MIC861 Micrel MIC861 Teeny™ Ultra Low Power Op Amp Final Information General Description Features The MIC861 is a rail-to-rail output, input common-mode to ground, operational amplifier in Teeny™ SC70 packaging. The MIC861 provides 400kHz gain-bandwidth product while consuming an incredibly low 4.6µA supply current. The SC70 packaging achieves significant board space savings over devices packaged in SOT-23 or MSOP-8 packaging. The SC70 occupies approximately half the board area of a SOT-23 package. • • • • • • • • Teeny™ SC70 packaging 400kHz gain-bandwidth product 650kHz, –3dB bandwidth 4.6µA supply current Rail-to-Rail output Ground sensing at input (common mode to GND) Drives large capactive loads (1000pF) Unity gain stable Applications • • • • • Portable equipment PDAs Pagers Cordless Phones Consumer Electronics Ordering Information Part Number Marking Ambient Temp. Range* Package MIC861BC5 A33 –40°C to +85°C SC70-5 Pin Configuration Functional Pinout IN— V— IN+ IN— V— IN+ 3 2 1 Part Identification 3 2 1 A33 4 5 OUT V+ 4 5 OUT V+ SC-70 Teeny is a trademark of Micrel, Inc. Micrel, Inc. • 1849 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 944-0970 • http://www.micrel.com July 2001 1 MIC861 MIC861 Micrel Absolute Maximum Ratings (Note 1) Operating Ratings (Note 2) Supply Voltage (VV+ – V–) ......................................... +6.0V Differentail Input Voltage (VIN+ – VIN–), Note 4 ...... +6.0V Input Voltage (VIN+ – VIN–) .................. V+ + 0.3V, V– –0.3V Lead Temperature (soldering, 5 sec.) ....................... 260°C Output Short Circuit Current Duration .................. Indefinite Storage Temperature (TS) ........................................ 150°C ESD Rating, Note 3 Supply Voltage (V+ – V–) ........................ +2.43V to +5.25V Ambient Temperature Range ..................... –40°C to +85°C Package Thermal Resistance ............................... 450°C/W Electrical Characteristics V+ = +2.7V, V– = 0V, VCM = V+/2; RL= 500kΩ to V+/2; TA= 25°C, unless otherwise noted. Bold values indicate –40°C≤ TA≤ +85°C. Symbol Parameter Condition Min Typ Max Units VOS Input Offset Voltage Note 5 –10 2 10 mV Input Offset Voltage Temp Coefficient 15 µV/°C IB Input Bias Current 20 pA IOS Input Offset Current 10 pA VCM Input Voltage Range CMRR > 60dB 1.8 V CMRR Common-Mode Rejection Ratio 0 < VCM < 1.35V 45 77 dB PSRR Power Supply Rejection Ratio Supply voltage change of 3V 50 83 dB AVOL Large-Signal Voltage Gain RL = 100k, VOUT 2V peak to peak 60 74 dB RL = 500k, VOUT 2V peak to peak 73 83 dB VOUT Maximum Output Voltage Swing RL = 500k VOUT Minimum Output Voltage Swing RL = 500k GBW Gain-Bandwidth Product RL = 200kΩ, CL = 2pF, VOUT = 0 350 kHz BW –3dB Bandwidth AV = 1, CL = 2pF, RL = 1MΩ 500 kHz SR Slew Rate AV = 1, CL = 2pF, RL = 1MΩ 0.12 V/µs ISC Short-Circuit Output Current Source 6 mA Sink 5 mA IS Supply Current V+–2mV V+–0.7mV V V–+0.2mV V–+ 2mV No Load 4.2 V µA 9 V+= +5V, V–= 0V, VCM= V+/2; RL= 500kΩ to V+/2; TA= 25°C, unless otherwise noted. Bold values indicate –40°C≤ TA≤ +85°C. VOS Input Offset Voltage Note 5 –10 2 10 mV Input Offset Voltage Temp Coefficient 15 µV/°C IB Input Bias Current 20 pA IOS Input Offset Current 10 pA VCM Input Voltage Range CMRR > 60dB 4.2 V CMRR Common-Mode Rejection Ratio 0 < VCM < 3.5V 60 80 dB PSRR Power Supply Rejection Ratio Supply voltage change of 1V 45 85 dB AVOL Large-Signal Voltage Gain RL = 100k, VOUT 4.0V peak to peak 60 76 dB RL = 500k, VOUT 4.0V peak to peak 68 83 dB VOUT Maximum Output Voltage Swing RL = 500k VOUT Minimum Output Voltage Swing RL = 500k GBW Gain-Bandwidth Product RL = 200kΩ, CL = 2pF, VOUT = 0 400 kHz BW –3dB Bandwidth AV = 1, CL = 2pF, RL = 1MΩ 650 kHz MIC861 V+–2mV V+–0.7mV V V–+0.7mV V–+ 2mV 2 V July 2001 MIC861 Micrel Symbol Parameter Condition SR Slew Rate AV = 1, CL = 2pF, RL = 1MΩ ISC Short-Circuit Output Current Source Sink IS Supply Current Min No Load Typ Max Units 0.12 V/µs 10 24 mA 10 24 mA 4.6 µA 9 Note 1. Exceeding the absolute maximum rating may damage the device. Note 2. The device is not guaranteed to function outside its operating rating. Note 3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF. Pin 4 is ESD sensetive Note 4. Exceeding the maximum differential input voltage will damage the input stage and degrade performance (in particular, input bias current is likely to increase. Note 5. The offset voltage distribution is centered around 0V. The typical offset number shown, is equal to the standard deviation of the voltage offset distribution. July 2001 3 MIC861 MIC861 Micrel Test Circuits 200k 20k V+ V+ 0.1µF 10µF 0.1µF 10µF 20k 20k MIC861 MIC861 RF RF FET PROBE 0.1µF 10µF 50½ FET PROBE FET PROBE 0.1µF 10µF 50½ RL 5k FET PROBE VÐ VÐ Test Circuit 2:AV = 2 Test Circuit 1. AV = 11 20k V+ V+ 0.1µF 10µF 0.1µF 10µF 20k RF MIC861 MIC861 RF FET PROBE FET PROBE 0.1µF 10µF 50½ 50½ 50½ 0.1µF 10µF FET PROBE FET PROBE VÐ VÐ Test Circuit 4. AV = –1 Test Circuit 3. AV = 1 V+ 10µF 100µF 50Ω 0.1µF BNC Input 10µF 170k 48k BNC 10k 10k MIC861 Output 50Ω 0.1µF All resistors: 1% metal film 100µF 10µF V— Test Circuit 5. Positive Power Supply Rejection Ratio Measurement MIC861 4 July 2001 MIC861 Micrel DC Performance Characteristics Output Voltage vs. Output Current 3 -40°C 1 4 3 85°C 2 1 -40°C 0 0 1.1 15 85°C 10 5 OFFSET VOLTAGE (V) 0 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 SUPPLY VOLTAGE (±V) 1 0.9 0.8 25°C 0.7 –40°C 0.6 0.5 0 25°C 6 -40°C 4 3 2 1 OPEN LOOP GAIN (dB) OFFSET VOLTAGE (V) 85°C 7 0 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 SUPPLY VOLTAGE (V) 80 60 -2 5V -4 2.7V -6 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) V+ = 5V V+ = 2.7V 20 0 0.1 25°C 0.8 0.7 0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 COMMON-MODE VOLTAGE (V) Supply Current vs. Temperature Sourcing 25 20 5V 15 10 5 2.7V 0 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) 5 5V 6 5 2.7V 4 3 2 1 0 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) 1 10 100 1000 10000 RESISTIVE LOAD (kΩ) 30 –40°C 0.6 Short Circuit Current vs. Temperature SHORT CIRCUIT CURRENT (mA) OFFSET VOLTAGE (mV) -1 July 2001 0.9 7 40 Offset Voltage vs. Temperature 0 -5 85°C 100 8 -3 V+ = 5V 1 Open Loop Gain vs. Resistive Load 9 5 1.1 0.5 1 1.5 2 2.5 COMMON-MODE VOLTAGE (V) Offset Voltage vs. Supply Voltage 85°C 5 SUPPLY CURRENT (µA) OUTPUT CURRENT (mA) 20 25°C 10 Offset Voltage vs. Common-Mode Voltage 85°C V+ = 2.7V Sinking 25°C 15 Offset Voltage vs. Common-Mode Voltage 30 -40°C 20 0 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 SUPPLY VOLTAGE (±V) OFFSET VOLTAGE (V) Short Circuit Current vs. Supply Voltage 25 25 5 10 15 20 25 30 OUTPUT CURRENT (mA) - -40°C Sourcing Short Circuit Current vs. Temperature SHORT CIRCUIT CURRENT (mA) 0 0 25°C 85°C - 5 -10 -15 - 20 -25 -30 - 35 - 40 OUTPUT CURRENT (mA) 25°C OUTPUT CURRENT (mA) OUTPUT VOLTAGE (V) 5 Sinking 4 2 Short Circuit Current vs. Supply Voltage 30 Sourcing 5 OUTPUT VOLTAGE (V) Output Voltage vs. Output Current 0 Sinking -5 2.7V -10 -15 -20 5V -25 -30 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) MIC861 MIC861 Micrel AC Perfomance Characteristics Gain Bandwidth vs. Capacitive Load 90 90 80 325 70 80 70 175 50 40 30 125 20 75 10 0 1 10 100 1000 CAPACITIVE LOAD (pF) 80 10 60 40 20 Gain Bandwidth and Phase Margin 60 40 20 0 V+ = 2.7V V+ = 2.7V -20 1 100 1k 10k 100k 1M FREQUENCY (Hz) 10 Gain Bandwidth and Phase Margin 100 1k 10k 100k 1M FREQUENCY (Hz) 50 40 225 180 30 20 135 90 10 0 45 0 -10 Av = 11 -20 V+ = 1.35V V- = –1.35V -30 C = 2pF L -40 R = 200kΩ F -50 10k 1k 100k FREQUENCY (Hz) Unity Gain Frequency Response -45 -90 -135 -180 1M -225 Unity Gain Frequency Response 225 50 225 40 30 180 135 40 30 180 135 20 10 90 45 20 10 90 45 20 10 90 45 0 -10 0 -45 0 -10 0 -45 -20 Av = 1 -30 V+ = 2.5V V– = –2.5V -40 R = 1MΩ L -50 10k 1k 100k FREQUENCY (Hz) -90 -135 -20 Av = 1 V+ = 1.35V -30 V– = –1.35V -40 RL = 1MkΩ -50 10k 1k 100k FREQUENCY (Hz) -90 -135 0 -10 Av = 11 -20 V+ = 2.5V V– = –2.5V -30 C = 2pF 0 -45 -40 R = 200kΩ F -50 10k 1k 100k FREQUENCY (Hz) -180 -225 -90 -135 1M 1M -180 -225 Gain Bandwidth and Phase Margin Gain Frequency Response 50 225 40 30 180 135 40 30 180 135 20 10 90 45 20 10 90 45 0 -45 -90 -135 1M -180 -225 GAIN (dB) 225 PHASE (°) 50 0 -10 Av = 2 V+ = 1.35V -20 V- = –1.35V -30 C = 2pF L -40 RF = 20kΩ -50 10k 1k 100k FREQUENCY (Hz) 1M -180 -225 0 -10 Av = 2 -20 V+ = 2.5V V- = –2.5V -30 C = 2pF 0 -45 -40 R = 20kΩ F -50 10k 1k 100k FREQUENCY (Hz) -180 -225 PHASE (°) L GAIN (dB) 50 180 135 PHASE (°) 225 40 30 GAIN (dB) 50 PHASE (°) GAIN (dB) 100 1k 10k 100k 1M FREQUENCY (Hz) GAIN (dB) PSRR (dB) 80 CMRR (dB) 100 GAIN (dB) 0 V+ = 5V -10 1 10 100 1k 10k 100k 1M FREQUENCY (Hz) V+= 5V PSRR vs. Frequency 100 10 40 30 20 10 CMRR vs. Frequency 0 1 60 50 PHASE (°) 225 60 PHASE (°) CMRR (dB) 2.7V 275 PSRR (dB) 5V 25 1 MIC861 PSRR vs. Frequency 375 425 GAIN BANDWIDTH (kHz) CMRR vs. Frequency -90 -135 L 6 1M July 2001 MIC861 Micrel Close-loop Unity Gain Frequency Response 18 15 AV = 1 V+ = 2.5V V- = -2.5V 0.1µF 1µF GAIN (dB) 12 0.01µF V+ 1000pF FET Probe 9 100pF RF CL 6 V— 3 3pF 0 -3 -6 100 July 2001 1k 10k 100k FREQUENCY (Hz) 1M 10M 7 MIC861 MIC861 Micrel Functional Characteristics Small Signal Pulse Response Test Circuit 3: AV = 1 INPUT 50mV/div OUTPUT 50mV/div AV = 1 V+ = 1.35V V- = -1.35V CL = 2pF RL = 1MΩ Small Signal Pulse Response Test Circuit 3: AV = 1 Small Signal Pulse Response Test Circuit 3: AV = 1 INPUT 50mV/div TIME 10µs/div OUTPUT 50mV/div Small Signal Pulse Response Test Circuit 4: AV = -1 Small Signal Pulse Response Test Circuit 4: AV = -1 INPUT 50mV/div TIME 250ms/div AV = -1 V+ = 1.35V V- = -1.35V CL = 2pF RL = 5kΩ RF = 20kΩ AV = -1 V+ = 2.5V V- = -2.5V CL = 2pF RL = 5kΩ RF = 20kΩ OUTPUT 50mV/div OUTPUT 50mV/div AV = 1 V+ = 2.5V V- = -2.5V CL = 50pF RL = 1MΩ TIME 10µs/div OUTPUT 50mV/div INPUT 50mV/div AV = 1 V+ = 1.35V V- = -1.35V CL = 50pF RL = 1MΩ TIME 10µs/div MIC861 AV = 1 V+ = 2.5V V- = -2.5V CL = 2pF RL = 1MΩ TIME 10µs/div INPUT 50mV/div OUTPUT 50mV/div INPUT 50mV/div Small Signal Pulse Response Test Circuit 3: AV = 1 TIME 10µs/div 8 July 2001 MIC861 Micrel INPUT 50mV/div Small Signal Pulse Response Test Circuit 4: AV = -1 TIME 10µs/div Rail to Rail Output Operation Rail to Rail Output Operation INPUT 2V/div ∆VPP = 2.7V OUTPUT 2V/div AV = 2 V+ = 1.35V V- = -1.35V CL = 2pF RL = 1MΩ RF = 20kΩ AV = 2 V+ = 2.5V V- = -2.5V CL = 2pF RL = 1MΩ RF = 20kΩ ∆VPP = 5V TIME 250µs/div TIME 250µs/div Rail to Rail Output Operation Rail to Rail Output Operation INPUT 2V/div OUTPUT 2V/div INPUT 2V/div TIME 10ms/div INPUT 1V/div AV = 2 V+ = 1.35V V- = -1.35V CL = 2pF RL = 5kΩ RF = 20kΩ ∆VPP = 2.7V OUTPUT 2V/div OUTPUT 1V/div AV = -1 V+ = 2.5V V- = -2.5V CL = 2pF RL = 1MΩ RF = 20kΩ OUTPUT 50mV/div AV = -1 V+ = 1.35V V- = -1.35V CL = 2pF RL = 1MΩ RF = 20kΩ OUTPUT 50mV/div INPUT 50mV/div Small Signal Pulse Response Test Circuit 4: AV = -1 TIME 250µs/div July 2001 AV = 2 V+ = 2.5V V- = -2.5V CL = 2pF RL = 5kΩ RF = 20kΩ ∆VPP = 5V TIME 250µs/div 9 MIC861 MIC861 Micrel Large Signal Pulse Response Test Circuit 3: AV = 1 Large Signal Pulse Response Test Circuit 3: AV = 1 OUTPUT 500mV/div AV = 1 V+ = 2.5V V- = -2.5V CL = 100pF RL = 5kΩ OUTPUT 500mV/div AV = 1 V+ = 1.35V V- = -1.35V CL = 100pF RL = 5kΩ Positive Slew Rate = 0.14V/µs Negative Slew Rate = 0.22V/µs TIME 10µs/div MIC861 Positive Slew Rate = 0.13V/µs Negative Slew Rate = 0.18V/µs TIME 10µs/div 10 July 2001 MIC861 Micrel Applications Information Power Supply Bypassing Regular supply bypassing techniques are recommended. A 10µF capacitor in parallel with a 0.1µF capacitor on both the positive and negative supplies are ideal. For best performance all bypassing capacitors should be located as close to the op amp as possible and all capacitors should be low ESL (equivalent series inductance), ESR (equivalent series resistance). Surface-mount ceramic capacitors are ideal. July 2001 11 MIC861 MIC861 Micrel Package Information 0.65 (0.0256) BSC 1.35 (0.053) 2.40 (0.094) 1.15 (0.045) 1.80 (0.071) 2.20 (0.087) 1.80 (0.071) DIMENSIONS: MM (INCH) 1.00 (0.039) 1.10 (0.043) 0.80 (0.032) 0.80 (0.032) 0.10 (0.004) 0.00 (0.000) 0.30 (0.012) 0.15 (0.006) 0.18 (0.007) 0.10 (0.004) 0.30 (0.012) 0.10 (0.004) SC70-5 MICREL INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB USA http://www.micrel.com This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc. © 2001 Micrel Incorporated MIC861 12 July 2001