.irf.com IRF6610 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 100 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 10 T J = 150°C T J = 25°C T J = -40°C 1 10 100µsec 1 T A = 25°C T J = 150°C Single Pulse VGS = 0V 0 10msec 0.1 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 0.10 1.00 VSD, Source-to-Drain Voltage (V) 10.00 100.00 VDS, Drain-to-Source Voltage (V) Fig 10. Typical Source-Drain Diode Forward Voltage Fig11. Maximum Safe Operating Area 70 Typical VGS(th) Gate threshold Voltage (V) 2.5 60 ID, Drain Current (A) 1msec 50 40 30 20 10 0 2.0 ID = 250µA 1.5 1.0 25 50 75 100 125 150 -75 -50 -25 T C , Case Temperature (°C) 0 25 50 75 100 125 150 T J , Temperature ( °C ) Fig 12. Maximum Drain Current vs. Case Temperature Fig 13. Typical Threshold Voltage vs. Junction Temperature EAS , Single Pulse Avalanche Energy (mJ) 60 ID TOP 3.6A 5.3A BOTTOM 12A 50 40 30 20 10 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 14. Maximum Avalanche Energy Vs. Drain Current www.irf.com 5 IRF6610 Current Regulator Same Type as D.U.T. Id Vds 50KΩ Vgs .2µF 12V .3µF + V - DS D.U.T. Vgs(th) VGS 3mA IG ID Qgs1 Qgs2 Current Sampling Resistors Fig 15a. Gate Charge Test Circuit Qgd Qgodr Fig 15b. Gate Charge Waveform V(BR)DSS 15V DRIVER L VDS tp D.U.T V RGSG + V - DD IAS 20V tp A I AS 0.01Ω Fig 16c. Unclamped Inductive Waveforms Fig 16b. Unclamped Inductive Test Circuit LD VDS VDS 90% + VDD D.U.T VGS Pulse Width < 1µs Duty Factor < 0.1% Fig 17a. Switching Time Test Circuit 6 10% VGS td(on) tr td(off) tf Fig 17b. Switching Time Waveforms www.irf.com IRF6610 D.U.T Driver Gate Drive + - - - RG • • • • D.U.T. ISD Waveform Reverse Recovery Current VDD P.W. Period * + di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + Period P.W. + - Re-Applied Voltage Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Body Diode VDD Forward Drop Inductor Current Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs DirectFET™ Substrate and PCB Layout, SQ Outline (Small Size Can, Q-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. www.irf.com 7 IRF6610 DirectFET™ Outline Dimension, SQ Outline (Small Size Can, Q-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS METRIC MAX CODE MIN 4.85 A 4.75 3.95 B 3.70 2.85 C 2.75 0.45 D 0.35 0.52 E 0.48 0.52 F 0.48 0.92 G 0.88 0.82 H 0.78 N/A J N/A 0.97 K 0.93 2.10 L 2.00 0.70 M 0.59 0.08 N 0.03 0.17 P 0.08 IMPERIAL MIN MAX 0.187 0.191 0.146 0.156 0.108 0.112 0.014 0.018 0.019 0.020 0.019 0.020 0.035 0.036 0.031 0.032 N/A N/A 0.037 0.038 0.079 0.083 0.023 0.028 0.001 0.003 0.003 0.007 DirectFET™ Part Marking 8 www.irf.com IRF6610 DirectFET™ Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6610). For 1000 parts on 7" reel, order IRF6610TR1 REEL DIMENSIONS STANDARD OPTION (QTY 4800) TR1 OPTION (QTY 1000) IMPERIAL IMPERIAL METRIC METRIC MIN MIN MAX CODE MAX MIN MAX MAX MIN 12.992 6.9 A N.C N.C 177.77 N.C 330.0 N.C 0.795 0.75 B N.C 19.06 20.2 N.C N.C N.C 0.504 0.53 C 0.50 0.520 13.5 12.8 13.2 12.8 0.059 0.059 D 1.5 1.5 N.C N.C N.C N.C 3.937 2.31 E 58.72 100.0 N.C N.C N.C N.C F N.C N.C 0.53 N.C N.C 0.724 18.4 13.50 G 0.488 0.47 11.9 12.4 N.C 0.567 14.4 12.01 H 0.469 0.47 11.9 11.9 N.C 0.606 15.4 12.01 Loaded Tape Feed Direction NOTE: CONTROLLING DIMENSIONS IN MM CODE A B C D E F G H DIMENSIONS IMPERIAL METRIC MIN MAX MIN MAX 0.311 0.319 7.90 8.10 0.154 0.161 3.90 4.10 0.469 0.484 11.90 12.30 0.215 0.219 5.45 5.55 0.158 0.165 4.20 4.00 0.197 0.205 5.20 5.00 0.059 1.50 N.C N.C 0.059 1.50 0.063 1.60 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.05/05 www.irf.com 9