PD - 96424 IRGS4064DPbF INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE C VCES = 600V Features • • • • • • • • • • IC = 10A, TC = 100°C Low VCE (on) Trench IGBT Technology Low Switching Losses Maximum Junction temperature 175 °C 5μs SCSOA Square RBSOA 100% of The Parts Tested for (ILM) Positive VCE (on) Temperature Coefficient. Ultra Fast Soft Recovery Co-pak Diode Tighter Distribution of Parameters Lead-Free Package G tsc > 5µs, Tjmax = 175°C E VCE(on) typ. = 1.6V n-channel C Benefits • High Efficiency in a Wide Range of Applications • Suitable for a Wide Range of Switching Frequencies due to Low VCE (ON) and Low Switching Losses • Rugged Transient Performance for Increased Reliability • Excellent Current Sharing in Parallel Operation • Low EMI G C E D2Pak G C E Gate Collector Emitter Absolute Maximum Ratings Parameter VCES IC@ TC = 25°C IC@ TC = 100°C ICM ILM IF@TC=25°C Diode Continuous Forward Current IF@TC=100°C IFM Diode Continuous Forward Current Diode Maximum Forward Current VGE PD @ TC =25° PD @ TC =100° TJ TSTG Units Max. Collector-to-Emitter Breakdown Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current 600 20 10 40 40 20 c V A 10 40 ±20 ±30 101 50 d Continuous Gate-to-Emitter Voltage Transient Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds V W °C -55 to + 175 300 (0.063 in. (1.6mm) from case) Thermal Resistance Parameter RθJC RθJC RθCS RθJA Wt 1 e e Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight e Min. Typ. Max. ––– ––– ––– ––– ––– 0.50 1.49 3.66 ––– ––– ––– 1.5 40 Units °C/W g www.irf.com 02/16/12 IRGS4064DPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)CES Collector-to-Emitter Breakdown Voltage ΔV(BR)CES /ΔT J Temperature Coeff. of Breakdown Voltage Min. Typ. Max. Units Conditions 600 — — V VGE = 0V, IC = 100μA — 0.47 — V/°C — 1.6 1.91 — VCE(on) Collector-to-Emitter Saturation Voltage — 1.9 — 2.0 — VGE(th) Gate Threshold Voltage 4.0 — 6.5 ΔVGE(th)/Δ TJ Threshold Voltage temp. coefficient — -11 — VGE = 0V, IC = 500μA (25°C-175°C) V IC = 10A, VGE = 15V, T J = 150°C 5,6,7,9, IC = 10A, VGE = 15V, T J = 175°C 10 ,11 V VCE = VGE , IC = 275μA mV/°C VCE = VGE , IC = 1.0mA (25°C - 175°C) gfe Forward Transconductance — 6.9 — S VCE = 50V, IC = 10A, PW = 80μs Collector-to-Emitter Leakage Current — — 25 μA VGE = 0V, VCE = 600V — 328 — — 2.5 3.1 — 1.7 — — — ±100 IGES Diode Forward Voltage Drop Gate-to-Emitter Leakage Current CT 6 IC = 10A, VGE = 15V, T J = 25°C ICES VFM Ref.Fig f VGE = 0V, VCE = 600V, TJ = 175°C V IF = 10A nA VGE = ±20V 9,10,11,12 8 IF = 10A, TJ = 175°C Switching Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. g Max. Units Conditions Qg Total Gate Charge (turn-on) — 21 32 Qge Gate-to-Emitter Charge (turn-on) — 5.3 8.0 Qgc Gate-to-Collector Charge (turn-on) — 8.9 13 VCC = 400V Eon Turn-On Switching Loss — 29 40 IC = 10A, VCC = 400V, VGE = 15V Eoff Turn-Off Switching Loss — 200 281 Etotal Total Switching Loss — 229 313 td(on) Turn-On delay time — 27 37 tr Rise time — 15 23 td(off) Turn-Off delay time — 79 90 tf Fall time — 21 29 Eon Turn-On Switching Loss — 99 — Eoff Turn-Off Switching Loss — 316 — Etotal Total Switching Loss — 415 — td(on) Turn-On delay time — 27 — tr Rise time — 16 — td(off) Turn-Off delay time — 98 — tf Fall time — 33 — nC μJ CT 1 RG = 22Ω, L = 1.0mH, TJ = 25°C CT 4 E nergy los s es include tail & diode revers e recovery IC = 10A, VCC = 400V, VGE = 15V ns RG = 22Ω, L = 1.0mH, TJ = 25°C CT 4 IC = 10A, VCC = 400V, VGE = 15V 13,15 μJ RG=22Ω, L=1.0mH, T J = 175°C f E nergy los s es include tail & diode revers e recovery ns CT 4 WF 1,WF 2 IC = 10A, VCC = 400V, VGE = 15V 14,16 RG = 22Ω, L = 1.0mH, TJ = 175°C CT 4 WF 1,WF 2 Cies Input Capacitance — 594 — Output Capacitance — 49 — VCC = 30V Cres Reverse Transfer Capacitance — 17 — f = 1.0Mhz pF VGE = 0V T J = 175°C, IC = 40A Reverse Bias Safe Operating Area 24 VGE = 15V Coes RBSOA R ef .F ig IC = 10A FULL SQUARE VCC = 480V, Vp =600V 22 4 CT 2 Rg = 22Ω, VGE = +15V to 0V SCSOA Short Circuit Safe Operating Area 5 — — μs VCC = 400V, Vp =600V Rg = 22Ω, VGE = +15V to 0V Erec Reverse Recovery Energy of the Diode — trr Diode Reverse Recovery Time — Irr Peak Reverse Recovery Current — 191 T J = 175°C 22, CT 3 WF 4 — μJ 62 — ns VCC = 400V, IF = 10A 20,21 16 — A VGE = 15V, Rg = 22Ω, L=1.0mH WF 3 17,18,19 Notes: VCC = 80% (VCES), VGE = 15V, L = 28 μH, RG = 22 Ω. Pulse width limited by max. junction temperature. Rθ is measured at TJ approximately 90°C Refer to AN-1086 for guidelines for measuring V(BR)CES safely Maximum limits are based on statistical sample size characterization 2 www.irf.com 24 120 20 100 16 80 Ptot (W) IC (A) IRGS4064DPbF 12 60 8 40 4 20 0 0 0 20 40 60 80 100 120 140 160 180 0 20 40 60 80 100 120 140 160 180 TC (°C) TC (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100 100 10μsec 100μsec 10 IC A) IC (A) 1msec DC 10 1 Tc = 25°C Tj = 175°C Single Pulse 1 0.1 1 10 100 10 1000 100 VCE (V) VCE (V) Fig. 4 - Reverse Bias SOA TJ = 175°C; VCE = 15V Fig. 3 - Forward SOA, TC = 25°C; TJ ≤ 175°C 40 20 10 VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 20 10 0 0 0 2 4 6 8 10 VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80μs www.irf.com VGE = 18V 30 ICE (A) ICE (A) 40 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 30 1000 0 2 4 6 8 10 VCE (V) Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80μs 3 IRGS4064DPbF 40 80 VGE = 18V VGE = 12V 60 VGE = 8.0V 50 VGE = 10V IF (A) ICE (A) 30 -40°C 25°C 175°C 70 VGE = 15V 20 40 30 10 20 10 0 0 0 2 4 6 8 10 0.0 1.0 2.0 3.0 VCE (V) 20 18 18 16 16 ICE = 5.0A VCE (V) VCE (V) ICE = 20A 8 ICE = 10A 12 ICE = 20A 10 8 6 6 4 4 2 2 0 0 5 10 15 5 20 10 15 20 V GE (V) V GE (V) Fig. 9 - Typical VCE vs. VGE TJ = -40°C Fig. 10 - Typical VCE vs. VGE TJ = 25°C 20 40 18 16 10 ICE (A) 12 TJ = 25°C TJ = 175°C 30 ICE = 5.0A ICE = 10A ICE = 20A 14 VCE (V) 7.0 ICE = 5.0A 14 ICE = 10A 10 6.0 Fig. 8 - Typ. Diode Forward Characteristics tp = 80μs 20 12 5.0 V F (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 175°C; tp = 80μs 14 4.0 8 6 20 10 4 2 0 0 5 10 15 V GE (V) Fig. 11 - Typical VCE vs. VGE TJ = 175°C 4 20 0 5 10 15 20 V GE (V) Fig. 12 - Typ. Transfer Characteristics VCE = 50V; tp = 10μs www.irf.com IRGS4064DPbF 1000 600 Swiching Time (ns) 500 Energy (μJ) 400 EOFF 300 200 tdOFF 100 tF tdON tR 10 EON 100 0 0 4 8 12 16 20 1 24 0 4 8 12 I C (A) 20 24 IC (A) Fig. 14 - Typ. Switching Time vs. IC TJ = 175°C; L=1mH; VCE= 400V RG= 22Ω; VGE= 15V Fig. 13 - Typ. Energy Loss vs. IC TJ = 175°C; L = 1mH; VCE = 400V, RG = 22Ω; VGE = 15V. 350 1000 EOFF 300 16 Swiching Time (ns) Energy (μJ) 250 EON 200 150 100 tdOFF 100 tdON tF 50 tR 0 0 25 50 75 100 10 125 0 25 50 RG (Ω) 125 Fig. 16- Typ. Switching Time vs. RG TJ = 175°C; L=1mH; VCE= 400V ICE= 10A; VGE= 15V 24 20 20 16 RG =10 Ω 16 RG =22 Ω 12 IRR (A) IRR (A) 100 RG (Ω) Fig. 15 - Typ. Energy Loss vs. RG TJ = 175°C; L = 1mH; VCE = 400V, ICE = 10A; VGE = 15V RG =47 Ω 8 12 8 RG = 100 Ω 4 4 0 0 0 4 8 12 16 20 IF (A) Fig. 17 - Typical Diode IRR vs. IF TJ = 175°C www.irf.com 75 24 0 25 50 75 100 125 RG (Ω) Fig. 18 - Typical Diode IRR vs. RG TJ = 175°C; IF = 10A 5 IRGS4064DPbF 20 900 10Ω 20A 22Ω 800 47 Ω 15 IRR (A) QRR (nC) 700 10 100Ω 10A 600 500 5.0A 400 5 300 0 200 400 600 800 1000 1200 0 500 diF /dt (A/μs) 1500 Fig. 20 - Typical Diode QRR VCC= 400V; VGE= 15V; TJ = 175°C Fig. 19- Typical Diode IRR vs. diF/dt VCC= 400V; VGE= 15V; ICE= 10A; TJ = 175°C 80 16 300 RG = 10Ω 150 RG = 47Ω 100 RG = 100Ω 50 70 Isc 12 60 10 50 8 40 6 30 4 20 2 10 0 0 0 0 2 4 6 8 8 10 12 14 16 18 20 22 Current (A) 200 RG = 22Ω Tsc 14 Time (μs) 250 IRR (A) 1000 diF /dt (A/μs) 10 12 14 16 VGE (V) IF (A) Fig. 22- Typ. VGE vs Short Circuit Time VCC=400V, TC =25°C Fig. 21 - Typical Diode ERR vs. IF TJ = 175°C 1000 16 Cies 14 300V 400V 100 VGE (V) Capacitance (pF) 12 Coes 10 8 6 10 Cres 4 2 0 1 0 20 40 60 VCE (V) 80 Fig. 23- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 6 100 0 4 8 12 16 20 24 Q G, Total Gate Charge (nC) Fig. 24 - Typical Gate Charge vs. VGE ICE = 10A, L=600μH www.irf.com IRGS4064DPbF Thermal Response ( ZthJC ) 10 1 D = 0.50 R1 R1 0.20 τJ 0.10 0.1 0.05 τ2 τ1 R3 R3 R4 R4 τC τ τ3 τ2 τ4 τ3 τ4 Ci= τi/Ri Ci i/Ri 0.02 0.01 τJ τ1 R2 R2 Ri (°C/W) τι (sec) 0.007362 0 0.342317 0.000048 0.647826 0.000192 0.493231 0.001461 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.01 1E-006 1E-005 0.0001 0.001 0.01 t1 , Rectangular Pulse Duration (sec) Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) 10 Thermal Response ( ZthJC ) D = 0.50 1 0.20 0.10 0.05 0.1 R1 R1 0.02 τJ 0.01 τJ τ1 τC τ1 Ci= τi/Ri C 0.01 R2 R2 τ2 τ2 Ri (°C/W) τι (sec) 1.939783 0.000975 1.721867 0.006135 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 7 IRGS4064DPbF L L DUT 0 1K Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.3 - S.C.SOA Circuit Fig.C.T.5 - Resistive Load Circuit 8 VCC 80 V + - DUT Rg 480V Fig.C.T.2 - RBSOA Circuit Fig.C.T.4 - Switching Loss Circuit Fig.C.T.6 - Typical Filter Circuit for V(BR)CES Measurement www.irf.com IRGS4064DPbF 500 10 TEST CURRENT tf 25 350 8 tr 275 90% ICE 4 VCE (V) 200 ICE (A) 6 VCE (V) 300 200 15 125 10 5% ICE 100 10% test current 2 0 -0.04 0 0.06 -25 -0.1 0.16 time(μs) Eon Loss 0.1 110 450 QRR tRR 5 90 375 0 70 300 Peak IRR Vce (V) -5 IF (A) -175 IC 50 225 -10 30 150 -400 -15 10 75 -475 -0.05 -20 -10 -325 0.15 10% Peak IRR 0.35 time (μS) WF.3- Typ. Reverse Recovery Waveform @ TJ = 175°C using CT.4 www.irf.com Ice (A) VC -25 VF (V) 0 Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 175°C using Fig. CT.4 10 -250 5 time (μs) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 175°C using Fig. CT.4 -100 5% VCE 50 5% VCE Eoff Loss 20 90% test current ICE (A) 400 0 -5 0 5 10 Time (uS) WF.4- Typ. Short Circuit Waveform @ TJ = 25°C using CT.3 9 IRGS4064DPbF D2Pak Package Outline (Dimensions are shown in millimeters (inches)) D2Pak Part Marking Information THIS IS AN IRF530S WIT H LOT CODE 8024 ASS EMBLED ON WW 02, 2000 IN T HE AS SEMBLY LINE "L" INT ERNAT IONAL RECT IFIER LOGO ASS EMBLY LOT CODE PART NUMBER F530S DATE CODE YEAR 0 = 2000 WEEK 02 LINE L OR INTERNATIONAL RECTIFIER LOGO AS S EMBLY LOT CODE 10 PART NUMBER F530S DAT E CODE P = DESIGNAT ES LEAD - FREE PRODUCT (OPT IONAL) YEAR 0 = 2000 WEEK 02 A = AS SEMBLY S ITE CODE www.irf.com IRGS4064DPbF D2Pak Tape & Reel Information TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) FEED DIRECTION 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 11.60 (.457) 11.40 (.449) 0.368 (.0145) 0.342 (.0135) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 4.72 (.136) 4.52 (.178) 16.10 (.634) 15.90 (.626) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 60.00 (2.362) MIN. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. www.irf.com IR WORLD HEADQUARTERS: 101N.Sepulveda blvd, El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.02/2012 11