HUFA76619D3, HUFA76619D3S Data Sheet January 2002 18A, 100V, 0.087 Ohm, N-Channel, Logic Level UltraFET® Power MOSFET Packaging JEDEC TO-251AA DRAIN (FLANGE) JEDEC TO-252AA DRAIN (FLANGE) SOURCE DRAIN GATE GATE SOURCE HUFA76619D3S HUFA76619D3 Features • Ultra Low On-Resistance - rDS(ON) = 0.085Ω, VGS = 10V - rDS(ON) = 0.087Ω, VGS = 5V • Simulation Models - Temperature Compensated PSPICE® and SABER™ Electrical Models - Spice and SABER Thermal Impedance Models - www.fairchildsemi.com • Peak Current vs Pulse Width Curve • UIS Rating Curve Symbol • Switching Time vs RGS Curves D Ordering Information PART NUMBER G S PACKAGE BRAND HUFA76619D3 TO-251AA 76619D HUFA76619D3S TO-252AA 76619D NOTE: When ordering, use the entire part number. Add the suffix T to obtain the TO-252AA variant in tape and reel, e.g., HUFA76619D3ST. Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified HUFA76619D3, HUFA76619D3S UNITS Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDSS 100 V Drain to Gate Voltage (RGS = 20kΩ) (Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VDGR Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS 100 V ±16 V Drain Current Continuous (TC = 25oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC = 25oC, VGS = 10V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC = 100oC, VGS = 5V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Continuous (TC = 100oC, VGS = 4.5V) (Figure 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IDM 18 18 12 12 Figure 4 A A A A Pulsed Avalanche Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UIS Figures 6, 17, 18 Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 0.5 W W/oC Operating and Storage Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TJ, TSTG -55 to 175 oC Maximum Temperature for Soldering Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T L Package Body for 10s, See Techbrief TB334. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T pkg 300 260 oC oC NOTES: 1. TJ = 25oC to 150oC. CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/ Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html. All Fairchild semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification. ©2002 Fairchild Semiconductor Corporation HUFA76619D3, HUFA76619D3S Rev. B HUFA76619D3, HUFA76619D3S Electrical Specifications TC = 25oC, Unless Otherwise Specified PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS ID = 250µA, VGS = 0V (Figure 12) 100 - - V ID = 250µA, VGS = 0V , T C = -40oC (Figure 12) 95 - - V OFF STATE SPECIFICATIONS Drain to Source Breakdown Voltage Zero Gate Voltage Drain Current Gate to Source Leakage Current BVDSS IDSS IGSS VDS = 95V, VGS = 0V - - 1 µA VDS = 90V, VGS = 0V, TC = 150oC - - 250 µA VGS = ±16V - - ±100 nA ON STATE SPECIFICATIONS Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 11) 1 - 3 V Drain to Source On Resistance rDS(ON) ID = 18A, VGS = 10V (Figures 9, 10) - 0.065 0.085 Ω ID = 12A, VGS = 5V (Figure 9) - 0.072 0.087 Ω ID = 12A, VGS = 4.5V (Figure 9 - 0.074 0.089 Ω TO-251AA, TO-252AA - - 2.0 oC/W - - 100 oC/W - - 137 ns - 10 - ns THERMAL SPECIFICATIONS Thermal Resistance Junction to Case RθJC Thermal Resistance Junction to Ambient RθJA SWITCHING SPECIFICATIONS (VGS = 4.5V) Turn-On Time Turn-On Delay Time tON td(ON) tr - 82 - ns td(OFF) - 32 - ns tf - 42 - ns tOFF - - 111 ns - - 53 ns - 6 - ns - 30 - ns Rise Time Turn-Off Delay Time Fall Time Turn-Off Time VDD = 50V, ID = 12A VGS = 4.5V, RGS = 12Ω (Figures 15, 21, 22) SWITCHING SPECIFICATIONS (VGS = 10V) Turn-On Time Turn-On Delay Time Rise Time tON td(ON) tr Turn-Off Delay Time Fall Time Turn-Off Time VDD = 50V, ID = 18A VGS = 10V, RGS = 12Ω (Figures 16, 21, 22) td(OFF) - 50 - ns tf - 52 - ns tOFF - - 153 ns GATE CHARGE SPECIFICATIONS Total Gate Charge Qg(TOT) VGS = 0V to 10V Gate Charge at 5V Qg(5) VGS = 0V to 5V Qg(TH) VGS = 0V to 1V VDD = 30V, ID = 12A, Ig(REF) = 1.0mA - 24 29 nC - 13 16 nC - 0.74 0.89 nC Gate to Source Gate Charge Qgs - 2.2 - nC Gate to Drain “Miller” Charge Qgd - 6.7 - nC Threshold Gate Charge (Figures 14, 19, 20) CAPACITANCE SPECIFICATIONS Input Capacitance CISS Output Capacitance COSS Reverse Transfer Capacitance CRSS VDS = 25V, VGS = 0V, f = 1MHz (Figure 13) - 767 - pF - 138 - pF - 20 - pF MIN TYP MAX UNITS Source to Drain Diode Specifications PARAMETER Source to Drain Diode Voltage Reverse Recovery Time Reverse Recovered Charge ©2001 Fairchild Semiconductor Corporation SYMBOL TEST CONDITIONS ISD =12A - - 1.25 V ISD = 6A - - 1.0 V trr ISD = 12A, dISD/dt = 100A/µs - - 101 ns QRR ISD = 12A, dISD/dt = 100A/µs - - 333 nC VSD HUFA76619D3, HUFA76619D3S Rev. B HUFA76619D3, HUFA76619D3S Typical Performance Curves 20 VGS = 10V 1.0 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.2 0.8 0.6 0.4 15 VGS = 4.5V 10 5 0.2 0 0 0 25 50 75 100 125 150 175 25 50 75 TC , CASE TEMPERATURE (oC) 100 125 150 175 TC, CASE TEMPERATURE (oC) FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE TEMPERATURE FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE 2 ZθJC, NORMALIZED THERMAL IMPEDANCE 1 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC SINGLE PULSE 0.01 10-5 10-4 10-3 10-2 10-1 100 101 t, RECTANGULAR PULSE DURATION (s) FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE IDM, PEAK CURRENT (A) 200 TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: 100 175 - TC I = I25 150 VGS = 5V VGS = 10V TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 10 10-5 10-4 10-3 10-2 10-1 100 101 t, PULSE WIDTH (s) FIGURE 4. PEAK CURRENT CAPABILITY ©2002 Fairchild Semiconductor Corporation HUFA76619D3, HUFA76619D3S Rev. B HUFA76619D3, HUFA76619D3S Typical Performance Curves (Continued) 500 IAS, AVALANCHE CURRENT (A) 500 ID, DRAIN CURRENT (A) 100 100µs 10 OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1 1ms 10ms SINGLE PULSE TJ = MAX RATED TC = 25oC If R = 0 tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD) If R ≠ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] 100 STARTING TJ = 25oC 10 STARTING TJ = 150oC 1 .1 1 10 100 0.001 200 0.01 0.1 1 10 tAV, TIME IN AVALANCHE (ms) VDS, DRAIN TO SOURCE VOLTAGE (V) NOTE: Refer to Fairchild Application Notes AN9321 and AN9322. FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY FIGURE 5. FORWARD BIAS SAFE OPERATING AREA 30 25 ID, DRAIN CURRENT (A) 20 ID, DRAIN CURRENT (A) PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V 15 TJ = 25oC 10 TJ = 175oC 5 VGS = 10V VGS = 5V 24 18 VGS = 3.5V PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 12 VGS = 3V 6 TJ = -55oC Tc = 25oC 0 0 2 3 4 VGS, GATE TO SOURCE VOLTAGE (V) 5 0 FIGURE 7. TRANSFER CHARACTERISTICS NORMALIZED DRAIN TO SOURCE ON RESISTANCE ID = 12A 90 ID = 18A 80 4 3.0 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX TC = 25oC 100 1 2 3 VDS, DRAIN TO SOURCE VOLTAGE (V) FIGURE 8. SATURATION CHARACTERISTICS 110 rDS(ON), DRAIN TO SOURCE ON RESISTANCE (mΩ) VGS = 4V ID = 6A 70 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 2.5 2.0 1.5 1.0 VGS = 10V, ID = 18A 0.5 60 2 4 6 8 VGS, GATE TO SOURCE VOLTAGE (V) 10 FIGURE 9. DRAIN TO SOURCE ON RESISTANCE vs GATE VOLTAGE AND DRAIN CURRENT ©2001 Fairchild Semiconductor Corporation -80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC) FIGURE 10. NORMALIZED DRAIN TO SOURCE ON RESISTANCE vs JUNCTION TEMPERATURE HUFA76619D3, HUFA76619D3S Rev. B HUFA76619D3, HUFA76619D3S Typical Performance Curves (Continued) 1.2 1.2 NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE NORMALIZED GATE THRESHOLD VOLTAGE VGS = VDS, ID = 250µA 0.9 0.6 1.1 1.0 0.9 0.3 -80 -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) -80 200 -40 0 40 80 120 160 200 TJ , JUNCTION TEMPERATURE (oC) FIGURE 11. NORMALIZED GATE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE FIGURE 12. NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE vs JUNCTION TEMPERATURE 10 VGS , GATE TO SOURCE VOLTAGE (V) 2000 CISS = CGS + CGD 1000 C, CAPACITANCE (pF) ID = 250µA COSS ≅ CDS + CGD 100 VGS = 0V, f = 1MHz CRSS = CGD 8 6 4 WAVEFORMS IN DESCENDING ORDER: ID = 18A ID = 12A ID = 6A 2 0 10 0.1 VDD = 50V 0 100 1.0 10 VDS , DRAIN TO SOURCE VOLTAGE (V) 5 10 15 Qg, GATE CHARGE (nC) 20 25 NOTE: Refer to Fairchild Application Notes AN7254 and AN7260. FIGURE 13. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE FIGURE 14. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT 200 200 VGS = 4.5V, VDD = 50V, ID = 12A VGS = 10V, VDD = 50V, ID = 18A td(OFF) 160 120 SWITCHING TIME (ns) SWITCHING TIME (ns) tr td(OFF) tf 80 40 160 120 tf 80 tr 40 td(ON) td(ON) 0 0 0 10 20 30 40 RGS, GATE TO SOURCE RESISTANCE (Ω) FIGURE 15. SWITCHING TIME vs GATE RESISTANCE ©2002 Fairchild Semiconductor Corporation 50 0 10 20 30 40 RGS, GATE TO SOURCE RESISTANCE (Ω) 50 FIGURE 16. SWITCHING TIME vs GATE RESISTANCE HUFA76619D3, HUFA76619D3S Rev. B HUFA76619D3, HUFA76619D3S Test Circuits and Waveforms VDS BVDSS L tP VARY tP TO OBTAIN REQUIRED PEAK IAS + RG VDS IAS VDD VDD - VGS DUT tP 0V IAS 0 0.01Ω tAV FIGURE 17. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 18. UNCLAMPED ENERGY WAVEFORMS VDS VDD RL Qg(TOT) VDS VGS = 10V VGS Qg(5) + VDD VGS = 5V VGS DUT VGS = 1V Ig(REF) 0 Qg(TH) Qgs Qgd Ig(REF) 0 FIGURE 19. GATE CHARGE TEST CIRCUIT FIGURE 20. GATE CHARGE WAVEFORMS VDS tON tOFF td(ON) td(OFF) tr RL VDS tf 90% 90% + VGS VDD - 10% 0 10% DUT 90% RGS VGS VGS 0 FIGURE 21. SWITCHING TIME TEST CIRCUIT ©2001 Fairchild Semiconductor Corporation 10% 50% 50% PULSE WIDTH FIGURE 22. SWITCHING TIME WAVEFORM HUFA76619D3, HUFA76619D3S Rev. B HUFA76619D3, HUFA76619D3S PSPICE Electrical Model .SUBCKT HUFA76619 2 1 3 ; rev 28August 1999 CA 12 8 1.3e-9 CB 15 14 1.4e-9 CIN 6 8 7.5e-10 DBODY 7 5 DBODYMOD DBREAK 5 11 DBREAKMOD DPLCAP 10 5 DPLCAPMOD LDRAIN DPLCAP DRAIN 2 5 10 5 51 ESLC 11 - RDRAIN 6 8 EVTHRES + 19 8 + LGATE GATE 1 MMED 16 6 8 8 MMEDMOD MSTRO 16 6 8 8 MSTROMOD MWEAK 16 21 8 8 MWEAKMOD + 50 - IT 8 17 1 EVTEMP RGATE + 18 22 9 20 21 EBREAK 17 18 DBODY - 16 MWEAK 6 MMED MSTRO RLGATE LSOURCE CIN 8 SOURCE 3 7 RSOURCE RBREAK 17 18 RBREAKMOD 1 RDRAIN 50 16 RDRAINMOD 3.95e-2 RGATE 9 20 2.95 RLDRAIN 2 5 10 RLGATE 1 9 1.7 RLSOURCE 3 7 6.1 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 RSOURCE 8 7 RSOURCEMOD 23e-3 RVTHRES 22 8 RVTHRESMOD 1 RVTEMP 18 19 RVTEMPMOD 1 S1A S1B S2A S2B DBREAK + RSLC2 ESG LDRAIN 2 5 1.0e-9 LGATE 1 9 1.73e-10 LSOURCE 3 7 6.12e-10 RLDRAIN RSLC1 51 EBREAK 11 7 17 18 117.5 EDS 14 8 5 8 1 EGS 13 8 6 8 1 ESG 6 10 6 8 1 EVTHRES 6 21 19 8 1 EVTEMP 20 6 18 22 1 RLSOURCE S1A 12 S2A 13 8 14 13 S1B CA 17 18 RVTEMP S2B 13 CB 6 8 EGS 19 - - IT 14 + + 6 12 13 8 S1AMOD 13 12 13 8 S1BMOD 6 15 14 13 S2AMOD 13 15 14 13 S2BMOD RBREAK 15 VBAT 5 8 EDS - + 8 22 RVTHRES VBAT 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*35),3.7))} .MODEL DBODYMOD D (IS = 5.9e-13 RS = 1.3e-2 TRS1 = 1e-5 TRS2 = 0 CJO = 9.0e-10 TT = 1e-7 M = 0.65) .MODEL DBREAKMOD D (RS = 5.8e- 1TRS1 = 1e- 3TRS2 = 2e-5) .MODEL DPLCAPMOD D (CJO = 9e-1 0IS = 1e-3 0N = 10 M = 0.9) .MODEL MMEDMOD NMOS (VTO = 1.85KP = 4 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 2.95) .MODEL MSTROMOD NMOS (VTO = 2.22 KP = 50 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u) .MODEL MWEAKMOD NMOS (VTO = 1.60 KP = 0.05 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 29.5 RS = 0.1) .MODEL RBREAKMOD RES (TC1 = 1.05e- 3TC2 = -5e-7) .MODEL RDRAINMOD RES (TC1 = 11.5e-3 TC2 = 2.6e-5) .MODEL RSLCMOD RES (TC1 = 3e-3TC2 = 1.0e-6) .MODEL RSOURCEMOD RES (TC1 = 1e-3 TC2 = 1e-6) .MODEL RVTHRESMOD RES (TC1 = -1.8e-3 TC2 = -6.5e-6) .MODEL RVTEMPMOD RES (TC1 = -1.5e- 3TC2 = 1e-6) .MODEL S1AMOD VSWITCH (RON = 1e-5 .MODEL S1BMOD VSWITCH (RON = 1e-5 .MODEL S2AMOD VSWITCH (RON = 1e-5 .MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 ROFF = 0.1 VON = -4.5 VOFF= -2.0) VON = -2.0 VOFF= -4.5) VON = -0.3 VOFF= 0.2) VON = 0.2 VOFF= -0.3) .ENDS NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. ©2002 Fairchild Semiconductor Corporation HUFA76619D3, HUFA76619D3S Rev. B HUFA76619D3, HUFA76619D3S SABER Electrical Model REV 28 August 1999 template hufa76619 n2,n1,n3 electrical n2,n1,n3 { var i iscl d..model dbodymod = (is = 5.9e-13, cjo = 9.0e-10, tt = 1e-7,m = 0.65) d..model dbreakmod = () d..model dplcapmod = (cjo = 9e-10, is = 1e-30, m = 0.9, n= 10) m..model mmedmod = (type=_n, vto = 1.85, kp = 4, is = 1e-30, tox = 1) m..model mstrongmod = (type=_n, vto = 2.22, kp = 50, is = 1e-30, tox = 1) m..model mweakmod = (type=_n, vto = 1.60, kp = 0.05, is = 1e-30, tox = 1) sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -4.5, voff = -2.0) sw_vcsp..model s1bmod = (ron =1e-5, roff = 0.1, von = -2.0, voff = -4.5) sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -0.3, voff = 0.2) sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 0.2, voff = -0.3) LDRAIN DPLCAP 10 RSLC1 51 c.ca n12 n8 = 1.3e-9 c.cb n15 n14 = 1.4e-9 c.cin n6 n8 = 7.5e-10 RLDRAIN RDBREAK RSLC2 72 ISCL RDRAIN 6 8 ESG EVTHRES + 19 8 + i.it n8 n17 = 1 LGATE GATE 1 EVTEMP RGATE + 18 22 9 20 MWEAK MSTRO CIN DBODY EBREAK + 17 18 MMED m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u 71 11 16 6 RLGATE res.rbreak n17 n18 = 1, tc1 = 1.05e-3, tc2 = -5e7 res.rdbody n71 n5 = 1.3e-2, tc1 = 1e-5, tc2 = 0 res.rdbreak n72 n5 = 5.80e-1, tc1 = 1e-3, tc2 = -2e-5 res.rdrain n50 n16 = 3.95e-2, tc1 = 11.5e-3, tc2 = 2.6e-5 res.rgate n9 n20 = 2.95 res.rldrain n2 n5 = 10 res.rlgate n1 n9 = 1.7 res.rlsource n3 n7 = 6.1 res.rslc1 n5 n51 = 1e-6, tc1 = 3e-3, tc2 =1.0e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 23e-3, tc1 = 1e-3, tc2 =1e-6 res.rvtemp n18 n19 = 1, tc1 = -1.5e-3, tc2 = 1.0e-6 res.rvthres n22 n8 = 1, tc1 = -1.8e-3, tc2 = -6.5e-6 21 RDBODY DBREAK 50 - d.dbody n7 n71 = model=dbodymod d.dbreak n72 n11 = model=dbreakmod d.dplcap n10 n5 = model=dplcapmod l.ldrain n2 n5 = 1.0e-9 l.lgate n1 n9 = 1.73e-10 l.lsource n3 n7 = 6.12e-10 DRAIN 2 5 - 8 LSOURCE 7 SOURCE 3 RSOURCE RLSOURCE S1A 12 S2A 14 13 13 8 S1B CA RBREAK 15 17 18 RVTEMP S2B 13 + 6 8 EGS 19 CB + - - IT 14 VBAT 5 8 EDS - + 8 22 RVTHRES spe.ebreak n11 n7 n17 n18 = 117.5 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 spe.evthres n6 n21 n19 n8 = 1 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/35))** 3.7)) } } ©2001 Fairchild Semiconductor Corporation HUFA76619D3, HUFA76619D3S Rev. B HUFA76619D3, HUFA76619D3S SPICE Thermal Model th JUNCTION REV 28August 1999 HUFA76619T CTHERM1 th 6 1.0e-3 CTHERM2 6 5 3.0e-3 CTHERM3 5 4 4.0e-3 CTHERM4 4 3 7.0e-3 CTHERM5 3 2 1.0e-2 CTHERM6 2 tl 5.0e-1 RTHERM1 RTHERM1 th 6 9.31e-3 RTHERM2 6 5 8.11e-2 RTHERM3 5 4 2.0e-1 RTHERM4 4 3 4.5e-1 RTHERM5 3 2 7.0e-1 RTHERM6 2 tl 2.0e-1 RTHERM2 CTHERM1 6 CTHERM2 5 CTHERM3 RTHERM3 SABER Thermal Model SABER thermal model HUFA76619T template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 = 1.0e-3 ctherm.ctherm2 6 5 = 3.0e-3 ctherm.ctherm3 5 4 = 4.0e-3 ctherm.ctherm4 4 3 = 7.0e-3 ctherm.ctherm5 3 2 = 1.0e-2 ctherm.ctherm6 2 tl = 5.0e-1 rtherm.rtherm1 th 6 = 9.31e-3 rtherm.rtherm2 6 5 = 8.11e-2 rtherm.rtherm3 5 4 = 2.0e-1 rtherm.rtherm4 4 3 = 4.5e-1 rtherm.rtherm5 3 2 = 7.0e-1 rtherm.rtherm6 2 tl = 2.0e-1 } 4 CTHERM4 RTHERM4 3 CTHERM5 RTHERM5 2 CTHERM6 RTHERM6 tl ©2002 Fairchild Semiconductor Corporation CASE HUFA76619D3, HUFA76619D3S Rev. B TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. ACEx™ Bottomless™ CoolFET™ CROSSVOLT™ DenseTrench™ DOME™ EcoSPARK™ E2CMOSTM EnSignaTM FACT™ FACT Quiet Series™ FAST FASTr™ FRFET™ GlobalOptoisolator™ GTO™ HiSeC™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™ OPTOLOGIC™ OPTOPLANAR™ PACMAN™ POP™ Power247™ PowerTrench QFET™ QS™ QT Optoelectronics™ Quiet Series™ SILENT SWITCHER SMART START™ STAR*POWER™ Stealth™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ TruTranslation™ UHC™ UltraFET VCX™ STAR*POWER is used under license DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or 2. A critical component is any component of a life systems which, (a) are intended for surgical implant into support device or system whose failure to perform can the body, or (b) support or sustain life, or (c) whose be reasonably expected to cause the failure of the life failure to perform when properly used in accordance support device or system, or to affect its safety or with instructions for use provided in the labeling, can be effectiveness. reasonably expected to result in significant injury to the user. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. Obsolete Not In Production This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. Rev. H4