IRF IRFB3507PBF Hexfetâ®power mosfet Datasheet

PD - 95935B
IRFB3507PbF
IRFS3507PbF
IRFSL3507PbF
Applications
l High Efficiency Synchronous Rectification in SMPS
l Uninterruptible Power Supply
l High Speed Power Switching
l Hard Switched and High Frequency Circuits
l Lead-Free
HEXFET® Power MOSFET
D
G
S
Benefits
l Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
l Fully Characterized Capacitance and Avalanche
SOA
l Enhanced body diode dV/dt and dI/dt Capability
VDSS
RDS(on) typ.
max.
ID
S
GD
S
D
G
D2Pak
IRFS3507PbF
TO-262
IRFSL3507PbF
S
D
G
TO-220AB
IRFB3507PbF
75V
7.0m:
8.8m:
97A
Absolute Maximum Ratings
Symbol
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
VGS
Parameter
d
Pulsed Drain Current
Maximum Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Peak Diode Recovery
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
(1.6mm from case)
Mounting torque, 6-32 or M3 screw
f
dv/dt
TJ
TSTG
Avalanche Characteristics
EAS (Thermally limited)
IAR
EAR
Single Pulse Avalanche Energy
Avalanche Current
Repetitive Avalanche Energy
c
Max.
Units
97
69
390
190
1.3
± 20
5.0
-55 to + 175
A
c
c
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
W
W/°C
V
V/ns
°C
300
x
x
10lb in (1.1N m)
e
280
See Fig. 14, 15, 16a, 16b
g
mJ
A
mJ
Thermal Resistance
Symbol
RθJC
RθCS
RθJA
RθJA
www.irf.com
Parameter
k
Junction-to-Case
Case-to-Sink, Flat Greased Surface , TO-220
Junction-to-Ambient, TO-220
k
Junction-to-Ambient (PCB Mount) , D2Pak
jk
Typ.
Max.
–––
0.50
–––
–––
0.77
–––
62
40
Units
°C/W
1
01/20/06
IRFB/S/SL3507PbF
Static @ TJ = 25°C (unless otherwise specified)
Symbol
Parameter
V(BR)DSS
∆V(BR)DSS/∆TJ
RDS(on)
VGS(th)
IDSS
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
Gate Threshold Voltage
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Gate Input Resistance
RG
Min. Typ. Max. Units
75
–––
–––
2.0
–––
–––
–––
–––
–––
––– –––
0.070 –––
7.0
8.8
–––
4.0
–––
20
––– 250
––– 200
––– -200
1.3
–––
Conditions
V VGS = 0V, ID = 250µA
V/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 58A
V VDS = VGS, ID = 100µA
µA VDS = 75V, VGS = 0V
VDS = 75V, VGS = 0V, TJ = 125°C
nA VGS = 20V
VGS = -20V
Ω f = 1MHz, open drain
d
g
Dynamic @ TJ = 25°C (unless otherwise specified)
Symbol
gfs
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss eff. (ER)
Coss eff. (TR)
Parameter
Min. Typ. Max. Units
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
86
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Effective Output Capacitance (Energy Related) –––
–––
Effective Output Capacitance (Time Related)
h
–––
88
24
36
20
81
52
49
3540
340
210
460
520
–––
130
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
S
nC
ns
pF
Conditions
VDS = 50V, ID = 58A
ID = 58A
VDS = 60V
VGS = 10V
VDD = 48V
ID = 58A
RG = 5.6Ω
VGS = 10V
VGS = 0V
VDS = 50V
ƒ = 1.0MHz
VGS = 0V, VDS = 0V to 60V
VGS = 0V, VDS = 0V to 60V
g
g
i, See Fig.11
h, See Fig. 5
Diode Characteristics
Symbol
IS
Parameter
Min. Typ. Max. Units
Continuous Source Current
VSD
trr
(Body Diode)
Pulsed Source Current
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
Qrr
Reverse Recovery Charge
IRRM
ton
Reverse Recovery Current
Forward Turn-On Time
ISM
d
–––
97
c
A
MOSFET symbol
–––
–––
390
A
showing the
integral reverse
D
G
p-n junction diode.
TJ = 25°C, IS = 58A, VGS = 0V
TJ = 25°C
VR = 64V,
TJ = 125°C
IF = 58A
di/dt = 100A/µs
TJ = 25°C
S
g
––– –––
1.3
V
–––
37
56
ns
–––
45
68
–––
32
48
nC
TJ = 125°C
–––
51
77
–––
1.7
–––
A TJ = 25°C
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
Notes:
 Calculated continuous current based on maximum allowable junction
temperature. Package limitation current is 75A.
‚ Repetitive rating; pulse width limited by max. junction
temperature.
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.17mH,
RG = 25Ω, IAS = 58A, VGS =10V. Part not recommended for use
above this value.
„ ISD ≤ 58A, di/dt ≤ 390A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C.
Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
Conditions
–––
g
† Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS .
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom
mended footprint and soldering techniques refer to application note #AN-994.
‰ Rθ is measured at TJ approximately 90°C.
www.irf.com
IRFB/S/SL3507PbF
1000
1000
100
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
4.5V
100
10
4.5V
1
≤60µs PULSE WIDTH
BOTTOM
4.5V
10
≤60µs PULSE WIDTH
Tj = 25°C
Tj = 175°C
0.1
1
0.1
1
10
100
1000
0.1
V DS, Drain-to-Source Voltage (V)
10
100
1000
Fig 2. Typical Output Characteristics
2.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
1000
ID, Drain-to-Source Current (Α)
1
V DS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
100
T J = 175°C
10
T J = 25°C
1
VDS = 25V
≤60µs PULSE WIDTH
ID = 97A
VGS = 10V
2.0
1.5
1.0
0.5
0.1
2
4
6
8
10
-60 -40 -20 0 20 40 60 80 100120140160180
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
Fig 4. Normalized On-Resistance vs. Temperature
Fig 3. Typical Transfer Characteristics
100000
12.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
VGS, Gate-to-Source Voltage (V)
ID= 58A
C oss = C ds + C gd
C, Capacitance(pF)
VGS
15V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
4.5V
10000
Ciss
1000
Coss
Crss
100
10.0
VDS= 60V
VDS= 38V
VDS= 15V
8.0
6.0
4.0
2.0
0.0
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
www.irf.com
0
20
40
60
80
100
QG Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
3
IRFB/S/SL3507PbF
10000
100
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
T J = 175°C
10
T J = 25°C
1
OPERATION IN THIS AREA
LIMITED BY R DS(on)
1000
100µsec
100
1msec
10
10msec
1
DC
Tc = 25°C
Tj = 175°C
Single Pulse
0.1
VGS = 0V
0.1
0.01
0.0
0.4
0.8
1.2
1.6
2.0
1
VSD, Source-to-Drain Voltage (V)
Limited By Package
ID, Drain Current (A)
80
60
40
20
0
75
100
125
150
175
V(BR)DSS , Drain-to-Source Breakdown Voltage (V)
100
50
90
85
80
75
70
-60 -40 -20 0
20 40 60 80 100 120 140 160 180
T J , Temperature ( °C )
Fig 10. Drain-to-Source Breakdown Voltage
Fig 9. Maximum Drain Current vs. Case Temperature
1.6
EAS , Single Pulse Avalanche Energy (mJ)
1200
1.4
1.2
Energy (µJ)
1000
95
T C , Case Temperature (°C)
1.0
0.8
0.6
0.4
0.2
0.0
ID
8.9A
12A
BOTTOM 58A
TOP
1000
800
600
400
200
0
0
10
20
30
40
50
60
70
VDS, Drain-to-Source Voltage (V)
4
100
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode Forward Voltage
25
10
VDS, Drain-to-Source Voltage (V)
Fig 11. Typical COSS Stored Energy
80
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 12. Maximum Avalanche Energy vs. DrainCurrent
www.irf.com
IRFB/S/SL3507PbF
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.05
0.1
τJ
0.02
0.01
0.01
SINGLE PULSE
( THERMAL RESPONSE )
0.001
R1
R1
τJ
τ1
R2
R2
τC
τ2
τ1
τ
Ri (°C/W) τi (sec)
0.2963 0.000504
0.4738
τ2
0.013890
Ci= τi/Ri
Ci i/Ri
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
1000
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆ Tj = 150°C and
Tstart =25°C (Single Pulse)
Avalanche Current (A)
Duty Cycle = Single Pulse
100
0.01
0.05
10
0.10
1
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Τ j = 25°C and
Tstart = 150°C.
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
300
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long as neither Tjmax nor Iav (max)
is exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = 58A
250
200
150
100
50
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 15. Maximum Avalanche Energy vs. Temperature
www.irf.com
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
5
VGS(th) Gate threshold Voltage (V)
IRFB/S/SL3507PbF
4.5
14
4.0
12
3.5
10
2.5
2.0
IRRM (A)
3.0
ID = 100µA
ID = 250µA
ID = 1.0mA
ID = 1.0A
6
4
1.5
IF = 19A
VR = 64V
2
1.0
-75 -50 -25
0
25
50
T = 25°C _____
J
T = 125°C ---------J
0
75 100 125 150 175 200
100 200 300 400 500 600 700 800 900 1000
T J , Temperature ( °C )
dif/dt (A/µs)
Fig 16. Threshold Voltage vs. Temperature
Fig. 17 - Typical Recovery Current vs. dif/dt
14
350
12
300
10
250
8
200
Qrr (nC)
IRRM (A)
8
6
4
100
IF = 39A
VR = 64V
2
150
I = 19A
F
V = 64V
R
TJ = 25°C _____
50
T = 25°C _____
J
T = 125°C ---------J
TJ = 125°C ----------
0
0
100 200 300 400 500 600 700 800 900 1000
100 200 300 400 500 600 700 800 900 1000
dif/dt (A/µs)
dif/dt (A/µs)
Fig. 19 - Typical Stored Charge vs. dif/dt
Fig. 18 - Typical Recovery Current vs. dif/dt
300
250
Qrr (nC)
200
150
100
I = 39A
F
V = 64V
R
TJ = 25°C _____
50
TJ = 125°C ----------
0
100 200 300 400 500 600 700 800 900 1000
dif/dt (A/µs)
6
Fig. 20 - Typical Stored Charge vs. dif/dt
www.irf.com
IRFB/S/SL3507PbF
D.U.T
Driver Gate Drive
ƒ
-
‚
„
-
-
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
I SD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
+
-
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 20. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
V(BR)DSS
15V
D.U.T
RG
VGS
20V
DRIVER
L
VDS
tp
+
V
- DD
IAS
tp
A
0.01Ω
I AS
Fig 21a. Unclamped Inductive Test Circuit
LD
Fig 21b. Unclamped Inductive Waveforms
VDS
VDS
90%
+
VDD -
10%
D.U.T
VGS
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
td(on)
Fig 22a. Switching Time Test Circuit
tr
td(off)
tf
Fig 22b. Switching Time Waveforms
Id
Vds
Vgs
L
DUT
0
VCC
Vgs(th)
1K
Qgs1 Qgs2
Fig 23a. Gate Charge Test Circuit
www.irf.com
Qgd
Qgodr
Fig 23b. Gate Charge Waveform
7
IRFB/S/SL3507PbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
(;$03/( 7+,6,6$1,5)
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(&
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
'$7(&2'(
<($5 :((.
/,1(&
TO-220AB packages are not recommended for Surface Mount Application.
8
www.irf.com
IRFB/S/SL3507PbF
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
TO-262 Part Marking Information
(;$03/( 7+,6,6$1,5//
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(&
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
'$7(&2'(
<($5 :((.
/,1(&
25
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
www.irf.com
3$57180%(5
'$7(&2'(
3 '(6,*1$7(6/($')5((
352'8&7 237,21$/
<($5 :((.
$ $66(0%/<6,7(&2'(
9
IRFB/S/SL3507PbF
D2Pak (TO-263AB) Package Outline
Dimensions are shown in millimeters (inches)
D2Pak (TO-263AB) Part Marking Information
7+,6,6$1,5)6:,7+
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(/
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
25
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
10
3$57180%(5
)6
'$7(&2'(
<($5 :((.
/,1(/
3$57180%(5
)6
'$7(&2'(
3 '(6,*1$7(6/($')5((
352'8&7 237,21$/
<($5 :((.
$ $66(0%/<6,7(&2'(
www.irf.com
IRFB/S/SL3507PbF
D2Pak (TO-263AB) Tape & Reel Information
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
0.368 (.0145)
0.342 (.0135)
15.42 (.609)
15.22 (.601)
24.30 (.957)
23.90 (.941)
TRL
10.90 (.429)
10.70 (.421)
1.75 (.069)
1.25 (.049)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
60.00 (2.362)
MIN.
26.40 (1.039)
24.40 (.961)
3
30.40 (1.197)
MAX.
4
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 01/06
www.irf.com
11
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/
Similar pages