Cirrus CDB4270 24-bit, 192 khz stereo audio codec Datasheet

CS4270
24-Bit, 192 kHz Stereo Audio CODEC
D/A Features
A/D Features
 High Performance
 High Performance
–
–
–
–
105 dB Dynamic Range
-95 dB THD+N
 Multi-bit ∆Σ Conversion
 Selectable Serial Audio Interface Formats
–
–
–
105 dB Dynamic Range
-95 dB THD+N
 High-Pass Filter to Remove DC Offsets
Left-Justified up to 24-bit
I²S up to 24-bit
Right-Justified 16-, and 24-Bit
 Selectable Serial Audio Interface Formats
–
–
 Control Output for External Muting
Left-Justified up to 24-bit
I²S up to 24-bit
 Single-Ended Input
System Features
 On-Chip Digital De-Emphasis
 Direct Interface with Logic Levels 1.8 V to 5 V

Popguard®
Technology
 Internal Digital Loopback
 Multi-bit ∆Σ Conversion
 Stand-Alone or Control Port Functionality
 Digital Volume Control
 Supports all Audio Sample Rates from 4 kHz to
 Single-Ended Analog Architecture
216 kHz
 Single-Ended Output
 3.3 V or 5 V Core Supply
Control Port Supply
1.8 V to 5 V
Reset
Level Translator
Hardware Mode or
I2C/SPI Software Mode
Control Data
Internal Voltage
Reference
External Mute
Control
Volume
Controls
Serial Interface
2
Preliminary Product Information
http://www.cirrus.com
Analog Supply
3.3 V to 5 V
Register/Hardware
Configuration
PCM Serial
Audio Input
PCM Serial
Audio Output
Digital Supply
3.3 V to 5 V
2
Digital
Filters
High-Pass
Filter
Multi-bit ∆Σ
Modulators
Digital
Filters
Switch-Cap
DAC and
Analog Filters
Switch-Cap
ADC
2
2
2
Mute Signals
Single-Ended
Outputs
Single-Ended
Inputs
This document contains information for a new product.
Cirrus Logic reserves the right to modify this product without notice.
Copyright © Cirrus Logic, Inc. 2006
(All Rights Reserved)
MAY '06
DS686PP1
CS4270
Stand-Alone Mode Feature Set
 System Features
–
Serial Audio Port Master or Slave Operation
–
Single-, Double-, or Quad-Speed Operation
 D/A Features
–
Auto-Mute on Static Samples
–
44.1 kHz 50/15 µs De-emphasis Available
–
Selectable Serial Audio Interface Formats
•
Left-Justified up to 24-bit
•
I²S up to 24-bit
 A/D Features
–
High-Pass Filter
–
Selectable Serial Audio Interface Formats
•
Left-Justified up to 24-bit
•
I²S up to 24-bit
Software Mode Feature Set
 System Features
–
Serial Audio Port Master or Slave Operation
–
Internal Digital Loopback Available
 D/A Features
–
Selectable Auto-mute
–
44.1-kHz De-emphasis Filters
–
Configurable Muting Controls
–
Volume Control
–
Selectable Serial Audio Interface Formats
•
Left-Justified up to 24-bit
•
I²S up to 24-bit
•
Right-Justified 16, and 24-bit
General Description
The CS4270 is a high-performance, integrated audio
CODEC. The CS4270 performs stereo analog-to-digital
(A/D) and digital-to-analog (D/A) conversion of up to
24-bit serial values at sample rates up to 216 kHz.
Standard 50/15 µs de-emphasis is available for sampling rates of 44.1 kHz for compatibility with digital audio
programs mastered using the 50/15 µs pre-emphasis
technique.
Integrated level translators allow easy interfacing between the CS4270 and other devices operating over a
wide range of logic levels.
Independently addressable high-pass filters are available for the right and left channel of the A/D. This allows
the A/D to be used in a wide variety of applications
where one audio channel and one DC measurement
channel is desired.
The CS4270 is available in a 24-pin TSSOP package in
both Commercial (-10° to +70° C) and Automotive
grades (-40° to +85° C). The CDB4270 Customer Demonstration board is also available for device evaluation
and implementation suggestions. Please refer to
“Ordering Information” on page 47 for complete ordering information.
The CS4270’s wide dynamic range, negligible distortion, and low noise make it ideal for applications such as
DVD-recorders, digital televisions, set-top boxes, effects processors, and automotive audio systems.
 A/D Features
2
–
Selectable High-Pass Filter or DC Offset
Calibration
–
Selectable Serial Audio Interface Formats
•
Left-Justified up to 24-bit
•
I²S up to 24-bit
DS686PP1
CS4270
TABLE OF CONTENTS
1. PIN DESCRIPTIONS - SOFTWARE MODE ........................................................................................... 6
2. PIN DESCRIPTIONS - STAND-ALONE MODE ..................................................................................... 7
3. TYPICAL CONNECTION DIAGRAM ..................................................................................................... 8
4. CHARACTERISTICS AND SPECIFICATIONS ...................................................................................... 9
SPECIFIED OPERATING CONDITIONS ............................................................................................... 9
ABSOLUTE MAXIMUM RATINGS ......................................................................................................... 9
THERMAL CHARACTERISTICS ............................................................................................................ 9
DAC ANALOG CHARACTERISTICS - COMMERCIAL GRADE .......................................................... 10
DAC ANALOG CHARACTERISTICS - AUTOMOTIVE GRADE .......................................................... 10
DAC ANALOG CHARACTERISTICS - ALL MODES ........................................................................... 11
DAC COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE .............................. 12
ADC ANALOG CHARACTERISTICS - COMMERCIAL GRADE .......................................................... 13
ADC ANALOG CHARACTERISTICS - AUTOMOTIVE GRADE .......................................................... 14
ADC DIGITAL FILTER CHARACTERISTICS ....................................................................................... 15
DC ELECTRICAL CHARACTERISTICS .............................................................................................. 16
DIGITAL CHARACTERISTICS ............................................................................................................. 16
SWITCHING CHARACTERISTICS - SERIAL AUDIO PORT ............................................................... 17
SWITCHING CHARACTERISTICS - I²C MODE CONTROL PORT ..................................................... 20
SWITCHING CHARACTERISTICS - SPITM CONTROL PORT .......................................................... 21
5. APPLICATIONS ................................................................................................................................... 22
5.1 Stand-Alone Mode ......................................................................................................................... 22
5.1.1 Recommended Power-Up Sequence .................................................................................... 22
5.1.2 Master/Slave Mode ............................................................................................................... 22
5.1.3 System Clocking .................................................................................................................... 22
5.1.4 Clock Ratio Selection ............................................................................................................ 23
5.1.5 Interpolation Filter ................................................................................................................. 23
5.1.6 High-Pass Filter ..................................................................................................................... 23
5.1.7 Mode Selection & De-Emphasis ............................................................................................ 24
5.1.8 Serial Audio Interface Format Selection ................................................................................ 24
5.2 Control Port Mode ......................................................................................................................... 24
5.2.1 Recommended Power-Up Sequence - Access to Control Port Mode ................................... 24
5.2.2 Master / Slave Mode Selection .............................................................................................. 24
5.2.3 System Clocking .................................................................................................................... 25
5.2.4 Clock Ratio Selection ............................................................................................................ 25
5.2.5 Internal Digital Loopback ....................................................................................................... 26
5.2.6 Auto-Mute .............................................................................................................................. 26
5.2.7 High-Pass Filter and DC Offset Calibration ........................................................................... 26
5.2.8 De-Emphasis ......................................................................................................................... 27
5.2.9 Oversampling Modes ............................................................................................................ 27
5.3 De-Emphasis Filter ........................................................................................................................ 27
5.4 Analog Connections ...................................................................................................................... 28
5.4.1 Input Connections ................................................................................................................. 28
5.4.2 Output Connections ............................................................................................................... 30
5.5 Mute Control .................................................................................................................................. 30
5.6 Synchronization of Multiple Devices .............................................................................................. 31
5.7 Grounding and Power Supply Decoupling .................................................................................... 31
6. CONTROL PORT INTERFACE ............................................................................................................ 32
6.1 SPI™ Mode ................................................................................................................................... 32
6.2 I²C® Mode ...................................................................................................................................... 33
7. REGISTER QUICK REFERENCE ........................................................................................................ 34
8. REGISTER DESCRIPTION .................................................................................................................. 35
8.1 Chip ID - Address 01h ................................................................................................................... 35
DS686PP1
3
CS4270
8.2 Power Control - Address 02h ........................................................................................................ 35
8.2.1 Freeze (Bit 7) ......................................................................................................................... 35
8.2.2 PDN_ADC (Bit 5) ................................................................................................................... 35
8.2.3 PDN_DAC (Bit 1) ................................................................................................................... 35
8.2.4 Power Down (Bit 0) ............................................................................................................... 35
8.3 Mode Control - Address 03h ......................................................................................................... 36
8.3.1 ADC Functional Mode & Master / Slave Mode (Bits 5:4) ...................................................... 36
8.3.2 Ratio Select (Bits 3:1) ............................................................................................................ 36
8.3.3 PopguardTM Disable (Bit 0) .................................................................................................. 36
8.4 ADC and DAC Control - Address 04h ........................................................................................... 36
8.4.1 ADC HPF Freeze A (Bit 7) .................................................................................................... 36
8.4.2 ADC HPF Freeze B (Bit 6) .................................................................................................... 37
8.4.3 Digital Loopback (Bit 5) ......................................................................................................... 37
8.4.4 DAC Digital Interface Format (Bits 4:3) ................................................................................. 37
8.4.5 ADC Digital Interface Format (Bit 0) ...................................................................................... 37
8.5 Transition Control - Address 05h ................................................................................................... 38
8.5.1 DAC Single Volume (Bit 7) .................................................................................................... 38
8.5.2 Soft Ramp or Zero Cross Enable (Bits 6:5) ........................................................................... 38
8.5.3 Invert Signal Polarity (Bits 4:1) .............................................................................................. 38
8.5.4 De-Emphasis Control (Bit 0) .................................................................................................. 39
8.6 Mute Control - Address 06h .......................................................................................................... 39
8.6.1 Auto-Mute (Bit 5) ................................................................................................................... 39
8.6.2 ADC Channel A & B Mute (Bits 4:3) ...................................................................................... 39
8.6.3 Mute Polarity (Bit 2) ............................................................................................................... 39
8.6.4 DAC Channel A & B Mute (Bits 1:0) ...................................................................................... 39
8.7 DAC Channel A Volume Control - Address 07h ............................................................................ 40
8.8 DAC Channel B Volume Control - Address 08h ............................................................................ 40
9. FILTER PLOTS
................................................................................................................................ 41
10. PARAMETER DEFINITIONS .............................................................................................................. 45
11. PACKAGE DIMENSIONS .................................................................................................................. 46
12. ORDERING INFORMATION .............................................................................................................. 47
13. REVISION HISTORY .......................................................................................................................... 47
LIST OF FIGURES
Figure 1. CS4270 Typical Connection Diagram .......................................................................................... 8
Figure 2. Output Test Load ....................................................................................................................... 11
Figure 3. Maximum Loading ...................................................................................................................... 11
Figure 4. Master Mode, Left-Justified SAI ................................................................................................. 18
Figure 5. Slave Mode, Left-Justified SAI ................................................................................................... 18
Figure 6. Master Mode, I²S SAI ................................................................................................................. 18
Figure 7. Slave Mode, I²S SAI ................................................................................................................... 18
Figure 8. Master and Slave Mode SDIN vrs. SCLK .................................................................................. 18
Figure 9. Format 0, Left-Justified up to 24-Bit Data .................................................................................. 19
Figure 10. Format 1, I²S up to 24-Bit Data ................................................................................................ 19
Figure 11. Format 2, Right-Justified 16-Bit Data. (Available in Control Port Mode only)
Format 3, Right-Justified 24-Bit Data. (Available in Control Port Mode only) ........................................... 19
Figure 12. I²C Mode Control Port Timing .................................................................................................. 20
Figure 13. SPI Control Port Timing ........................................................................................................... 21
Figure 14. De-Emphasis Curve ................................................................................................................. 27
Figure 15. CS4270 Recommended Analog Input Network ....................................................................... 28
Figure 16. A/D THD+N Performance vrs. Input Source Resistance ......................................................... 28
Figure 17. A/D Dynamic Range vrs. Input Source Resistance ................................................................. 29
Figure 18. CS4270 Example Analog Input Network .................................................................................. 30
4
DS686PP1
CS4270
Figure 19. CS4270 Recommended Analog Output Filter .......................................................................... 30
Figure 20. Suggested Active-Low Mute Circuit ......................................................................................... 31
Figure 21. Control Port Timing, SPI Mode ................................................................................................ 32
Figure 22. Control Port Timing, I²C Mode ................................................................................................. 33
Figure 23. De-Emphasis Curve ................................................................................................................. 39
Figure 24. DAC Single-Speed Stopband Rejection .................................................................................. 41
Figure 25. DAC Single-Speed Transition Band ......................................................................................... 41
Figure 26. DAC Single-Speed Transition Band (detail) ............................................................................. 41
Figure 27. DAC Single-Speed Passband Ripple ....................................................................................... 41
Figure 28. DAC Double-Speed Stopband Rejection ................................................................................. 41
Figure 29. DAC Double-Speed Transition Band ....................................................................................... 41
Figure 30. DAC Double-Speed Transition Band (detail) ........................................................................... 42
Figure 31. DAC Double-Speed Passband Ripple ..................................................................................... 42
Figure 32. DAC Quad-Speed Stopband Rejection .................................................................................... 42
Figure 33. DAC Quad-Speed Transition Band .......................................................................................... 42
Figure 34. DAC Quad-Speed Transition Band (detail) .............................................................................. 42
Figure 35. DAC Quad-Speed Passband Ripple ........................................................................................ 42
Figure 36. ADC Single-Speed Stopband Rejection .................................................................................. 43
Figure 37. ADC Single-Speed Stopband (detail) ...................................................................................... 43
Figure 38. ADC Single-Speed Transition Band (detail) ............................................................................. 43
Figure 39. ADC Single-Speed Passband Ripple ....................................................................................... 43
Figure 40. ADC Double-Speed Stopband Rejection ................................................................................. 43
Figure 41. ADC Double-Speed Stopband (detail) ..................................................................................... 43
Figure 42. ADC Double-Speed Transition Band (detail) ........................................................................... 44
Figure 43. ADC Double-Speed Passband Ripple ..................................................................................... 44
Figure 44. ADC Quad-Speed Stopband Rejection .................................................................................... 44
Figure 45. ADC Quad-Speed Stopband (detail) ........................................................................................ 44
Figure 46. ADC Quad-Speed Transition Band (detail) .............................................................................. 44
Figure 47. ADC Quad-Speed Passband Ripple ........................................................................................ 44
LIST OF TABLES
Table 1. Speed Modes ..............................................................................................................................
Table 2. Clock Ratios - Stand-Alone Mode ...............................................................................................
Table 3. CS4270 Stand-Alone Mode Control............................................................................................
Table 4. Speed Modes ..............................................................................................................................
Table 5. Clock Ratios - Control Port Mode................................................................................................
Table 6. Analog Input Design Parameters ................................................................................................
Table 7. Memory Address Pointer.............................................................................................................
Table 8. Functional Mode Selection..........................................................................................................
Table 9. MCLK Divider Configuration........................................................................................................
Table 10. DAC Digital Interface Formats ..................................................................................................
Table 11. ADC Digital Interface Formats ..................................................................................................
Table 12. Soft Cross or Zero Cross Mode Selection.................................................................................
Table 13. Digital Volume Control ..............................................................................................................
DS686PP1
22
23
24
25
25
29
33
36
36
37
37
38
40
5
CS4270
1. PIN DESCRIPTIONS - SOFTWARE MODE
SDIN
LRCK
MCLK
SCLK
VD
DGND
SDOUT
VLC
SDA/CDOUT
SCL/CCLK
AD0/CS
AD1/CDIN
Pin Name
#
1
24
2
23
3
22
4
21
5
20
6
19
7
18
8
17
9
16
10
15
11
14
12
13
MUTEB
AOUTB
AOUTA
MUTEA
AGND
VA
FILT+
VQ
AINB
AINA
RST
AD2
Pin Description
SDIN
1
Serial Audio Data Input (Input) - Input for two’s complement serial audio data.
LRCK
2
Left Right Clock (Input/Output) - Determines which channel, Left or Right, is currently active on the
serial audio data line.
MCLK
3
Master Clock (Input) - Clock source for the delta-sigma modulator and digital filters.
SCLK
4
Serial Clock (Input/Output) - Serial clock for the serial audio interface.
VD
5
Digital Power (Input) - Positive power supply for the digital section.
DGND
6
Digital Ground (Input) - Ground reference for the internal digital section.
SDOUT
7
Serial Audio Data Output (Output) - Output for two’s complement serial audio data.
VLC
8
Control Port Power (Input) - Determines the signal level for the Control Port.
SDA/CDOUT
9
Serial Control Data (Input/Output) - SDA is a data I/O in I²C® Mode. CDOUT is the output data line for
the Control Port interface in SPI® Mode.
SCL/CCLK
10
Serial Control Port Clock (Input) - Serial clock for the serial Control Port.
AD0/CS
11
Address Bit 0 (I²C) / Control Port Chip Select (SPI) (Input) - AD0 is a chip address pin in I²C Mode.
CS is the chip select signal for SPI format.
AD1/CDIN
12
Address Bit 1 (I²C) / Serial Control Data (Input) - AD1 is a chip address pin in I²C Mode. CDIN is the
input data line for the Control Port interface in SPI Mode.
AD2
13
Address Bit 2 (I²C) (Input) - AD2 is a chip address pin in I²C Mode.
RST
14
Reset (Input) - The device enters a low power mode when low.
AINA
AINB
15
16
Analog Input (Input) - The full-scale analog input level is specified in the ADC Analog Characteristics
specification table.
VQ
17
Quiescent Voltage (Output) - Filter connection for internal quiescent voltage.
FILT+
18
Positive Voltage Reference (Output) - Positive reference voltage for the internal sampling circuits.
VA
19
Analog Power (Input) - Positive power for the analog sections.
AGND
20
Analog Ground (Input) - Ground reference. Must be connected to analog ground.
MUTEA
MUTEB
21
24
Mute Control (Output) - Each pin is active during power-up initialization, reset, muting, when master
clock to left/right clock frequency ratio is incorrect, or power-down.
AOUTA
AOUTB
22
23
Analog Audio Output (Output) - The full-scale output level is specified in the DAC Analog Characteristics specification table.
6
DS686PP1
CS4270
2. PIN DESCRIPTIONS - STAND-ALONE MODE
SDIN
LRCK
MCLK
SCLK
VD
DGND
SDOUT
VLC
M1
M0
I²S/LJ
MDIV1
Pin Name
SDIN
#
1
24
2
23
3
22
4
21
5
20
6
19
7
18
8
17
9
16
10
15
11
14
12
13
MUTEB
AOUTB
AOUTA
MUTEA
AGND
VA
FILT+
VQ
AINB
AINA
RST
MDIV2
Pin Description
1
Serial Audio Data Input (Input) - Input for two’s complement serial audio data.
LRCK
2
Left Right Clock (Input/Output) - Determines which channel, Left or Right, is currently active on the
serial audio data line.
MCLK
3
Master Clock (Input) - Clock source for the delta-sigma modulator and digital filters.
SCLK
4
Serial Clock (Input/Output) - Serial clock for the serial audio interface.
VD
5
Digital Power (Input) - Positive power supply for the digital section.
DGND
6
Digital Ground (Input) - Ground reference for the internal digital section.
SDOUT
(M/S)
7
Serial Audio Data Output (Output) - Output for two’s complement serial audio data. This pin must be
pulled-up or pulled-down to select Master or Slave Mode.
VLC
8
Control Port Power (Input) - Determines the signal level for the Control Port.
M1
M0
9
10
Mode Selection (Input) - Determines the operational mode of the device.
I²S/LJ
11
Serial Audio Interface Select (Input) - Selects either the Left-Justified or I²S format for the Serial Audio
Interface.
MDIV1
MDIV2
12
13
MCLK Divide (Input) - Configures MCLK divider to divide by 1, 1.5, 2, or 4.
RST
14
Reset (Input) - The device enters a low power mode when low.
AINA
AINB
15
16
Analog Input (Input) - The full-scale analog input level is specified in the ADC Analog Characteristics
specification table.
VQ
17
Quiescent Voltage (Output) - Filter connection for internal quiescent voltage.
FILT+
18
Positive Voltage Reference (Output) - Positive reference voltage for the internal sampling circuits.
VA
19
Analog Power (Input) - Positive power for the analog sections.
AGND
20
Analog Ground (Input) - Ground reference. Must be connected to analog ground.
MUTEA
MUTEB
21
24
Mute Control (Output) - Each pin is active during power-up initialization, reset, muting, when master
clock to left/right clock frequency ratio is incorrect, or power-down.
AOUTA
AOUTB
22
23
Analog Audio Output (Output) - The full-scale output level is specified in the DAC Analog Characteristics specification table.
DS686PP1
7
CS4270
3. TYPICAL CONNECTION DIAGRAM
+3.3 V to 5 V
1.
0.1 µF
1 µF
0.1 µF
1 µF
5.1Ω
1.
+3.3 V to 5 V
47 µF
2.
VD
VA
FILT+
GND or VD
0.1 µF
47 kΩ
AGND
10 µF
0.1 µF
SDOUT (M/ S)
SDIN
VQ
Analog Input
Network
Audio Data
Processor
AINA
AINB
(see Figures 12 & 13)
MCLK
CS4270
Timing Logic
&
Clock
SCLK
LRCK
AD2 (MDIV1)
Power
Down
and Mode
Settings
(Control Port)
AD1 (MDIV2)
AD0 / CS (I2S/LJ)
SDA / CDIN (M1)
SCL / CCLK (M0)
MUTEA
AOUTA
RST
3.
2 kΩ
+1.8 V to 5 V
Analog Conditioning
&
Mute
AOUTB
MUTEB
3.
2 kΩ
(see Figures 14 & 15)
VLC
DGND
1.
If using separate supplies for
VA and VD, 5.1 Ω resistor not
needed. See "Grounding and
Power Supply Decoupling."
2.
Use a 47 kΩ pull-down to select
Slave Mode or 47 kΩ pull-up to
VD to select Master Mode. See
"Master/Slave Mode Selection."
3.
Use pull-up resistors in Software
Mode. In Hardware Mode, use
pull-up or pull-down. See "Mode
Selection & De-Emphasis."
Figure 1. CS4270 Typical Connection Diagram
8
DS686PP1
CS4270
4. CHARACTERISTICS AND SPECIFICATIONS
(All Min/Max characteristics and specifications are guaranteed over the Specified Operating Conditions. Typical
performance characteristics and specifications are derived from measurements taken at nominal supply voltages
and TA = 25°C.)
SPECIFIED OPERATING CONDITIONS
(AGND = 0 V; all voltages with respect to ground.)
Parameters
Analog
Digital
Control Port Interface
Ambient Operating Temperature (Power Applied)
Commercial
Automotive
DC Power Supplies:
Symbol
VA
VD
VLC
TA
Min
3.1
3.1
1.7
-10
-40
Nom
5.0
3.3
3.3
-
Max
5.25
5.25
5.25
+70
+85
Units
V
V
V
°C
°C
ABSOLUTE MAXIMUM RATINGS
(AGND = DGND = 0 V, All voltages with respect to ground.) (Note 1)
Parameter
Symbol
Min
Typ
Max
Units
Analog
Digital
Control Port Interface
(Note 2)
VA
VD
VLC
-0.3
-0.3
-0.3
-
+6.0
+6.0
+6.0
V
V
V
Iin
-10
-
+10
mA
VIN
AGND-0.7
-
VA+0.7
V
Control Port Interface
Digital Interface
VIND-C
VIND-D
-0.3
-0.3
-
VLC+0.3
VD+0.3
V
V
Ambient Operating Temperature (Power Applied)
TAC
-50
-
+95
°C
Storage Temperature
Tstg
-65
-
+150
°C
DC Power Supplies:
Input Current
Analog Input Voltage
Digital Input Voltage
Notes:
1. Operation beyond these limits may result in permanent damage to the device.
Normal operation is not guaranteed at these extremes.
2. Any pin except supplies. Transient currents of up to ±100 mA on the analog input pins will not cause
SRC latch-up.
THERMAL CHARACTERISTICS
Parameters
Symbol
Min
-
Typ
-
Max
135
Units
°C
θJA-M
θJA-S
-
70
105
-
°C/W
°C/W
Allowable Junction Temperature
Junction to Ambient Thermal Impedance (Note 3)
(Multi-layer PCB) TSSOP
(Single-layer PCB) TSSOP
3. θJA is specified according to JEDEC specifications for multi-layer PCBs.
DS686PP1
9
CS4270
DAC ANALOG CHARACTERISTICS - COMMERCIAL GRADE
(Full-Scale Output Sine Wave, 997 Hz (Note 4), Fs = 48/96/192 kHz; Test load RL = 3 kΩ, CL = 10 pF
(see Figure 2). Measurement Bandwidth 10 Hz to 20 kHz, unless otherwise specified.)
VA = 5 V
Parameter
Dynamic Range
18 to 24-Bit A-weighted
16-Bit
Total Harmonic Distortion + Noise
18 to 24-Bit
16-Bit
unweighted
A-weighted
unweighted
0 dB
-20 dB
-60 dB
0 dB
-20 dB
-60 dB
VA = 3.3 V
Min
Typ
Max
Min
Typ
Max
Unit
99
96
90
87
105
102
96
93
-
97
94
90
87
103
100
96
93
-
dB
dB
dB
dB
-
-89
-76
-36
-87
-67
-27
-83
-70
-30
-81
-61
-21
-
-89
-76
-36
-87
-67
-27
-83
-70
-30
-81
-61
-21
dB
dB
dB
dB
dB
dB
DAC ANALOG CHARACTERISTICS - AUTOMOTIVE GRADE
(Full-Scale Output Sine Wave, 997 Hz (Note 4), Fs = 48/96/192 kHz; Test load RL = 3 kΩ, CL = 10 pF
(see Figure 2). Measurement Bandwidth 10 Hz to 20 kHz, unless otherwise specified.)
VA = 5 V
Parameter
Dynamic Range
18 to 24-Bit A-weighted
16-Bit
Total Harmonic Distortion + Noise
18 to 24-Bit
16-Bit
unweighted
A-weighted
unweighted
0 dB
-20 dB
-60 dB
0 dB
-20 dB
-60 dB
VA = 3.3 V
Min
Typ
Max
Min
Typ
Max
Unit
95
92
86
83
105
102
96
93
-
93
90
86
83
103
100
96
93
-
dB
dB
dB
dB
-
-89
-76
-36
-87
-67
-27
-79
-66
-26
-77
-57
-17
-
-89
-76
-36
-87
-67
-27
-79
-66
-26
-77
-57
-17
dB
dB
dB
dB
dB
dB
4. One-half LSB of triangular PDF dither added to data.
10
DS686PP1
CS4270
DAC ANALOG CHARACTERISTICS - ALL MODES
Parameter
Symbol
(1 kHz)
Interchannel Isolation
Min
Typ
Max
Unit
-
100
-
dB
-
0.1
0.25
dB
+100
ppm/°C
DC Accuracy
Interchannel Gain Mismatch
-100
Gain Drift
Analog Output
0.6•VA
0.65•VA
0.7•VA
Vpp
IOUTmax
-
10
-
µA
RL
-
3
-
kΩ
CL
-
100
-
pF
ZOUT
-
100
-
Ω
Full Scale Output Voltage
Max DC Current draw from AOUTA or AOUTB
Max AC-Load Resistance (see Figure 3)
Max Load Capacitance (see Figure 3)
Output Impedance of AOUTA and AOUTB
125
V
out
AOUTx
R
L
AGND
C
L
Capacitive Load -- C (pF)
L
3.3 µF
100
75
25
2.5
3
Figure 2. Output Test Load
DS686PP1
Safe Operating
Region
50
5
10
15
20
Resistive Load -- RL (kΩ )
Figure 3. Maximum Loading
11
CS4270
DAC COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE
(The filter characteristics have been normalized to the sample rate (Fs) and can be referenced to the desired sample rate by multiplying the given characteristic by Fs.) (See Note 5)
Parameter
Symbol
Min
Typ
Max
Unit
0
0
-
.35
.4992
Fs
Fs
Frequency Response 10 Hz to 20 kHz
-.175
-
+.01
dB
StopBand
.5465
-
-
Fs
50
-
-
dB
-
10/Fs
-
s
Fs = 32 kHz
Fs = 44.1 kHz
Fs = 48 kHz
-
-
+1.5/+0
+.05/-.25
-.2/-.4
dB
dB
dB
to -0.1 dB corner
to -3 dB corner
0
0
-
.22
.501
Fs
Fs
-.15
-
+.15
dB
.5770
-
-
Fs
55
-
-
dB
-
5/Fs
-
s
0
0
-
0.110
0.469
Fs
Fs
-.12
-
+0
dB
Single-Speed Mode
Passband (Note 6)
StopBand Attenuation
to -0.1 dB corner
to -3 dB corner
(Note 7)
tgd
Group Delay
De-emphasis Error (Note 8)
Double-Speed Mode
Passband (Note 6)
Frequency Response 10 Hz to 20 kHz
StopBand
StopBand Attenuation
(Note 7)
tgd
Group Delay
Quad-Speed Mode
Passband (Note 6)
to -0.1 dB corner
to -3 dB corner
Frequency Response 10 Hz to 20 kHz
StopBand
StopBand Attenuation
(Note 7)
Group Delay
tgd
0.7
-
-
Fs
51
-
-
dB
-
2.5/Fs
-
s
5. Amplitude vs. Frequency plots of this data are available in Section 9. “Filter Plots” on page 41. See
Figures 24 through 47.
6. Response is clock dependent and will scale with Fs.
7. For Single-Speed Mode, the Measurement Bandwidth is 0.5465 Fs to 3 Fs.
For Double-Speed Mode, the Measurement Bandwidth is 0.577 Fs to 1.4 Fs.
For Quad-Speed Mode, the Measurement Bandwidth is 0.7 Fs to 1 Fs.
8. De-emphasis is available only in Single-Speed Mode.
12
DS686PP1
CS4270
ADC ANALOG CHARACTERISTICS - COMMERCIAL GRADE
Measurement bandwidth is 10 Hz to 20 kHz unless otherwise specified. Figure 18 input circuit, 1 kHz sine wave in.
Dynamic Performance for Commercial Grade
Fs = 48 kHz
Single-Speed Mode
VA = 5 V
Symbol
Min
Typ
Max
Min
Typ
Max
Unit
99
96
105
102
-
96
93
102
99
-
dB
dB
-
-95
-82
-42
-90
-
-
-92
-79
-39
-87
-
dB
dB
dB
99
96
-
105
102
99
-
96
93
-
102
99
96
-
dB
dB
dB
-
-95
-82
-42
-95
-90
-
-
-92
-79
-39
-87
-87
-
dB
dB
dB
dB
99
96
-
105
102
99
-
96
93
-
102
99
96
-
dB
dB
dB
-
-95
-82
-42
-95
-90
-
-
-92
-79
-39
-87
-87
-
dB
dB
dB
dB
A-weighted
unweighted
Dynamic Range
Total Harmonic Distortion + Noise
(Note 9)
THD+N
-1 dB
-20 dB
-60 dB
Fs = 96 kHz
Double-Speed Mode
A-weighted
unweighted
40 kHz bandwidth unweighted
Dynamic Range
Total Harmonic Distortion + Noise
(Note 9)
40 kHz bandwidth
Quad-Speed Mode
THD+N
-1 dB
-20 dB
-60 dB
-1 dB
Fs = 192 kHz
A-weighted
unweighted
40 kHz bandwidth unweighted
Dynamic Range
VA = 3.3 V
Total Harmonic Distortion + Noise
40 kHz bandwidth
(Note 9)
THD+N
-1 dB
-20 dB
-60 dB
-1 dB
Dynamic Performance for Commercial Grade - All Modes
Min
Typ
Max
Unit
-
90
-
dB
Interchannel Gain Mismatch
-
0.1
-
dB
Gain Error
-3
-
+3
%
Gain Drift
-
±100
-
ppm/°C
0.53*VA
0.56*VA
0.58*VA
Vpp
-
300
-
kΩ
Parameter
Interchannel Isolation
DC Accuracy
Analog Input Characteristics
Full-Scale Input Voltage
Input Impedance
9. Referred to the typical full-scale input voltage.
DS686PP1
13
CS4270
ADC ANALOG CHARACTERISTICS - AUTOMOTIVE GRADE
Measurement Bandwidth is 10 Hz to 20 kHz unless otherwise specified. Figure 18 input circuit, 1 kHz sine wave in.
Dynamic Performance for Automotive Grade
Fs = 48 kHz
Single-Speed Mode
VA = 5 V
Symbol
Min
Typ
Max
Min
Typ
Max
Unit
97
94
105
102
-
94
91
102
99
-
dB
dB
-
-95
-82
-42
-90
-
-
-92
-79
-39
-87
-
dB
dB
dB
97
94
-
105
102
99
-
94
91
-
102
99
96
-
dB
dB
dB
-
-95
-82
-42
-95
-90
-
-
-92
-79
-39
-87
-87
-
dB
dB
dB
dB
97
94
-
105
102
99
-
94
91
-
102
99
96
-
dB
dB
dB
-
-95
-82
-42
-95
-90
-
-
-92
-79
-39
-87
-87
-
dB
dB
dB
dB
A-weighted
unweighted
Dynamic Range
Total Harmonic Distortion + Noise
(Note 10)
THD+N
-1 dB
-20 dB
-60 dB
Fs = 96 kHz
Double-Speed Mode
A-weighted
unweighted
40 kHz bandwidth unweighted
Dynamic Range
Total Harmonic Distortion + Noise
(Note 10)
40 kHz bandwidth
Quad-Speed Mode
THD+N
-1 dB
-20 dB
-60 dB
-1 dB
Fs = 192 kHz
A-weighted
unweighted
40 kHz bandwidth unweighted
Dynamic Range
VA = 3.3 V
Total Harmonic Distortion + Noise
40 kHz bandwidth
(Note 10)
THD+N
-1 dB
-20 dB
-60 dB
-1 dB
Dynamic Performance for Automotive Grade - All Modes
Min
Typ
Max
Unit
-
90
-
dB
Interchannel Gain Mismatch
-
0.1
-
dB
Gain Error
-3
-
+3
%
Gain Drift
-
±100
-
ppm/°C
0.53*VA
0.56*VA
0.58*VA
Vpp
-
300
-
kΩ
Parameter
Interchannel Isolation
DC Accuracy
Analog Input Characteristics
Full-Scale Input Voltage
Input Impedance
10. Referred to the typical full-scale input voltage.
14
DS686PP1
CS4270
ADC DIGITAL FILTER CHARACTERISTICS
(Measurement Bandwidth is 10 Hz to 20 kHz unless otherwise specified) (Note 11)
Parameter
Symbol
Min
Typ
Max
Unit
0
-
0.49
Fs
-
-
0.035
dB
0.57
-
-
Fs
70
-
-
dB
-
12/Fs
-
s
(Note 12)
0
-
0.49
Fs
-
-
0.05
dB
(Note 12)
0.56
-
-
Fs
69
-
-
dB
-
9/Fs
-
s
0
-
0.26
Fs
-
-
0.05
dB
0.50
-
-
Fs
60
-
-
dB
-
5/Fs
-
s
-
1
20
-
Hz
Hz
-
10
-
deg
-
-
0
dB
Single-Speed Mode
Passband
(-0.1 dB)
(Note 12)
Passband Ripple
Stopband
(Note 12)
Stopband Attenuation
tgd
Group Delay
Double-Speed Mode
Passband
(-0.1 dB)
Passband Ripple
Stopband
Stopband Attenuation
tgd
Group Delay
Quad-Speed Mode
Passband
(-0.1 dB)
(Note 12)
Passband Ripple
Stopband
(Note 12)
Stopband Attenuation
tgd
Group Delay
High-Pass Filter Characteristics
Frequency Response
Phase Deviation
-3.0 dB
-0.13 dB
(Note 13)
@ 20 Hz
(Note 13)
Passband Ripple
11. Plots of this data are contained in Section 9. “Filter Plots” on page 41. See Figures 24 through 47.
12. The filter frequency response scales precisely with Fs.
13. Response shown is for Fs equal to 48 kHz. Filter characteristics scale with Fs.
DS686PP1
15
CS4270
DC ELECTRICAL CHARACTERISTICS
(TA = 25° C; AGND=DGND=0, all voltages with respect to ground; MLCK=12.288 MHz; Master Mode)
Parameter
Symbol
Min
Typ
Max
Unit
VA = 5 V
VA = 3.3 V
VD, VLC = 5 V
VD, VLC = 3.3 V
IA
IA
ID
ID
-
31
27
29
20
40
35
38
29
mA
mA
mA
mA
VA = 5 V
VD, VLC = 5 V
IA
ID
-
1.51
0.45
-
mA
mA
Normal Operation
Normal Operation
Power-Down Mode (Note 14)
-
-
221
255
9.8
296
323
mW
mW
mW
PSRR
-
55
-
dB
Power Supply
Power Supply Current
(Normal Operation)
Power Supply Current
(Power-Down Mode) (Note 14)
Power Consumption
VA = 5 V, VD = VLC= 3.3 V
VA = 5 V, VD = VLC = 5 V
Power Supply Rejection Ratio (1 kHz)
(Note 15)
Common Mode Voltage
-
VA/2
-
VDC
Maximum DC Current Source/Sink from VQ
-
1
-
µA
VQ Output Impedance
-
25
-
kΩ
Nominal Common Mode Voltage
VQ
Positive Voltage Reference
-
VA
-
VDC
Maximum DC Current Source/Sink from FILT+
-
10
-
µA
FILT+ Output Impedance
-
18
-
kΩ
FILT+ Nominal Voltage
FILT+
Mute Control
MUTEA, MUTEB Low-Level Output Voltage
-
0
-
V
MUTEA, MUTEB High-Level Output Voltage
-
VA
-
V
Maximum MUTEA & MUTEB Drive Current
-
3
-
mA
14. Power Down Mode is defined as RST = Low with all clocks and data lines held static.
15. Valid with the recommended capacitor values on FILT+ and VQ as shown in the Typical Connection
Diagram.
DIGITAL CHARACTERISTICS
Parameter (Note 16)
Symbol
Min
Typ
Max
Units
High-Level Input Voltage
Serial Port
Control Port
VIH
0.7xVD
0.7xVLC
-
-
V
V
Low-Level Input Voltage
Serial Port
Control Port
VIL
-
-
0.2xVD
0.2xVLC
V
V
Serial Port
Control Port
MUTEA, MUTEB
VOH
VD - 1.0
VLC - 1.0
VA - 1.0
-
-
V
V
V
VOL
-
-
0.4
V
Iin
-10
-
10
µA
High-Level Output Voltage at Io = 2 mA
Low-Level Output Voltage at Io = 2 mA
Input Leakage Current
16. Serial Port signals include: SCLK, LRCK, SDOUT, SDIN
Control Port signals include: SDA/CDOUT, SCL/CCLK, AD1/CDIN, AD0/CS, RST
16
DS686PP1
CS4270
SWITCHING CHARACTERISTICS - SERIAL AUDIO PORT
(Logic "0" = AGND = 0 V; Logic "1" = VD, CL = 20 pF)
Parameter
Sample Rate
Single-Speed Mode
Double-Speed Mode
Quad-Speed Mode
Symbol
Min
Typ
Max
Unit
Fs
Fs
Fs
4
50
100
-
54
108
216
kHz
kHz
kHz
fmclk
fmclk
1.024
1.024
40
50
55.296
55.296
60
MHz
MHz
ns
-
50
-
%
-
1
-----------------( 64 )Fs
-
s
-
50
-
%
MCLK Specifications
MCLK Frequency
(Note 17)
tand-Alone Mode
Control Port Mode
MCLK Duty Cycle
Master Mode
LRCK Duty Cycle
tsclkw
SCLK Period (Note 18)
SCLK Duty Cycle
SCLK falling to LRCK edge
tmslr
-20
-
20
ns
SCLK falling to SDOUT valid
tsdo
-
-
32
ns
SDIN valid to SCLK rising setup time
tsdis
16
-
-
ns
SCLK rising to SDIN hold time
tsdih
20
-
-
ns
40
50
60
%
Slave Mode
LRCK Duty Cycle
SCLK Period
(Note 17)
Single-Speed Mode
tsclkw
1
--------------------( 128 )Fs
-
-
s
Double-Speed Mode
tsclkw
1
-----------------( 64 )Fs
-
-
s
Quad-Speed Mode
tsclkw
1
-----------------( 64 )Fs
-
-
s
SDOUT valid before SCLK rising
tslrd
tstp
45
-20
10
50
-
55
20
-
ns
ns
ns
SDOUT valid after SCLK rising
thld
5
-
-
ns
SDIN valid to SCLK rising setup time
tsdis
16
-
-
ns
SCLK rising to SDIN hold time
tsdih
20
-
-
ns
SCLK Duty Cycle
SCLK falling to LRCK edge
17. In Control Port Mode, MCLK Frequency and Functional Mode Select bits must be configured according
to Table 5, Table 8, and Table 12.
18. tsclkw = tsclkh + tsclkl in Figures 5 and 7.
DS686PP1
17
CS4270
LRCK input
LRCK output
t slrd
tmslr
SCLK input
SCLK output
t sclkh
t sdo
SDOUT
MSB
MSB-1
MSB-2
MSB-3
SDOUT
Figure 4. Master Mode, Left-Justified SAI
MSB
MSB-1
Figure 5. Slave Mode, Left-Justified SAI
LRCK input
LRCK output
t slrd
tmslr
SCLK input
SCLK output
t sclkh
MSB
MSB-1
t sclkl
t stp t hld
t sdo
SDOUT
t sclkl
t stp t hld
SDOUT
MSB-2 MSB-3
Figure 6. Master Mode, I²S SAI
MSB
Figure 7. Slave Mode, I²S SAI
t sclkw
SCLK
t
sdis
t
sdih
SDIN
Figure 8. Master and Slave Mode SDIN vrs. SCLK
18
DS686PP1
CS4270
Left Channel
LRCK
Right Channel
SCLK
SDATA
MSB
-1 -2 -3 -4 -5
+5 +4 +3 +2 +1 LSB
MSB
-1 -2 -3 -4
+5 +4 +3 +2 +1 LSB
Figure 9. Format 0, Left-Justified up to 24-Bit Data
Left Channel
LRCK
Right Channel
SCLK
SDINx
MSB
-1 -2 -3 -4 -5
+5 +4 +3 +2 +1 LSB
MSB
-1 -2 -3 -4
+5 +4 +3 +2 +1 LSB
Figure 10. Format 1, I²S up to 24-Bit Data
LRCK
Channel
B - Right
Right Channel
Channel
A - Left
Left Channel
SCLK
SDATA LSB
MSB
-1 -2 -3 -4 -5 -6
+6 +5 +4 +3 +2 +1 LSB
MSB
-1 -2 -3 -4 -5 -6
+6 +5 +4 +3 +2 +1 LSB
32 clocks
Figure 11. Format 2, Right-Justified 16-Bit Data. (Available in Control Port Mode only)
Format 3, Right-Justified 24-Bit Data. (Available in Control Port Mode only)
DS686PP1
19
CS4270
SWITCHING CHARACTERISTICS - I²C MODE CONTROL PORT
(Inputs: logic 0 = DGND, logic 1 = VLC)
Parameter
Symbol
Min
Max
Unit
SCL Clock Frequency
fscl
-
100
kHz
RST Rising Edge to Start
tirs
500
-
ns
Bus Free Time Between Transmissions
tbuf
4.7
-
µs
Start Condition Hold Time (prior to first clock pulse)
thdst
4.0
-
µs
Clock Low time
tlow
4.7
-
µs
Clock High Time
thigh
4.0
-
µs
Setup Time for Repeated Start Condition
tsust
4.7
-
µs
I²C Mode
(Note 19)
thdd
0
-
µs
tsud
250
-
ns
Rise Time of Both SDA and SCL Lines
tr
-
1
µs
Fall Time of Both SDA and SCL Lines
tf
-
300
ns
tsusp
4.7
-
µs
SDA Hold Time from SCL Falling
SDA Setup time to SCL Rising
Setup Time for Stop Condition
19. Data must be held for sufficient time to bridge the 300 ns transition time of SCL.
RST
t irs
Stop
Repeated
Start
Start
Stop
SDA
t buf
t
t high
t hdst
tf
hdst
t susp
SCL
t
low
t
hdd
t sud
t sust
tr
Figure 12. I²C Mode Control Port Timing
20
DS686PP1
CS4270
SWITCHING CHARACTERISTICS - SPITM CONTROL PORT
(Inputs: logic 0 = DGND, logic 1 = VLC)
Parameter
Symbol
Min
Max
Unit
CCLK Clock Frequency
fsclk
-
6
MHz
RST Rising Edge to CS Falling
tsrs
500
-
ns
tspi
500
-
ns
CS High Time Between Transmissions
tcsh
1.0
-
µs
CS Falling to CCLK Edge
tcss
20
-
ns
CCLK Low Time
tscl
82
-
ns
CCLK High Time
tsch
82
-
ns
SPI Mode
(Note 20)
CCLK Edge to CS Falling
tdsu
40
-
ns
CCLK Rising to DATA Hold Time
(Note 21)
tdh
15
-
ns
Rise Time of CCLK and CDIN
(Note 22)
tr2
-
100
ns
Fall Time of CCLK and CDIN
(Note 22)
tf2
-
100
ns
CDIN to CCLK Rising Setup Time
20. tspi only needed before first falling edge of CS after RST rising edge. tspi = 0 at all other times.
21. Data must be held for sufficient time to bridge the transition time of CCLK.
22. For FSCK < 1 MHz
RST
t srs
CS
t spi t css
t scl
t sch
t csh
CCLK
t r2
t f2
CDIN
t dsu t
dh
Figure 13. SPI Control Port Timing
DS686PP1
21
CS4270
5. APPLICATIONS
5.1
Stand-Alone Mode
5.1.1 Recommended Power-Up Sequence
Reliable power-up can be accomplished by keeping the device in reset until the power supplies, clocks
and configuration pins are stable. It is also recommended that reset be enabled if the analog or digital
supplies drop below the minimum specified operating voltages to prevent power glitch related issues.
5.1.2 Master/Slave Mode
The CS4270 supports operation in either Master Mode or Slave Mode.
In Master Mode, LRCK and SCLK are outputs and are synchronously generated on-chip. LRCK is equal
to Fs and SCLK is equal to 64x Fs.
In Slave Mode, LRCK and SCLK are inputs, requiring external generation that is synchronous to MCLK.
It is recommended that SCLK be 48x or 64x Fs to maximize system performance.
In Stand-Alone Mode, the CS4270 will enter Slave Mode when SDOUT (M/S) is pulled low through a
47 kΩ resistor. Master Mode may be accessed by placing a 47 kΩ pull-up to VD on the SDOUT (M/S) pin.
Configuration of clock ratios in each of these modes is outlined in Table 2.
5.1.3 System Clocking
The CS4270 will operate at sampling frequencies from 4 kHz to 216 kHz. This range is divided into three
speed modes as shown in Table 1
.
Mode
Sampling Frequency
Single-Speed
4-54 kHz
Double-Speed
50-108 kHz
Quad-Speed
100-216 kHz
Table 1. Speed Modes
22
DS686PP1
CS4270
5.1.4 Clock Ratio Selection
Depending on whether the CS4270 is in Master or Slave Mode, different MCLK/LRCK and SCLK/LRCK
ratios may be used. These ratios are shown in the Table 2.
Master Mode
Single-Speed
Double-Speed
Quad-Speed
MCLK/LRCK
SCLK/LRCK
LRCK
MDIV2
MDIV1
256
64
Fs
0
0
384
64
Fs
0
1
512
64
Fs
1
0
1024
64
Fs
1
1
128
64
Fs
0
0
192
64
Fs
0
1
256
64
Fs
1
0
512
64
Fs
1
1
64
64
Fs
0
0
96
64
Fs
0
1
128
64
Fs
1
0
256
64
Fs
1
1
Slave Mode
Single-Speed
Double-Speed
Quad-Speed
MCLK/LRCK
SCLK/LRCK
LRCK
MDIV2
MDIV1
256
32, 48, 64, 128
Fs
0
0
384
32, 48, 64, 96
Fs
0
1
512
32, 48, 64, 128
Fs
1
0
1024
32, 48, 64, 96
Fs
1
1
128
32, 48, 64
Fs
0
0
192
32, 48, 64
Fs
0
1
256
32, 48, 64
Fs
1
0
512
32, 48, 64
Fs
1
1
64
32, 48, 64
Fs
0
0
96
32, 48, 64
Fs
0
1
128
32, 48, 64
Fs
1
0
256
32, 48, 64
Fs
1
1
Table 2. Clock Ratios - Stand-Alone Mode
5.1.5
Interpolation Filter
In Stand-Alone Mode, the fast roll-off interpolation filter is used. Filter specifications can be found in Section 4. Plots of the data are contained in Section 9. “Filter Plots” on page 41.
5.1.6 High-Pass Filter
The operational amplifiers in the input circuitry driving the CS4270 may generate a small DC offset into
the ADC. The CS4270 includes a high-pass filter after the decimator to remove any DC offset which could
result in recording a DC level, possibly yielding "clicks" when switching between devices in a multichannel
system. In Stand-Alone Mode, the high-pass filter continuously subtracts a measure of the DC offset from
the output of the decimation filter This function cannot be disabled in Stand-Alone Mode.
DS686PP1
23
CS4270
5.1.7 Mode Selection & De-Emphasis
The sample rate, Fs, can be adjusted from 4 kHz to 216 kHz and De-emphasis, optimized for 44.1 kHz,
is available in Single-Speed Mode. In Stand-Alone Master Mode, the CS4270 must be set to the proper
mode via the mode pins, M1 and M0. In Slave Mode, the CS4270 auto-detects Speed Mode and the M0
pin becomes De-emphasis select. Stand-alone definitions of the mode pins are shown in Table 3.
Mode 1
Mode 0
Mode
Sample Rate (Fs)
De-Emphasis
0
0
Single-Speed Mode
4 kHz - 54 kHz
Off
0
1
Single-Speed Mode
4 kHz - 54 kHz
44.1 kHz
1
0
Double-Speed Mode
50 kHz - 108 kHz
Off
1
1
Quad-Speed Mode
100 kHz - 216 kHz
Off
Table 3. CS4270 Stand-Alone Mode Control
5.1.8 Serial Audio Interface Format Selection
Either I²S or Left-Justified serial audio data format may be selected in Stand-Alone Mode. The selection
will affect both the input and output format. Placing a 10 kΩ pull-up to VD on the I²S/LJ pin will select the
I²S format, while placing a 10 kΩ pull-down to DGND on the I²S/LJ pin will select the Left-Justified format.
5.2
Control Port Mode
5.2.1 Recommended Power-Up Sequence - Access to Control Port Mode
1. Pull RST low until the power supply, MCLK, and LRCK are stable.
2. Release RST. The Control Port will be accessible.
3. Set the power down bit (register 0x02h, bit 0) to “1” for 1 ms minimum within 10 ms after releasing
RST and then set to “0” prior to reading or writing to other registers.
4. Initiate a SPI or I²C transaction as described in Section 6.1 or Section 6.2, respectively.
5.2.2 Master / Slave Mode Selection
The CS4270 supports operation in either Master Mode or Slave Mode.
In Master Mode, LRCK and SCLK are outputs and are synchronously generated on-chip. LRCK is equal
to Fs and SCLK is equal to 64x Fs.
In Slave Mode, LRCK and SCLK are inputs, requiring external generation that is synchronous to MCLK.
It is recommended that SCLK be 48x or 64x Fs to maximize system performance.
Configuration of clock ratios in each of these modes will be outlined in the Table 10 and Table 9.
In Control Port Mode the CS4270 will default to Slave Mode. The user may change this default setting by
changing the status of the M/S bits in the Functional Control Register (03h).
24
DS686PP1
CS4270
5.2.3 System Clocking
The CS4270 will operate at sampling frequencies from 4 kHz to 216 kHz. This range is divided into three
speed modes as shown in Table 4.
Mode
Single-Speed
Double-Speed
Quad-Speed
Sampling Frequency
4-54 kHz
50-108 kHz
100-216 kHz
Table 4. Speed Modes
5.2.4 Clock Ratio Selection
In Control Port Master Mode, the user must configure the mode bits (MCLK Freq<2:0>) to set the speed
mode and select the appropriate clock ratios. Depending on whether the CS4270 is in Master or Slave
Mode, different MCLK/LRCK and SCLK/LRCK ratios may be used. These ratios as well as the Control
Port Register Bits are shown in Table 5, Table 9 and Section 8.3 on page 36.
Master Mode
Single-Speed
Double-Speed
Quad-Speed
MCLK/LRCK
SCLK/LRCK
LRCK
MCLK
Freq<2>
MCLK
Freq<1>
MCLK
Freq<0>
256
64
Fs
0
0
0
384
64
Fs
0
0
1
512
64
Fs
0
1
0
768
64
Fs
0
1
1
1024
64
Fs
1
0
0
128
64
Fs
0
0
0
192
64
Fs
0
0
1
256
64
Fs
0
1
0
384
64
Fs
0
1
1
512
64
Fs
1
0
0
64
64
Fs
0
0
0
96
64
Fs
0
0
1
128
64
Fs
0
1
0
192
64
Fs
0
1
1
256
64
Fs
1
0
0
Slave Mode
Single-Speed
MCLK/LRCK
SCLK/LRCK
LRCK
MCLK
Freq<2>
MCLK
Freq<1>
MCLK
Freq<0>
256
32, 64, 128
Fs
0
0
0
384
32, 48, 64, 96, 128
Fs
0
0
1
512
32, 64, 128
Fs
0
1
0
768
32, 48, 64, 96, 128
Fs
0
1
1
1024
32, 64, 128
Fs
1
0
0
Table 5. Clock Ratios - Control Port Mode
DS686PP1
25
CS4270
Double-Speed
Quad-Speed
128
32, 48, 64
Fs
0
0
0
192
32, 48, 64
Fs
0
0
1
256
32, 48, 64
Fs
0
1
0
384
32, 48, 64
Fs
0
1
1
512
32, 64
Fs
1
0
0
64
32
Fs
0
0
0
96
48, 64
Fs
0
0
1
128
32, 64
Fs
0
1
0
192
48, 64
Fs
0
1
1
256
32, 64
Fs
1
0
0
Table 5. Clock Ratios - Control Port Mode (Continued)
5.2.5 Internal Digital Loopback
In Control Port Mode, the CS4270 supports an internal digital loopback mode in which the output of the
ADC is routed to the input of the DAC. This mode may be activated by setting the Digital Loopback bit in
the ADC & DAC Ctrl register (04h).
When this bit is set, the status of the DAC_DIF(4:3) bits in register 04h will be disregarded by the CS4270.
Any changes made to the DAC_DIF(4:3) bits while the Digital Loopback bit is set will have no impact on
operation until the Digital Loopback bit is released, at which time the Digital Interface Format of the DAC
will operate according to the format selected in the DAC_DIF(4:3) bits. While the Digital Loopback bit is
set, data will be present on the SDOUT pin in the format selected in the ADC_DIF(0) bit in register 04h.
5.2.6 Auto-Mute
The Auto-Mute function is controlled by the status of the Auto Mute bit in the Mute register. When set, the
DAC output will mute following the reception of 8192 consecutive audio samples of static 0 or -1. A single
sample of non-static data will release the mute. Detection and muting are done independently for each
channel. The common mode on the output will be retained and the Mute Control pin for that channel will
become active during the mute period. The muting function is affected, similar to volume control changes,
by the Soft and ZeroCross bits in the Transition and Control register. The Auto Mute bit is set by default.
5.2.7 High-Pass Filter and DC Offset Calibration
The input circuitry driving the CS4270 may generate a small DC offset into the A/D converter. The CS4270
includes a high-pass filter after the decimator to remove any DC offset which could result in recording a
DC level, possibly yielding "clicks" when switching between devices in a multichannel system.
The high-pass filter continuously subtracts a measure of the DC offset from the output of the decimation
filter. The high-pass filter can be enabled if the hpf_freeze bit is set during normal operation, the current
value of the DC offset for the corresponding channel is frozen and this DC offset will continue to be subtracted from the conversion result. This feature makes it possible to perform a system DC offset calibration
by:
1. Running the CS4270 with the high-pass filter enabled until the filter settles. See the Digital Filter
Characteristics for filter settling time.
2. Disabling the high-pass filter and freezing the stored DC offset.
A system calibration performed in this way will eliminate offsets anywhere in the signal path between the
calibration point and the CS4270.
26
DS686PP1
CS4270
5.2.8 De-Emphasis
One de-emphasis mode is available via the Control Port and is optimized for 44.1 kHz sampling rate.
5.2.9 Oversampling Modes
The CS4270 operates in one of three oversampling modes based on the input sample rate. Mode selection is determined by the FM_&_M/S_Mode[1:0] bits in the Functional Mode register (03h). Single-Speed
Mode supports input sample rates up to 54 kHz and uses a 128x oversampling ratio. Double-Speed Mode
supports input sample rates up to 108 kHz and uses an oversampling ratio of 64x. Quad-Speed Mode
supports input sample rates up to 216 kHz and uses an oversampling ratio of 32x. See Table 10 for Control Port Mode settings.
5.3
De-Emphasis Filter
The CS4270 includes on-chip digital de-emphasis. Figure 14 shows the de-emphasis curve for Fs equal
to 44.1 kHz. The frequency response of the de-emphasis curve will scale proportionally with changes in
sample rate, Fs. Please see Section 5.1.7 for the desired de-emphasis control for Stand-Alone Mode and
Section 5.2.8 for Control Port Mode.
The de-emphasis feature is included to accommodate audio recordings that utilize 50/15 µs pre-emphasis
equalization as a means of noise reduction.
De-emphasis is only available in Single-Speed Mode.
Gain
dB
T1=50 µs
0dB
T2 = 15 µs
-10dB
F1
3.183 kHz
F2
Frequency
10.61 kHz
Figure 14. De-Emphasis Curve
DS686PP1
27
CS4270
5.4
Analog Connections
5.4.1 Input Connections
The analog modulator samples the input at 6.144 MHz.The digital filter will reject signals within the stopband of the filter. However, there is no rejection for input signals which are multiples of the input sampling
frequency (n × 6.144 MHz), where n=0,1,2,... Refer to Figure 15 which shows the recommended topology
of the analog input network. The capacitor values chosen not only provide the appropriate filtering of noise
at the modulator sampling frequency, but also act as a charge source for the internal sampling circuits.
The use of capacitors which have a large voltage coefficient (such as general purpose ceramics) must be
avoided since these can degrade signal linearity.
Analog
Input
AINx
10 µF
R1
R2
220 pF
CS4270
Figure 15. CS4270 Recommended Analog Input Network
Three parameters determine the values of resistors R1 and R2 as shown in Figure 15 source impedance,
attenuation, and input impedance. Table 6 shows the design equation used to determine these values.
Source Impedance: Source impedance is defined as the impedance as seen from the ADC looking back
into the signal network. The ADC achieves optimal THD+N performance when source impedance is minimized and THD+N degrades for source impedance greater than 1 kΩ. See Figure 16 and 17 below.
Figure 16. A/D THD+N Performance vrs. Input Source Resistance
28
DS686PP1
CS4270
Figure 17. A/D Dynamic Range vrs. Input Source Resistance
Attenuation: The required attenuation factor depends on the magnitude of the input signal. For
VA = 5 V, the full-scale input voltage equals 1 Vrms. The full-scale input voltage scales with VA as indicated on pages 13 and 14. The user should select values for R1 and R2 such that the magnitude of the
incoming signal multiplied by the attenuation factor is less than or equal to the full-scale input voltage of
the device.
Input Impedance: Input impedance is the impedance from the signal source to the ADC analog input
pins. Table 6 shows the input parameters and the associated design equations.
Source Impedance
(-----------------------R1 × R2 -)
R1 + R2
Attenuation Factor
( R2 ) -----------------------( R1 + R2 )
Input Impedance
( R1 + R2 )
Table 6. Analog Input Design Parameters
Figure 18 illustrates an example configuration using two 2 kΩ resistors in place of R1 and R2. This circuit
will attenuate a typical line level voltage, 2 Vrms, to the full-scale input of the ADC, 1 Vrms when VA = 5
V and is the maximum source impedance for the ADC specifications listed in this Data Sheet.
DS686PP1
29
CS4270
Analog
Input
AINx
10 µF
2 kΩ
2 kΩ
220 pF
CS4270
Figure 18. CS4270 Example Analog Input Network
5.4.2 Output Connections
The analog output filter present in the CS4270 is a switched-capacitor filter followed by a continuous time
low pass filter. Its response, combined with that of the digital interpolator, is given in Figures 24 - 47. The
recommended external analog circuitry is shown in Figure 19.
470Ω
3.3µF
Analog Output
AOUTx
+
C
10kΩ
R
ext
CS4270
R ext
C =
+ 470
4 πFs ( Rext 470 )
For best 20 kHz response
Figure 19. CS4270 Recommended Analog Output Filter
5.5
Mute Control
The Mute Control pins become active during power-up initialization, reset, muting, when the MCLK to
LRCK ratio is incorrect, and during power-down. The MUTE pins are intended to be used as control for
an external mute circuit in order to add off-chip mute capability.
The CS4270 also features Auto-Mute, which is enabled by default. The Auto-Mute function causes the
MUTE pin corresponding to an individual channel to activate following the reception of 8192 consecutive
static-level audio samples on the respective channel. A single transition of data on the channel will cause
the corresponding MUTE pin to deactivate.
Use of the Mute Control function is not mandatory but recommended for designs requiring the absolute
minimum in extraneous clicks and pops. Also, use of the Mute Control function can enable the system
designer to achieve idle channel noise/signal-to-noise ratios which are only limited by the external mute
circuit. The MUTE pins are active-low. See Figure 20 for a suggested active-low mute circuit.
30
DS686PP1
CS4270
+V EE
AC
Couple
AOUTx
560 Ω
LPF
Audio
Out
47 kΩ
-V EE
CS4270
+V A
MMUN2111LT1
MUTEx
2 kΩ
10 kΩ
-V EE
Figure 20. Suggested Active-Low Mute Circuit
5.6
Synchronization of Multiple Devices
In systems where multiple ADCs are required, care must be taken to achieve simultaneous sampling. To
ensure synchronous sampling, the MCLK and LRCK must be the same for all of the CS4270’s in the system. If only one MCLK source is needed, one solution is to place one CS4270 in Master Mode, and slave
all of the other CS4270’s to the one master. If multiple MCLK sources are needed, a possible solution
would be to supply all clocks from the same external source and time the CS4270 reset with the inactive
edge of MCLK. This will ensure that all converters begin sampling on the same clock edge.
5.7
Grounding and Power Supply Decoupling
As with any high resolution converter, the CS4270 requires careful attention to power supply and grounding arrangements if its potential performance is to be realized. Figure 1 shows the recommended power
arrangements, with VA and VD connected to clean supplies. VD, which powers the digital filter, may be
run from the system digital supply (VD) or may be powered from the analog supply (VA) via a resistor. In
this case, no additional devices should be powered from VD. Power supply decoupling capacitors should
be as near to the CS4270 as possible, with the low value ceramic capacitor being the nearest. All signals,
especially clocks, should be kept away from the VREF and VCOM pins in order to avoid unwanted coupling into the modulators. The VREF and VCOM decoupling capacitors, particularly the 0.1 µF, must be
positioned to minimize the electrical path from VREF and AGND. The CDB4270 evaluation board demonstrates the optimum layout and power supply arrangements. To minimize digital noise, connect the
CS4270 digital outputs only to CMOS inputs.
DS686PP1
31
CS4270
6. CONTROL PORT INTERFACE
The Control Port is used to load all the internal settings of the CS4270. The operation of the Control Port may be
completely asynchronous to the audio sample rate. However, to avoid potential interference problems, the Control
Port pins should remain static if no operation is required.
The Control Port has 2 modes: SPI and I²C, with the CS4270 operating as a slave to control messages in both
modes. If I²C operation is desired, AD0/CS should be tied to VLC or DGND. If the CS4270 ever detects a high to
low transition on AD0/CS after power-up, SPI Mode will be selected.
Upon release of the RST pin, the CS4270 will wait approximately 10 ms before it begins its start-up sequence. The
part defaults to Stand-Alone Mode, in which all operational modes are controlled as described in Section 5.1 on
page 22. If the user initiates communication to the part through the SPI or I²C interface, the part enters Control-Port
Mode and all operational modes are controlled by the Control Port registers. If system requirements do not allow
writing to the Control Port immediately following the release of RST, the SDIN line should be held at logic “0” until
the proper serial mode can be selected.
6.1
SPI™ Mode
In SPI Mode, CS is the CS4270 chip select signal, CCLK is the Control Port bit clock, CDIN is the input data
line from the microcontroller and the chip address is 1001111. All control signals are inputs and data is
clocked in on the rising edge of CCLK.
Figure 21 shows the operation of the Control Port in SPI Mode. To write to a register, bring CS low. The first
7 bits on CDIN form the chip address, and must be 1001111. The eighth bit is a read/write indicator (R/W),
which must be low to write. The next 8 bits form the Memory Address Pointer (MAP), which is set to the
address of the register that is to be updated. The next 8 bits are the data which will be placed into the register
designated by the MAP. See Table 9 on page 36.
CS
CCLK
CHIP
ADDRESS
CDIN
1001111
MAP
R/W
DATA
MSB
byte 1
LSB
byte n
MAP = Memory Address Pointer
Figure 21. Control Port Timing, SPI Mode
The CS4270 has MAP auto increment capability, enabled by the INCR bit in the MAP. If INCR is 0, then the
MAP will stay constant for successive writes. If INCR is set, then MAP will auto increment after each byte
is written, allowing block writes to successive registers.
32
DS686PP1
CS4270
6.2
I²C® Mode
In I²C Mode, SDA is a bi-directional data line. Data is clocked into and out of the part by the clock, SCL, with
the clock to data relationship as shown in Figure 22. There is no CS pin. Pins AD0, AD1, and AD2 form the
partial chip address and should be tied to VLC or DGND as required. The upper 4 bits of the 7-bit address
field must be 1001. To communicate with the CS4270, the three lower bits of the chip address field should
match the setting on the AD0, AD1, and AD2 pins. The eighth bit of the address byte is the R/W bit (high for
a read, low for a write). The next byte is the Memory Address Pointer, MAP, which selects the register to be
read or written. If the operation is a write, the MAP is then followed by the data to be written. If the operation
is a read, then the contents of the register pointed to by the MAP will be output after the chip address.
The CS4270 has MAP auto increment capability, enabled by the INCR bit in the MAP. If INCR is 0, then the
MAP will stay constant for successive writes. If INCR is set, then MAP will auto increment after each byte
is written, allowing block reads or writes of successive registers.
Note 1
SDA
1001
ADDR
AD2 - AD0
R/W
ACK
DATA
1-8
ACK
DATA
1-8
ACK
SCL
Start
Stop
Note: If operation is a write, this byte contains the Memory Address Pointer, MAP.
Figure 22. Control Port Timing, I²C Mode
7
INCR
0
6
Reserved
0
5
Reserved
0
4
3
Reserved
MAP3
0
0
INCR - Auto MAP Increment Enable
Default = ‘0’.
0 - Disabled
1 - Enabled
2
MAP2
0
1
MAP1
0
0
MAP0
0
MAP(3:0) - Memory Address Pointer
Default = ‘0000’.
Table 7. Memory Address Pointer
DS686PP1
33
CS4270
7. REGISTER QUICK REFERENCE
This table shows the register names and their associated default values.
Addr
Function
01h ID
02h Power
Control
7
6
5
4
3
2
1
0
id<3>
id<2>
id<1>
id<0>
rev<3>
rev<2>
rev<1>
rev<0>
1
1
0
0
0
0
0
1
Reserved
Reserved
Reserved
PDN_DAC
PDN
0
0
0
0
0
MCLK
freq<2>
MCLK
freq<1>
MCLK
freq<0>
PopGuard
Disable
Freeze
0
03h Funct Mode
Reserved PDN_ADC
0
Reserved Reserved
0
0
04h Serial Format ADC HPF ADC HPF
05h Transition
Control
06h Mute
07h Vol Ctrl
AOUTA
08h Vol Ctrl
AOUTB
34
0
FM_&_M/S FM_&_M/S_
_Mode1
Mode0
1
1
0
0
0
0
Freeze A
Freeze B
Digital
Loopback
DAC_DIF1
DAC_DIF0
Reserved
Reserved
ADC_DIF0
0
0
0
0
0
0
0
0
DAC
Single Vol
soft_dac
zc_dac
Invert ADC
ch B
Invert DAC
ch A
De-Emph
0
1
1
0
0
0
0
0
Mute ADC
SP ch B
Mute ADC
SP ch A
Mute
Polarity
Mute DAC
ch B
Mute DAC
ch A
Reserved Reserved Auto Mute
Invert ADC Invert DAC
ch A
ch B
0
0
1
0
0
0
0
0
dacA
vol<7>
dacA
vol<6>
dacA
vol<5>
dacA
vol<4>
dacA
vol<3>
dacA
vol<2>
dacA
vol<1>
dacA
vol<0>
0
0
0
0
0
0
0
0
dacB
vol<7>
dacB
vol<6>
dacB
vol<5>
dacB
vol<4>
dacB
vol<3>
dacB
vol<2>
dacB
vol<1>
dacB
vol<0>
0
0
0
0
0
0
0
0
DS686PP1
CS4270
8. REGISTER DESCRIPTION
** All registers are read/write in I²C Mode and SPI Mode, unless otherwise noted**
8.1
Chip ID - Address 01h
7
id<3>
6
id<2>
5
id<1>
4
id<0>
3
rev<3>
2
rev<2>
1
rev<1>
0
rev<0>
Function:
This register is Read-Only. Bits 7 through 4 are the part number ID which is 1100b (01h) and the remaining
bits (b3:b0) are for the chip revision.
8.2
Power Control - Address 02h
7
Freeze
6
Reserved
5
PDN_ADC
4
Reserved
3
Reserved
2
Reserved
1
PDN_DAC
0
PDN
8.2.1 Freeze (Bit 7)
Function:
This function allows modifications to be made to certain Control Port bits without the changes taking effect
until the Freeze bit is disabled. To make multiple changes to these bits take effect simultaneously, set the
Freeze bit, make all changes, then clear the Freeze bit. The bits affected by the Freeze function are listed
below:
–
Register 05h (Bits 7:0)
–
Register 06h (Bits 7:0)
–
Register 07h (Bits 7:0)
–
Register 08h (Bits 7:0)
8.2.2 PDN_ADC (Bit 5)
Function:
The ADC portion of the device will enter a low-power state whenever this bit is set.
8.2.3 PDN_DAC (Bit 1)
Function:
The DAC portion of the device will enter a low-power state whenever this bit is set.
8.2.4 Power Down (Bit 0)
Function:
The device will enter a low-power state whenever this bit is set. The contents of the control registers are
retained when the device is in power-down.
DS686PP1
35
CS4270
8.3
Mode Control - Address 03h
7
6
Reserved
Reserved
5
FM_&_M/S_
Mode1
4
3
2
1
FM_&_M/S_
MCLK freq<2> MCLK freq<1> MCLK freq<0>
Mode0
0
Popguard
Disable
8.3.1 ADC Functional Mode & Master / Slave Mode (Bits 5:4)
Function:
In Control Port Master Mode, the user must configure the CS4270 Speed Mode with these bits. In Control
Port Slave Mode, the CS4270 auto-detects speed mode.
FM_&_M/S_ FM_&_M/S_
Mode1
Mode0
Mode
0
0
Single-Speed Mode: 4 to 54 kHz sample rates
0
1
Double-Speed Mode: 50 to 108 kHz sample rates
1
0
Quad-Speed Mode: 100 to 216 kHz sample rates
1
1
Slave Mode (default)
Table 8. Functional Mode Selection
8.3.2 Ratio Select (Bits 3:1)
Function:
These bits are used to select the clocking ratios.
MCLK freq<2>
MCLK freq<1>
MCLK freq<0>
Mode
0
0
0
Divide by 1 (default)
0
0
1
Divide by 1.5
0
1
0
Divide by 2
0
1
1
Divide by 3
1
0
0
Divide by 4
Table 9. MCLK Divider Configuration
8.3.3 Popguard Disable (Bit 0)
Function:
Disables Popguard when set. Popguard is enabled by default.
8.4
ADC and DAC Control - Address 04h
7
ADC HPF
Freeze A
6
ADC HPF
Freeze B
5
Digital
Loopback
4
3
2
1
0
DAC_DIF1
DAC_DIF0
Reserved
Reserved
ADC_DIF0
8.4.1 ADC HPF Freeze A (Bit 7)
Function:
When this bit is set, the internal high-pass filter for the selected channel will be disabled.The current DC
offset value will be frozen and continuously subtracted from the conversion result. Section 5.2.7 “HighPass Filter and DC Offset Calibration” on page 26.
36
DS686PP1
CS4270
8.4.2 ADC HPF Freeze B (Bit 6)
Function:
When this bit is set, the internal high-pass filter for the selected channel will be disabled.The current DC
offset value will be frozen and continuously subtracted from the conversion result. Section 5.2.7 “HighPass Filter and DC Offset Calibration” on page 26.
8.4.3 Digital Loopback (Bit 5)
Function:
When this bit is set, an internal digital loopback from the ADC to the DAC will be enabled. Please refer to
Section 5.2.5 “Internal Digital Loopback” on page 26.
8.4.4 DAC Digital Interface Format (Bits 4:3)
Function:
The DAC Digital Interface Format and the options are detailed in Table 10 and Figures 9 through 11.
DAC_DIF1 DAC_DIF0
0
0
0
1
1
1
1
0
Description
Left-Justified, up to 24-bit data (default)
I²S, up to 24-bit data
Right-Justified, 16-bit Data
Right-Justified, 24-bit Data
Format
0
1
2
3
Figure
9
10
11
11
Table 10. DAC Digital Interface Formats
8.4.5 ADC Digital Interface Format (Bit 0)
Function:
The required relationship between LRCK, SCLK and SDOUT for the ADC is defined by the ADC Digital
Interface Format. The options are detailed in Table 11 and may be seen in Figures 9 and 10.
ADC_DIF
Description
Format
Figure
0
Left-Justified, up to 24-bit data (default)
0
9
1
I²S, up to 24-bit data
1
10
Table 11. ADC Digital Interface Formats
DS686PP1
37
CS4270
8.5
Transition Control - Address 05h
7
DAC Single
Volume
6
5
soft_dac
zc_dac
4
invert
ADC ch B
3
invert
ADC ch A
2
invert
DAC ch B
1
invert
DAC ch A
0
De-emph
8.5.1 DAC Single Volume (Bit 7)
Function:
The AOUTA and AOUTB volume levels are independently controlled by the A and the B Channel Volume
Control Bytes when this function is disabled. The volume on both AOUTA and AOUTB are determined by
the A Channel Volume Control Byte (07h) and the B Channel Byte (08h) is ignored when this function is
enabled. Volume and muting functions are affected by the Soft Ramp and ZeroCross functions below.
8.5.2 Soft Ramp or Zero Cross Enable (Bits 6:5)
Function:
Soft Ramp Enable
Soft Ramp allows level changes, both muting and attenuation, to be implemented by incrementally ramping, in 1/8 dB steps, from the current level to the new level at a rate of 1 dB per 8 left/right clock periods.
See Table 12 on page 38.
Zero Cross Enable
Zero Cross Enable dictates that signal level changes, either by attenuation changes or muting, will occur
on a signal zero crossing to minimize audible artifacts. The requested level change will occur after a timeout period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz sample rate) if the signal
does not encounter a zero crossing. The zero cross function is independently monitored and implemented
for each channel. See Table 9 on page 36.
Soft Ramp and Zero Cross Enable
Soft Ramp and Zero Cross Enable dictate that signal level changes, either by attenuation changes or muting, will occur in 1/8 dB steps and be implemented on a signal zero crossing. The 1/8 dB level change will
occur after a time-out period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz sample rate) if the signal does not encounter a zero crossing. The zero cross function is independently monitored and implemented for each channel. See Table 9 on page 36.
Soft
ZeroCross
Mode
0
0
Changes to affect immediately
0
1
Zero Cross enabled
1
0
Soft Ramp enabled
1
1
Soft Ramp and Zero Cross enabled
(default)
Table 12. Soft Cross or Zero Cross Mode Selection
8.5.3 Invert Signal Polarity (Bits 4:1)
Function:
When set, this bit activates an inversion of the signal polarity for the appropriate channel. This is useful if
a board layout error has occurred or in other situations where a 180 degree phase shift is desirable.
38
DS686PP1
CS4270
8.5.4 De-Emphasis Control (Bit 0)
Function:
Implementation of the standard 50/15 µs digital de-emphasis filter on the DAC output requires reconfiguration of the digital filter to maintain the proper filter response for 44.1 kHz sample rate. Figure 23 shows
the filter response. NOTE: De-emphasis is available only in Single-Speed Mode.
Gain
dB
T1=50 µs
0dB
T2 = 15 µs
-10dB
F1
3.183 kHz
F2
Frequency
10.61 kHz
Figure 23. De-Emphasis Curve
8.6
Mute Control - Address 06h
7
6
5
Reserved
Reserved
Auto Mute
4
3
Mute ADC SP Mute ADC SP
ch B
ch A
2
mute polarity
1
0
Mute DAC SP Mute DAC SP
ch B
ch B
8.6.1 Auto-Mute (Bit 5)
Function:
When set, enables the Auto-Mute function. Section 5.2.6 “Auto-Mute” on page 26.
8.6.2 ADC Channel A & B Mute (Bits 4:3)
Function:
When this bit is set, the output of the ADC for the selected channel will be muted.
8.6.3 Mute Polarity (Bit 2)
Function:
The MUTEA and MUTEB pins (pins 24 and 21) are active low by default. When this bit is set, these pins
are active high.
8.6.4 DAC Channel A & B Mute (Bits 1:0)
Function:
When this bit is set, the output of the DAC for the selected channel will be muted.
DS686PP1
39
CS4270
8.7
DAC Channel A Volume Control - Address 07h
7
dacA
vol<7>
6
dacA
vol<6>
5
dacA
vol<5>
4
dacA
vol<4>
3
dacA
vol<3>
2
dacA
vol<2>
1
dacA
vol<1>
0
dacA
vol<0>
2
dacB
vol<2>
1
dacB
vol<1>
0
dacB
vol<0>
Function:
See Section 8.8 DAC Channel B Volume Control - Address 08h.
8.8
DAC Channel B Volume Control - Address 08h
7
dacB
vol<7>
6
dacB
vol<6>
5
dacB
vol<5>
4
dacB
vol<4>
3
dacB
vol<3>
Function:
The digital volume control allows the user to attenuate the signal in 0.5 dB increments from 0 to -127 dB.
The vol<0> bit activates a 0.5 dB attenuation when set, and no attenuation when cleared. The Vol[7:1]
bits activate attenuation equal to their decimal value (in dB). Example volume settings are decoded as
shown in Table 13. The volume changes are implemented as dictated by the DACSoft and DACZeroCross bits in the Transition Control register (see Section 8.5.2).
Binary Code
Volume Setting
00000000
0 dB
00000001
-0.5 dB
00101000
-20 dB
00101001
-20.5 dB
11111110
-127 dB
11111111
-127.5 dB
Table 13. Digital Volume Control
40
DS686PP1
CS4270
9. FILTER PLOTS
Figure 24. DAC Single-Speed Stopband Rejection
Figure 25. DAC Single-Speed Transition Band
0
-1
0.05
-2
0
-3
-0.05
Amplitude dB
Amplitude dB
-4
-5
-6
-0. 1
-0.15
-7
-0. 2
-8
-0.25
-9
-10
0.45
0.46
0.47
0.48
0.49
0.5
0.51
Frequency (normalized to Fs)
0.52
0.53
0.54
0.5 5
0
0.05
0.1
0.15
0.2
0.25
0.3
Frequency (normalized to Fs)
0.35
0.4
0.45
0.5
Figure 26. DAC Single-Speed Transition Band (detail)
Figure 27. DAC Single-Speed Passband Ripple
Figure 28. DAC Double-Speed Stopband Rejection
Figure 29. DAC Double-Speed Transition Band
DS686PP1
41
CS4270
1
0.8
0
0.7
-1
0.6
-2
0.5
Amplitude dB
Amplitude dB
-3
-4
-5
0.4
0.3
0.2
-6
0.1
-7
0
-8
-0. 1
-9
-0. 2
- 10
0.45
0.46
0.47
0.48
0.49
0.5
0.51
Frequency (normalized to Fs)
0.52
0.53
0.54
0.55
Figure 30. DAC Double-Speed Transition Band (detail)
0
0.05
0.1
0.15
0.2
0.25
0.3
Frequency (normalized to Fs)
0.35
0.4
0.45
0.5
Figure 31. DAC Double-Speed Passband Ripple
0
0
-10
-10
-20
-20
-30
Amplitude (dB)
Amplitude (dB)
-40
-50
-60
-30
-40
-70
-50
-80
-60
-90
-100
0
0.1
0.2
0.3
0.4
0.5
0.6
Frequency(normalized to Fs)
0.7
0.8
0.9
1
0.35
Figure 32. DAC Quad-Speed Stopband Rejection
0.4
0.45
0.5
0.55
0.6
Frequency(normalized to Fs)
0.65
0.7
0.75
Figure 33. DAC Quad-Speed Transition Band
0
0
-5
-10
-15
Amplitude dB
Amplitude (dB)
-0. 5
-20
-25
-30
-1
-35
-40
-45
-50
0.4
0.45
0.5
0.55
0.6
Frequency(normalized to Fs)
0.65
0.7
Figure 34. DAC Quad-Speed Transition Band (detail)
42
-1. 5
0
0.05
0.1
0.15
0.2
0.25
0.3
Frequency (normalized to Fs)
0.35
0.4
0.45
0.5
Figure 35. DAC Quad-Speed Passband Ripple
DS686PP1
0
0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
-10
-20
-30
Amplitude (dB)
Amplitude (dB)
CS4270
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
-140
0.40 0.42 0.44
1.0
0
0.10
-1
0.08
-2
0.06
-3
-4
-5
-6
-7
0.58
0.60
0.00
-0.02
-0.04
-0.06
-0.08
-0.10
0.46 0.47
0.48
0.49
0.5
0.51
0.52
0.53
0.54
0
0.55
Figure 38. ADC Single-Speed Transition Band (detail)
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
Figure 39. ADC Single-Speed Passband Ripple
Amplitude (dB)
0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
0.1
0.05
Frequency (norm alized to Fs)
Frequency (norm alized to Fs)
Amplitude (dB)
0.56
0.02
-9
0.9
1.0
Frequency (norm alized to Fs)
Figure 40. ADC Double-Speed Stopband Rejection
DS686PP1
0.54
0.04
-8
0.0
0.52
Figure 37. ADC Single-Speed Stopband (detail)
Amplitude (dB)
Amplitude (dB)
Figure 36. ADC Single-Speed Stopband Rejection
-10
0.45
0.46 0.48 0.50
Frequency (norm alized to Fs)
Frequency (norm alized to Fs)
0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
0.40 0.42 0.44
0.46 0.48 0.50
0.52
0.54
0.56
0.58
0.60
Frequency (norm alized to Fs)
Figure 41. ADC Double-Speed Stopband (detail)
43
0
0.10
-1
0.08
-2
0.06
Amplitude (dB)
Amplitude (dB)
CS4270
-3
-4
-5
-6
-7
0.04
0.02
0.00
-0.02
-0.04
-8
-0.06
-9
-0.08
-10
0.46
0.47
0.48
0.49
0.50
0.51
-0.10
0.00 0.05
0.52
0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.15
0.20 0.25 0.30 0.35 0.40 0.45 0.50
Figure 43. ADC Double-Speed Passband Ripple
Amplitude (dB)
Amplitude (dB)
Figure 42. ADC Double-Speed Transition Band (detail)
0.0
0.10
Frequency (norm alized to Fs)
Frequency (norm alized to Fs)
0.8
0.9
0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85
1.0
Frequency (norm alized to Fs)
Frequency (norm alized to Fs)
Figure 44. ADC Quad-Speed Stopband Rejection
Figure 45. ADC Quad-Speed Stopband (detail)
0.10
-2
0.08
-3
0.06
Amplitude (dB)
Amplitude (dB)
0
-1
-4
-5
-6
-7
-8
-9
-10
0.10
0.02
0.00
-0.02
-0.04
-0.06
-0.08
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
Frequency (norm alized to Fs)
Figure 46. ADC Quad-Speed Transition Band (detail)
44
0.04
-0.10
0.00 0.03 0.05 0.08 0.10 0.13 0.15 0.18 0.20 0.23 0.25 0.28
Frequency (norm alized to Fs)
Figure 47. ADC Quad-Speed Passband Ripple
DS686PP1
CS4270
10.PARAMETER DEFINITIONS
Dynamic Range
The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified bandwidth.
Dynamic Range is a signal-to-noise ratio measurement over the specified bandwidth made with a -60 dBFS signal.
60 dB is added to resulting measurement to refer the measurement to full-scale. This technique ensures that the
distortion components are below the noise level and do not affect the measurement. This measurement technique
has been accepted by the Audio Engineering Society, AES17-1991, and the Electronic Industries Association of Japan, EIAJ CP-307. Expressed in decibels.
Total Harmonic Distortion + Noise
The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified bandwidth
(typically 10 Hz to 20 kHz), including distortion components. Expressed in decibels. Measured at -1 and -20 dBFS
as suggested in AES17-1991 Annex A.
Frequency Response
A measure of the amplitude response variation from 10 Hz to 20 kHz relative to the amplitude response at 1 kHz.
Units in decibels.
Interchannel Isolation
A measure of crosstalk between the left and right channels. Measured for each channel at the converter's output
with no signal to the input under test and a full-scale signal applied to the other channel. Units in decibels.
Interchannel Gain Mismatch
The gain difference between left and right channels. Units in decibels.
Gain Error
The deviation from the nominal full-scale analog output for a full-scale digital input.
Gain Drift
The change in gain value with temperature. Units in ppm/°C.
Offset Error
The deviation of the mid-scale transition (111...111 to 000...000) from the ideal. Units in mV.
DS686PP1
45
CS4270
11.PACKAGE DIMENSIONS
24L TSSOP (4.4 mm BODY) PACKAGE DRAWING
N
D
E11
A2
E
A
∝
e
b2
SIDE VIEW
A1
L
END VIEW
SEATING
PLANE
1 2 3
TOP VIEW
DIM
A
A1
A2
b
D
E
E1
e
L
µ
MIN
INCHES
NOM
MAX
--0.47
0.00197
0.00394
0.00591
0.03150
0.0394
0.04137
0.00748
0.00965
0.01182
0.30338 BSC 0.30732 BSC 0.31126 BSC
0.24822
0.25216
0.25610
0.16942
0.17336
0.17730
-0.026 BSC
-0.01970
0.02364
0.02955
0°
4°
8°
MIN
MILLIMETERS
NOM
NOTE
MAX
-0.05
0.80
0.19
7.70 BSC
6.30
4.30
-0.50
0°
-0.10
1.00
0.245
7.80 BSC
6.40
4.40
0.65 BSC
0.60
4°
1.20
0.15
1.05
0.30
7.90 BSC
6.50
4.50
-0.75
8°
2,3
1
1
JEDEC #: MO-153
Controlling Dimension is Millimeters.
Notes:
1. “D” and “E1” are reference datums and do not included mold flash or protrusions, but do include mold
mismatch and are measured at the parting line, mold flash or protrusions shall not exceed 0.20 mm per
side.
2. Dimension “b” does not include dambar protrusion/intrusion. Allowable dambar protrusion shall be
0.13 mm total in excess of “b” dimension at maximum material condition. Dambar intrusion shall not reduce dimension “b” by more than 0.07 mm at least material condition.
3. These dimensions apply to the flat section of the lead between 0.10 and 0.25 mm from lead tips.
46
DS686PP1
CS4270
12.ORDERING INFORMATION
Product
CS4270
CS4270
CDB4270
Description
Package
24-Bit 192 kHz Stereo
24-TSSOP
Audio CODEC
24-Bit 192 kHz Stereo
24-TSSOP
Audio CODEC
CS4270 Evaluation Board
-
Pb-Free
YES
YES
-
Grade
Temp Range
Container
Order #
Rail
CS4270-CZZ
Commercial -10° to +70° C
Tape & Reel CS4270-CZZR
Rail
CS4270-DZZ
Automotive -40° to +85° C
Tape & Reel CS4270-DZZR
CDB4270
13.REVISION HISTORY
Release
A1
DS686PP1
Changes
Initial Release
47
CS4270
Release
Changes
–
–
–
–
–
–
–
–
–
–
–
–
–
PP1
–
–
–
–
–
–
–
–
–
–
–
–
–
48
Update Release after B0 chip validation
Changed value of A/D shunt capacitor from 2200 pF to 220 pF in Figure 18
Added “single ended input” to “A/D Features” on page 1 and “single ended output” to “D/A
Features” on page 1
Added “3.3 V or 5 V core supply” to “System Features” on page 1
Added package/grade & ordering info to “General Description” on page 2
Changed note 2. in Figure 1
Moved ordering info to Section 12
Moved Typical Connection Diagram to Section 3
Removed SOIC data from Thermal Characteristics Table on page 9
Changed DAC THD+N specs in “DAC Analog Characteristics - Commercial Grade” on
page 10 and “DAC Analog Characteristics - Automotive Grade” on page 10
Changed DAC Full Scale Output Voltage specs in “DAC Analog Characteristics - all Modes”
on page 11
Revised specifications in “DAC Combined Interpolation & on-Chip Analog FIlter Response”
on page 12
Changed A/D THD+N and Full Scale Input Voltage specs in “ADC Analog Characteristics Commercial Grade” on page 13 and “ADC Analog Characteristics - Automotive Grade” on
page 14
Specified A/D input circuit for performance specs in “ADC Analog Characteristics Commercial Grade” on page 13 and “ADC Analog Characteristics - Automotive Grade” on
page 14
Revised specifications in “ADC Digital Filter CharacteristicS” on page 15
Changed PSRR spec in “DC Electrical Characteristics” on page 16
Revised Serial Audio Port specifications and acronyms in “Switching Characteristics - Serial
Audio Port” on page 17
Replaced serial port timing diagrams with Figure 4, Figure 5, Figure 6, Figure 7 and
Figure 8, revised Note 17 and Note 18.
Revised power up sequence text in “Recommended Power-Up Sequence - Access to
Control Port Mode” on page 24
Changed text in “Input Connections” on page 28 to specify maximum source impedance for
A/D performance specifications in the A/D Specification Tables
Added “A/D THD+N Performance vrs. Input Source Resistance” on page 28 and “A/D
Dynamic Range vrs. Input Source Resistance” on page 29
Revised text in “Input Connections” on page 28 that describes A/D input attenuator (resistor
divider) circuit
Replaced Figure 18 on page 30
Moved Parameter Definitions to Section 10
Moved “Filter Plots” to Section 9 and updated all plots
Moved “Package Dimensions” to Section 11 and updated dimensions data
DS686PP1
CS4270
Contacting Cirrus Logic Support
For all product questions and inquiries, contact a Cirrus Logic Sales Representative.
To find the one nearest to you, go to www.cirrus.com.
IMPORTANT NOTICE
"Preliminary" product information describes products that are in production, but for which full characterization data is not yet available. Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject to change without notice and
is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant information to verify, before
placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order
acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third parties. This document
is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights, copyrights, trademarks,
trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives consent for copies to be
made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent does not extend to
other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE
IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD
TO BE FULLY AT THE CUSTOMER’S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED
IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER
AGENTS FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS’ FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH
THESE USES.
Cirrus Logic, Cirrus, the Cirrus Logic logo designs, and Popguard are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be
trademarks or service marks of their respective owners.
I²C is a registered trademark of Philips Semiconductor.
SPI is a trademark of Motorola, Inc.
DS686PP1
49
Similar pages