STMicroelectronics M29W400DB70M6E 4 mbit (512kb x8 or 256kb x16, boot block) 3v supply flash memory Datasheet

M29W400DT
M29W400DB
4 Mbit (512Kb x8 or 256Kb x16, Boot Block)
3V Supply Flash Memory
FEATURES SUMMARY
■
■
■
■
■
■
■
■
■
■
■
■
SUPPLY VOLTAGE
– VCC = 2.7V to 3.6V for Program, Erase
and Read
ACCESS TIME: 45, 55, 70ns
PROGRAMMING TIME
– 10µs per Byte/Word typical
11 MEMORY BLOCKS
– 1 Boot Block (Top or Bottom Location)
– 2 Parameter and 8 Main Blocks
PROGRAM/ERASE CONTROLLER
– Embedded Byte/Word Program
algorithms
ERASE SUSPEND and RESUME MODES
– Read and Program another Block during
Erase Suspend
UNLOCK BYPASS PROGRAM COMMAND
– Faster Production/Batch Programming
TEMPORARY BLOCK UNPROTECTION
MODE
LOW POWER CONSUMPTION
– Standby and Automatic Standby
100,000 PROGRAM/ERASE CYCLES per
BLOCK
ELECTRONIC SIGNATURE
– Manufacturer Code: 0020h
– Top Device Code M29W400DT: 00EEh
– Bottom Device Code M29W400D: 00EFh
PACKAGES
– Compliant with Lead-Free Soldering
Processes
– Lead-Free Versions
Figure 1. Packages
SO44 (M)
TSOP48 (N)
12 x 20mm
FBGA
TFBGA48 (ZA)
6 x 9mm
FBGA
TFBGA48 (ZE)
6 x 8mm
June 2004
1/38
M29W400DT, M29W400DB
TABLE OF CONTENTS
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Figure 1. Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
SUMMARY DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 2.
Table 1.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
SO Connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
TSOP Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
TFBGA Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Block Addresses (x8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Block Addresses (x16). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Address Inputs (A0-A17). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Data Inputs/Outputs (DQ0-DQ7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Data Inputs/Outputs (DQ8-DQ14). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Data Input/Output or Address Input (DQ15A-1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Chip Enable (E). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Write Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Reset/Block Temporary Unprotect (RP). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Ready/Busy Output (RB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Byte/Word Organization Select (BYTE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
VCC Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
VSS Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
BUS OPERATIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Bus Read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Bus Write. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Output Disable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Automatic Standby. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Special Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Electronic Signature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Block Protection and Blocks Unprotection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 2. Bus Operations, BYTE = VIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 3. Bus Operations, BYTE = VIH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
COMMAND INTERFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Read/Reset Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Auto Select Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Unlock Bypass Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2/38
M29W400DT, M29W400DB
Unlock Bypass Program Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Unlock Bypass Reset Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Chip Erase Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Block Erase Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Erase Suspend Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Erase Resume Command. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Block Protect and Chip Unprotect Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 4. Program, Erase Times and Program, Erase Endurance Cycles . . . . . . . . . . . . . . . . . . . 15
Table 5. Commands, 16-bit mode, BYTE = VIH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 6. Commands, 8-bit mode, BYTE = VIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
STATUS REGISTER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Data Polling Bit (DQ7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Toggle Bit (DQ6).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Error Bit (DQ5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Erase Timer Bit (DQ3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Alternative Toggle Bit (DQ2).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 7. Status Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 8. Data Polling Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 9. Data Toggle Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 8. Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 9. Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 10.AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 11.AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 10. Device Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 11. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 12.Read Mode AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 12. Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 13.Write AC Waveforms, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 13. Write AC Characteristics, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 14.Write AC Waveforms, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 14. Write AC Characteristics, Chip Enable Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 15.Reset/Block Temporary Unprotect AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 15. Reset/Block Temporary Unprotect AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 25
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 16.SO44 - 44 lead Plastic Small Outline, 525 mils body width, Package Outline . . . . . . . . 26
Table 16. SO44 – 44 lead Plastic Small Outline, 525 mils body width, Package Mechanical Data 26
Figure 17.TSOP48 – 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Outline. . . . . . . . . 27
Table 17. TSOP48 – 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Mechanical Data . 27
Figure 18.TFBGA48 6x9mm – 6x8 ball array – 0.80mm pitch, Bottom View Package Outline . . . . 28
Table 18. TFBGA48 6x9mm – 6x8 active ball array – 0.80mm pitch, Package Mechanical Data. . 28
3/38
M29W400DT, M29W400DB
Figure 19.TFBGA48 6x8mm – 6x8 ball array – 0.80mm pitch, Bottom View Package Outline . . . . 29
Table 19. TFBGA48 6x8mm – 6x8 active ball array – 0.80mm pitch, Package Mechanical Data. . 29
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 20. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
APPENDIX A.BLOCK ADDRESS TABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 21. Top Boot Block Addresses M29W400DT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 22. Bottom Boot Block Addresses M29W400D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
APPENDIX B.BLOCK PROTECTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Programmer Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
In-System Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 23. Programmer Technique Bus Operations, BYTE = VIH or VIL . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 20.Programmer Equipment Block Protect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 21.Programmer Equipment Chip Unprotect Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 22.In-System Equipment Block Protect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 23.In-System Equipment Chip Unprotect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
REVISION HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 24. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4/38
M29W400DT, M29W400DB
SUMMARY DESCRIPTION
The M29W400D is a 4 Mbit (512Kb x8 or 256Kb
x16) non-volatile memory that can be read, erased
and reprogrammed. These operations can be performed using a single low voltage (2.7 to 3.6V)
supply. On power-up the memory defaults to its
Read mode where it can be read in the same way
as a ROM or EPROM.
The memory is divided into blocks that can be
erased independently so it is possible to preserve
valid data while old data is erased. Each block can
be protected independently to prevent accidental
Program or Erase commands from modifying the
memory. Program and Erase commands are written to the Command Interface of the memory. An
on-chip Program/Erase Controller simplifies the
process of programming or erasing the memory by
taking care of all of the special operations that are
required to update the memory contents.
The end of a program or erase operation can be
detected and any error conditions identified. The
command set required to control the memory is
consistent with JEDEC standards.
The blocks in the memory are asymmetrically arranged, see Figures 6 and 7, Block Addresses.
The first or last 64 Kbytes have been divided into
four additional blocks. The 16 Kbyte Boot Block
can be used for small initialization code to start the
microprocessor, the two 8 Kbyte Parameter
Blocks can be used for parameter storage and the
remaining 32K is a small Main Block where the application may be stored.
Chip Enable, Output Enable and Write Enable signals control the bus operation of the memory.
They allow simple connection to most microprocessors, often without additional logic.
The memory is offered in SO44, TSOP48 (12 x
20mm), TFBGA48 0.8mm pitch (6 x 9mm and 6
x8mm) packages. The memory is supplied with all
the bits erased (set to ’1’).
In addition to the standard versions, the packages
are also available in Lead-free versions, in compliance with JEDEC Std J-STD-020B, the ST ECOPACK 7191395 Specification, and the RoHS
(Restriction of Hazardous Substances) directive.
All packages are compliant with Lead-free soldering processes.
Figure 2. Logic Diagram
VCC
18
15
A0-A17
DQ0-DQ14
DQ15A–1
W
E
M29W400DT
M29W400DB
G
BYTE
RB
RP
VSS
AI06853
Table 1. Signal Names
A0-A17
Address Inputs
DQ0-DQ7
Data Inputs/Outputs
DQ8-DQ14
Data Inputs/Outputs
DQ15A–1
Data Input/Output or Address Input
E
Chip Enable
G
Output Enable
W
Write Enable
RP
Reset/Block Temporary Unprotect
RB
Ready/Busy Output
BYTE
Byte/Word Organization Select
VCC
Supply Voltage
VSS
Ground
NC
Not Connected Internally
5/38
M29W400DT, M29W400DB
Figure 3. SO Connections
NC
RB
A17
A7
A6
A5
A4
A3
A2
A1
A0
E
VSS
G
DQ0
DQ8
DQ1
DQ9
DQ2
DQ10
DQ3
DQ11
Figure 4. TSOP Connections
1
44
43
2
3
42
4
41
5
40
6
39
7
38
8
37
9
36
10
35
11 M29W400DT 34
12 M29W400DB 33
13
32
14
31
15
30
16
29
28
17
27
18
26
19
25
20
21
24
22
23
AI06855
RP
W
A8
A9
A10
A11
A12
A13
A14
A15
A16
BYTE
VSS
DQ15A–1
DQ7
DQ14
DQ6
DQ13
DQ5
DQ12
DQ4
VCC
A15
A14
A13
A12
A11
A10
A9
A8
NC
NC
W
RP
NC
NC
RB
NC
A17
A7
A6
A5
A4
A3
A2
A1
1
48
12 M29W400DT 37
13 M29W400DB 36
24
25
AI06854
Note: 1. NC = Not Connected
6/38
Note: 1. NC = Not Connected
A16
BYTE
VSS
DQ15A–1
DQ7
DQ14
DQ6
DQ13
DQ5
DQ12
DQ4
VCC
DQ11
DQ3
DQ10
DQ2
DQ9
DQ1
DQ8
DQ0
G
VSS
E
A0
M29W400DT, M29W400DB
Figure 5. TFBGA Connections (Top view through package)
1
2
3
4
5
6
A
A3
A7
RB
W
A9
A13
B
A4
A17
NC
RP
A8
A12
C
A2
A6
NC
NC
A10
A14
D
A1
A5
NC
NC
A11
A15
E
A0
DQ0
DQ2
DQ5
DQ7
A16
F
E
DQ8
DQ10
DQ12
DQ14
BYTE
G
G
DQ9
DQ11
VCC
DQ13
DQ15
A–1
H
VSS
DQ1
DQ3
DQ4
DQ6
VSS
AI06856
Note: 1. NC = Not Connected
7/38
M29W400DT, M29W400DB
Figure 6. Block Addresses (x8)
M29W400DT
Top Boot Block Addresses (x8)
M29W400DB
Bottom Boot Block Addresses (x8)
7FFFFh
7FFFFh
16 KByte
64 KByte
7C000h
7BFFFh
70000h
6FFFFh
8 KByte
64 KByte
7A000h
79FFFh
60000h
Total of 7
64 KByte Blocks
8 KByte
78000h
77FFFh
32 KByte
70000h
6FFFFh
1FFFFh
64 KByte
64 KByte
60000h
10000h
0FFFFh
32 KByte
Total of 7
64 KByte Blocks
1FFFFh
08000h
07FFFh
8 KByte
06000h
05FFFh
64 KByte
10000h
0FFFFh
8 KByte
04000h
03FFFh
64 KByte
00000h
16 KByte
00000h
AI06857
Note: Also see Appendix A, Tables 21 and 22 for a full listing of the Block Addresses.
8/38
M29W400DT, M29W400DB
Figure 7. Block Addresses (x16)
M29W400DT
Top Boot Block Addresses (x16)
M29W400DB
Bottom Boot Block Addresses (x16)
3FFFFh
3FFFFh
8 KWord
32 KWord
3E000h
3DFFFh
38000h
37FFFh
4 KWord
32 KWord
3D000h
3CFFFh
30000h
Total of 7
32 KWord Blocks
4 KWord
3C000h
3BFFFh
16 KWord
38000h
37FFFh
0FFFFh
32 KWord
32 KWord
30000h
08000h
07FFFh
16 KWord
Total of 7
32 KWord Blocks
0FFFFh
04000h
03FFFh
4 KWord
03000h
02FFFh
32 KWord
08000h
07FFFh
4 KWord
02000h
01FFFh
32 KWord
00000h
8 KWord
00000h
AI06858
Note: Also see Appendix A, Tables 21 and 22 for a full listing of the Block Addresses.
9/38
M29W400DT, M29W400DB
SIGNAL DESCRIPTIONS
See Figure 2., Logic Diagram, and Table
1., Signal Names, for a brief overview of the signals connected to this device.
Address Inputs (A0-A17). The Address Inputs
select the cells in the memory array to access during Bus Read operations. During Bus Write operations they control the commands sent to the
Command Interface of the Program/Erase Controller.
Data Inputs/Outputs (DQ0-DQ7). The Data Inputs/Outputs output the data stored at the selected
address during a Bus Read operation. During Bus
Write operations they represent the commands
sent to the Command Interface of the Program/
Erase Controller.
Data Inputs/Outputs (DQ8-DQ14). The Data Inputs/Outputs output the data stored at the selected
address during a Bus Read operation when BYTE
is High, VIH. When BYTE is Low, VIL, these pins
are not used and are high impedance. During Bus
Write operations the Command Register does not
use these bits. When reading the Status Register
these bits should be ignored.
Data Input/Output or Address Input (DQ15A-1).
When BYTE is High, VIH, this pin behaves as a
Data Input/Output pin (as DQ8-DQ14). When
BYTE is Low, VIL, this pin behaves as an address
pin; DQ15A–1 Low will select the LSB of the Word
on the other addresses, DQ15A–1 High will select
the MSB. Throughout the text consider references
to the Data Input/Output to include this pin when
BYTE is High and references to the Address Inputs to include this pin when BYTE is Low except
when stated explicitly otherwise.
Chip Enable (E). The Chip Enable, E, activates
the memory, allowing Bus Read and Bus Write operations to be performed. When Chip Enable is
High, VIH, all other pins are ignored.
Output Enable (G). The Output Enable, G, controls the Bus Read operation of the memory.
Write Enable (W). The Write Enable, W, controls
the Bus Write operation of the memory’s Command Interface.
Reset/Block Temporary Unprotect (RP). The
Reset/Block Temporary Unprotect pin can be
used to apply a Hardware Reset to the memory or
to temporarily unprotect all Blocks that have been
protected.
A Hardware Reset is achieved by holding Reset/
Block Temporary Unprotect Low, VIL, for at least
tPLPX. After Reset/Block Temporary Unprotect
10/38
goes High, VIH, the memory will be ready for Bus
Read and Bus Write operations after tPHEL or
tRHEL, whichever occurs last. See the Ready/Busy
Output section, Table 15 and Figure 15, Reset/
Temporary Unprotect AC Characteristics for more
details.
Holding RP at VID will temporarily unprotect the
protected Blocks in the memory. Program and
Erase operations on all blocks will be possible.
The transition from VIH to VID must be slower than
tPHPHH.
Ready/Busy Output (RB). The Ready/Busy pin
is an open-drain output that can be used to identify
when the memory array can be read. Ready/Busy
is high-impedance during Read mode, Auto Select
mode and Erase Suspend mode.
After a Hardware Reset, Bus Read and Bus Write
operations cannot begin until Ready/Busy becomes high-impedance. See Table 15 and Figure
15, Reset/Temporary Unprotect AC Characteristics.
During Program or Erase operations Ready/Busy
is Low, VOL. Ready/Busy will remain Low during
Read/Reset commands or Hardware Resets until
the memory is ready to enter Read mode.
Byte/Word Organization Select (BYTE). The
Byte/Word Organization Select pin is used to
switch between the 8-bit and 16-bit Bus modes of
the memory. When Byte/Word Organization Select is Low, VIL, the memory is in 8-bit mode, when
it is High, VIH, the memory is in 16-bit mode.
VCC Supply Voltage. The VCC Supply Voltage
supplies the power for all operations (Read, Program, Erase etc.).
The Command Interface is disabled when the VCC
Supply Voltage is less than the Lockout Voltage,
VLKO. This prevents Bus Write operations from accidentally damaging the data during power up,
power down and power surges. If the Program/
Erase Controller is programming or erasing during
this time then the operation aborts and the memory contents being altered will be invalid.
A 0.1µF capacitor should be connected between
the VCC Supply Voltage pin and the VSS Ground
pin to decouple the current surges from the power
supply. The PCB track widths must be sufficient to
carry the currents required during program and
erase operations, ICC3.
VSS Ground. The VSS Ground is the reference for
all voltage measurements.
M29W400DT, M29W400DB
BUS OPERATIONS
There are five standard bus operations that control
the device. These are Bus Read, Bus Write, Output Disable, Standby and Automatic Standby. See
Tables 2 and 3, Bus Operations, for a summary.
Typically glitches of less than 5ns on Chip Enable
or Write Enable are ignored by the memory and do
not affect bus operations.
Bus Read. Bus Read operations read from the
memory cells, or specific registers in the Command Interface. A valid Bus Read operation involves setting the desired address on the Address
Inputs, applying a Low signal, VIL, to Chip Enable
and Output Enable and keeping Write Enable
High, VIH. The Data Inputs/Outputs will output the
value, see Figure 12., Read Mode AC Waveforms,
and Table 12., Read AC Characteristics, for details of when the output becomes valid.
Bus Write. Bus Write operations write to the
Command Interface. A valid Bus Write operation
begins by setting the desired address on the Address Inputs. The Address Inputs are latched by
the Command Interface on the falling edge of Chip
Enable or Write Enable, whichever occurs last.
The Data Inputs/Outputs are latched by the Command Interface on the rising edge of Chip Enable
or Write Enable, whichever occurs first. Output Enable must remain High, VIH, during the whole Bus
Write operation. See Figures 13 and 14, Write AC
Waveforms, and Tables 13 and 14, Write AC
Characteristics, for details of the timing requirements.
Output Disable. The Data Inputs/Outputs are in
the high impedance state when Output Enable is
High, VIH.
Standby. When Chip Enable is High, VIH, the
memory enters Standby mode and the Data Inputs/Outputs pins are placed in the high-imped-
ance state. To reduce the Supply Current to the
Standby Supply Current, ICC2, Chip Enable should
be held within VCC ± 0.2V. For the Standby current
level see Table 11., DC Characteristics.
During program or erase operations the memory
will continue to use the Program/Erase Supply
Current, ICC3, for Program or Erase operations until the operation completes.
Automatic Standby. If CMOS levels (VCC ± 0.2V)
are used to drive the bus and the bus is inactive for
150ns or more the memory enters Automatic
Standby where the internal Supply Current is reduced to the Standby Supply Current, ICC2. The
Data Inputs/Outputs will still output data if a Bus
Read operation is in progress.
Special Bus Operations. Additional bus operations can be performed to read the Electronic Signature and also to apply and remove Block
Protection. These bus operations are intended for
use by programming equipment and are not usually used in applications. They require VID to be
applied to some pins.
Electronic Signature. The memory has two
codes, the manufacturer code and the device
code, that can be read to identify the memory.
These codes can be read by applying the signals
listed in Tables 2 and 3, Bus Operations.
Block Protection and Blocks Unprotection.
Each block can be separately protected against
accidental Program or Erase. Protected blocks
can be unprotected to allow data to be changed.
There are two methods available for protecting
and unprotecting the blocks, one for use on programming equipment and the other for in-system
use. Block Protect and Chip Unprotect operations
are described in Appendix B.
11/38
M29W400DT, M29W400DB
Table 2. Bus Operations, BYTE = VIL
Operation
E
G
Address Inputs
DQ15A–1, A0-A17
W
Data Inputs/Outputs
DQ14-DQ8
DQ7-DQ0
Bus Read
VIL
VIL
VIH
Cell Address
Hi-Z
Data Output
Bus Write
VIL
VIH
VIL
Command Address
Hi-Z
Data Input
X
VIH
VIH
X
Hi-Z
Hi-Z
Standby
VIH
X
X
X
Hi-Z
Hi-Z
Read Manufacturer
Code
VIL
VIL
VIH
A0 = VIL, A1 = VIL, A9 = VID,
Others VIL or VIH
Hi-Z
20h
Read Device Code
VIL
VIL
VIH
A0 = VIH, A1 = VIL, A9 = VID,
Others VIL or VIH
Hi-Z
EEh (M29W400DT)
EFh (M29W400D)
Address Inputs
A0-A17
Output Disable
Note: X = VIL or VIH.
Table 3. Bus Operations, BYTE = VIH
Data Inputs/Outputs
DQ15A–1, DQ14-DQ0
E
G
W
Bus Read
VIL
VIL
VIH
Cell Address
Bus Write
VIL
VIH
VIL
Command Address
X
VIH
VIH
X
Hi-Z
Standby
VIH
X
X
X
Hi-Z
Read Manufacturer
Code
VIL
VIL
VIH
A0 = VIL, A1 = VIL, A9 = VID,
Others VIL or VIH
0020h
Read Device Code
VIL
VIL
VIH
A0 = VIH, A1 = VIL, A9 = VID,
Others VIL or VIH
00EEh (M29W400DT)
00EFh (M29W400D)
Operation
Output Disable
Note: X = VIL or VIH.
12/38
Data Output
Data Input
M29W400DT, M29W400DB
COMMAND INTERFACE
All Bus Write operations to the memory are interpreted by the Command Interface. Commands
consist of one or more sequential Bus Write operations. Failure to observe a valid sequence of Bus
Write operations will result in the memory returning to Read mode. The long command sequences
are imposed to maximize data security.
The address used for the commands changes depending on whether the memory is in 16-bit or 8bit mode. See either Table 5, or 6, depending on
the configuration that is being used, for a summary
of the commands.
Read/Reset Command. The Read/Reset command returns the memory to its Read mode where
it behaves like a ROM or EPROM, unless otherwise stated. It also resets the errors in the Status
Register. Either one or three Bus Write operations
can be used to issue the Read/Reset command.
The Read/Reset Command can be issued, between Bus Write cycles before the start of a program or erase operation, to return the device to
read mode. Once the program or erase operation
has started the Read/Reset command is no longer
accepted. The Read/Reset command will not
abort an Erase operation when issued while in
Erase Suspend.
Auto Select Command. The Auto Select command is used to read the Manufacturer Code, the
Device Code and the Block Protection Status.
Three consecutive Bus Write operations are required to issue the Auto Select command. Once
the Auto Select command is issued the memory
remains in Auto Select mode until another command is issued.
From the Auto Select mode the Manufacturer
Code can be read using a Bus Read operation
with A0 = VIL and A1 = VIL. The other address bits
may be set to either VIL or VIH. The Manufacturer
Code for STMicroelectronics is 0020h.
The Device Code can be read using a Bus Read
operation with A0 = VIH and A1 = VIL. The other
address bits may be set to either VIL or VIH. The
Device Code for the M29W400DT is 00EEh and
for the M29W400D is 00EFh.
The Block Protection Status of each block can be
read using a Bus Read operation with A0 = VIL,
A1 = VIH, and A12-A17 specifying the address of
the block. The other address bits may be set to either VIL or VIH. If the addressed block is protected
then 01h is output on Data Inputs/Outputs DQ0DQ7, otherwise 00h is output.
Program Command. The Program command
can be used to program a value to one address in
the memory array at a time. The command re-
quires four Bus Write operations, the final write operation latches the address and data and starts the
Program/Erase Controller.
If the address falls in a protected block then the
Program command is ignored, the data remains
unchanged. The Status Register is never read and
no error condition is given.
During the program operation the memory will ignore all commands. It is not possible to issue any
command to abort or pause the operation. Typical
program times are given in Table 4., Program,
Erase Times and Program, Erase Endurance Cycles. Bus Read operations during the program operation will output the Status Register on the Data
Inputs/Outputs. See the section on the Status
Register for more details.
After the program operation has completed the
memory will return to the Read mode, unless an
error has occurred. When an error occurs the
memory will continue to output the Status Register. A Read/Reset command must be issued to reset the error condition and return to Read mode.
Note that the Program command cannot change a
bit set at ’0’ back to ’1’. One of the Erase Commands must be used to set all the bits in a block or
in the whole memory from ’0’ to ’1’.
Unlock Bypass Command. The Unlock Bypass
command is used in conjunction with the Unlock
Bypass Program command to program the memory. When the access time to the device is long (as
with some EPROM programmers) considerable
time saving can be made by using these commands. Three Bus Write operations are required
to issue the Unlock Bypass command.
Once the Unlock Bypass command has been issued the memory will only accept the Unlock Bypass Program command and the Unlock Bypass
Reset command. The memory can be read as if in
Read mode.
Unlock Bypass Program Command. The Unlock Bypass Program command can be used to
program one address in memory at a time. The
command requires two Bus Write operations, the
final write operation latches the address and data
and starts the Program/Erase Controller.
The Program operation using the Unlock Bypass
Program command behaves identically to the Program operation using the Program command. A
protected block cannot be programmed; the operation cannot be aborted and the Status Register is
read. Errors must be reset using the Read/Reset
command, which leaves the device in Unlock Bypass Mode. See the Program command for details
on the behavior.
13/38
M29W400DT, M29W400DB
Unlock Bypass Reset Command. The Unlock
Bypass Reset command can be used to return to
Read/Reset mode from Unlock Bypass Mode.
Two Bus Write operations are required to issue the
Unlock Bypass Reset command. Read/Reset
command does not exit from Unlock Bypass
Mode.
Chip Erase Command. The Chip Erase command can be used to erase the entire chip. Six Bus
Write operations are required to issue the Chip
Erase Command and start the Program/Erase
Controller.
If any blocks are protected then these are ignored
and all the other blocks are erased. If all of the
blocks are protected the Chip Erase operation appears to start but will terminate within about 100µs,
leaving the data unchanged. No error condition is
given when protected blocks are ignored.
During the erase operation the memory will ignore
all commands. It is not possible to issue any command to abort the operation. Typical chip erase
times are given in Table 4. All Bus Read operations during the Chip Erase operation will output
the Status Register on the Data Inputs/Outputs.
See the section on the Status Register for more
details.
After the Chip Erase operation has completed the
memory will return to the Read Mode, unless an
error has occurred. When an error occurs the
memory will continue to output the Status Register. A Read/Reset command must be issued to reset the error condition and return to Read Mode.
The Chip Erase Command sets all of the bits in unprotected blocks of the memory to ’1’. All previous
data is lost.
Block Erase Command. The Block Erase command can be used to erase a list of one or more
blocks. Six Bus Write operations are required to
select the first block in the list. Each additional
block in the list can be selected by repeating the
sixth Bus Write operation using the address of the
additional block. The Block Erase operation starts
the Program/Erase Controller about 50µs after the
last Bus Write operation. Once the Program/Erase
Controller starts it is not possible to select any
more blocks. Each additional block must therefore
be selected within 50µs of the last block. The 50µs
timer restarts when an additional block is selected.
The Status Register can be read after the sixth
Bus Write operation. See the Status Register for
details on how to identify if the Program/Erase
Controller has started the Block Erase operation.
If any selected blocks are protected then these are
ignored and all the other selected blocks are
erased. If all of the selected blocks are protected
the Block Erase operation appears to start but will
terminate within about 100µs, leaving the data un-
14/38
changed. No error condition is given when protected blocks are ignored.
During the Block Erase operation the memory will
ignore all commands except the Erase Suspend
command. Typical block erase times are given in
Table 4. All Bus Read operations during the Block
Erase operation will output the Status Register on
the Data Inputs/Outputs. See the section on the
Status Register for more details.
After the Block Erase operation has completed the
memory will return to the Read Mode, unless an
error has occurred. When an error occurs the
memory will continue to output the Status Register. A Read/Reset command must be issued to reset the error condition and return to Read mode.
The Block Erase Command sets all of the bits in
the unprotected selected blocks to ’1’. All previous
data in the selected blocks is lost.
Erase Suspend Command. The Erase Suspend
Command may be used to temporarily suspend a
Block Erase operation and return the memory to
Read mode. The command requires one Bus
Write operation.
The Program/Erase Controller will suspend within
the Erase Suspend Latency Time after the Erase
Suspend Command is issued (see Table 4 for numerical values). Once the Program/Erase Controller has stopped the memory will be set to Read
mode and the Erase will be suspended. If the
Erase Suspend command is issued during the period when the memory is waiting for an additional
block (before the Program/Erase Controller starts)
then the Erase is suspended immediately and will
start immediately when the Erase Resume Command is issued. It is not possible to select any further blocks to erase after the Erase Resume.
During Erase Suspend it is possible to Read and
Program cells in blocks that are not being erased;
both Read and Program operations behave as
normal on these blocks. If any attempt is made to
program in a protected block or in the suspended
block then the Program command is ignored and
the data remains unchanged. The Status Register
is not read and no error condition is given. Reading from blocks that are being erased will output
the Status Register.
It is also possible to issue the Auto Select and Unlock Bypass commands during an Erase Suspend.
The Read/Reset command must be issued to return the device to Read Array mode before the Resume command will be accepted.
Erase Resume Command. The Erase Resume
command must be used to restart the Program/
Erase Controller from Erase Suspend. An erase
can be suspended and resumed more than once.
M29W400DT, M29W400DB
Block Protect and Chip Unprotect Commands.
Each block can be separately protected against
accidental Program or Erase. The whole chip can
be unprotected to allow the data inside the blocks
to be changed.
Block Protect and Chip Unprotect operations are
described in Appendix B.
Table 4. Program, Erase Times and Program, Erase Endurance Cycles
Parameter
Min
Chip Erase (All bits in the memory set to ‘0’)
Typ (1,2)
Max(2)
2.5
Unit
s
6
35(3)
s
Block Erase (64 Kbytes)
0.8
6(4)
s
Program (Byte or Word)
10
200(3)
µs
Chip Program (Byte by Byte)
5.5
30(3)
s
Chip Program (Word by Word)
2.8
15(3)
s
Erase Suspend Latency Time
18
25(4)
µs
Chip Erase
Program/Erase Cycles (per Block)
Data Retention
Note: 1.
2.
3.
4.
100,000
cycles
20
years
Typical values measured at room temperature and nominal voltages.
Sampled, but not 100% tested.
Maximum value measured at worst case conditions for both temperature and VCC after 100,00 program/erase cycles.
Maximum value measured at worst case conditions for both temperature and VCC.
15/38
M29W400DT, M29W400DB
Command
Length
Table 5. Commands, 16-bit mode, BYTE = VIH
Bus Write Operations
1st
2nd
Addr
Data
1
X
F0
3
555
Auto Select
3
Program
3rd
4th
Addr
Data
Addr
Data
AA
2AA
55
X
F0
555
AA
2AA
55
555
90
4
555
AA
2AA
55
555
A0
Unlock Bypass
3
555
AA
2AA
55
555
20
Unlock Bypass
Program
2
X
A0
PA
PD
Unlock Bypass Reset
2
X
90
X
00
Chip Erase
6
555
AA
2AA
55
555
Block Erase
6+
555
AA
2AA
55
555
Erase Suspend
1
X
B0
Erase Resume
1
X
30
5th
Addr
Data
PA
PD
80
555
80
555
6th
Addr
Data
Addr
Data
AA
2AA
55
555
10
AA
2AA
55
BA
30
Read/Reset
Note: X Don’t Care, PA Program Address, PD Program Data, BA Any address in the Block. All values in the table are in hexadecimal. The
Command Interface only uses A-1; A0-A10 and DQ0-DQ7 to verify the commands; A11-A17, DQ8-DQ14 and DQ15 are Don't Care.
DQ15A-1 is A-1 when BYTE is VIL or DQ15 when BYTE is VIH.
Command
Length
Table 6. Commands, 8-bit mode, BYTE = VIL
Bus Write Operations
1st
2nd
Addr
Data
1
X
F0
3
AAA
Auto Select
3
Program
3rd
4th
Addr
Data
Addr
Data
AA
555
55
X
F0
AAA
AA
555
55
AAA
90
4
AAA
AA
555
55
AAA
A0
Unlock Bypass
3
AAA
AA
555
55
AAA
20
Unlock Bypass
Program
2
X
A0
PA
PD
Unlock Bypass Reset
2
X
90
X
00
Chip Erase
6
AAA
AA
555
55
AAA
Block Erase
6+
AAA
AA
555
55
AAA
Erase Suspend
1
X
B0
Erase Resume
1
X
30
5th
Addr
Data
PA
PD
80
AAA
80
AAA
6th
Addr
Data
Addr
Data
AA
555
55
AAA
10
AA
555
55
BA
30
Read/Reset
Note: X Don’t Care, PA Program Address, PD Program Data, BA Any address in the Block. All values in the table are in hexadecimal. The
Command Interface only uses A-1; A0-A10 and DQ0-DQ7 to verify the commands; A11-A17, DQ8-DQ14 and DQ15 are Don't Care.
DQ15A-1 is A-1 when BYTE is VIL or DQ15 when BYTE is VIH.
16/38
M29W400DT, M29W400DB
STATUS REGISTER
Bus Read operations from any address always
read the Status Register during Program and
Erase operations. It is also read during Erase Suspend when an address within a block being erased
is accessed.
The bits in the Status Register are summarized in
Table 7., Status Register Bits.
Data Polling Bit (DQ7). The Data Polling Bit can
be used to identify whether the Program/Erase
Controller has successfully completed its operation or if it has responded to an Erase Suspend.
The Data Polling Bit is output on DQ7 when the
Status Register is read.
During Program operations the Data Polling Bit
outputs the complement of the bit being programmed to DQ7. After successful completion of
the Program operation the memory returns to
Read mode and Bus Read operations from the address just programmed output DQ7, not its complement.
During Erase operations the Data Polling Bit outputs ’0’, the complement of the erased state of
DQ7. After successful completion of the Erase operation the memory returns to Read Mode.
In Erase Suspend mode the Data Polling Bit will
output a ’1’ during a Bus Read operation within a
block being erased. The Data Polling Bit will
change from a ’0’ to a ’1’ when the Program/Erase
Controller has suspended the Erase operation.
Figure 8., Data Polling Flowchart, gives an example of how to use the Data Polling Bit. A Valid Address is the address being programmed or an
address within the block being erased.
Toggle Bit (DQ6). The Toggle Bit can be used to
identify whether the Program/Erase Controller has
successfully completed its operation or if it has responded to an Erase Suspend. The Toggle Bit is
output on DQ6 when the Status Register is read.
During Program and Erase operations the Toggle
Bit changes from ’0’ to ’1’ to ’0’, etc., with successive Bus Read operations at any address. After
successful completion of the operation the memory returns to Read mode.
During Erase Suspend mode the Toggle Bit will
output when addressing a cell within a block being
erased. The Toggle Bit will stop toggling when the
Program/Erase Controller has suspended the
Erase operation.
If any attempt is made to erase a protected block,
the operation is aborted, no error is signalled and
DQ6 toggles for approximately 100µs. If any attempt is made to program a protected block or a
suspended block, the operation is aborted, no er-
ror is signalled and DQ6 toggles for approximately
1µs.
Figure 9., Data Toggle Flowchart, gives an example of how to use the Data Toggle Bit.
Error Bit (DQ5). The Error Bit can be used to
identify errors detected by the Program/Erase
Controller. The Error Bit is set to ’1’ when a Program, Block Erase or Chip Erase operation fails to
write the correct data to the memory. If the Error
Bit is set a Read/Reset command must be issued
before other commands are issued. The Error bit
is output on DQ5 when the Status Register is read.
Note that the Program command cannot change a
bit set to ’0’ back to ’1’ and attempting to do so will
set DQ5 to ‘1’. A Bus Read operation to that address will show the bit is still ‘0’. One of the Erase
commands must be used to set all the bits in a
block or in the whole memory from ’0’ to ’1’
Erase Timer Bit (DQ3). The Erase Timer Bit can
be used to identify the start of Program/Erase
Controller operation during a Block Erase command. Once the Program/Erase Controller starts
erasing, the Erase Timer Bit is set to ’1’. Before the
Program/Erase Controller starts the Erase Timer
Bit is set to ‘0’ and additional blocks to be erased
may be written to the Command Interface. The
Erase Timer Bit is output on DQ3 when the Status
Register is read.
Alternative Toggle Bit (DQ2). The Alternative
Toggle Bit can be used to monitor the Program/
Erase controller during Erase operations. The Alternative Toggle Bit is output on DQ2 when the
Status Register is read.
During Chip Erase and Block Erase operations the
Toggle Bit changes from ’0’ to ’1’ to ’0’, etc., with
successive Bus Read operations from addresses
within the blocks being erased. A protected block
is treated the same as a block not being erased.
Once the operation completes the memory returns
to Read mode.
During Erase Suspend the Alternative Toggle Bit
changes from ’0’ to ’1’ to ’0’, etc. with successive
Bus Read operations from addresses within the
blocks being erased. Bus Read operations to addresses within blocks not being erased will output
the memory cell data as if in Read mode.
After an Erase operation that causes the Error Bit
to be set the Alternative Toggle Bit can be used to
identify which block or blocks have caused the error. The Alternative Toggle Bit changes from ’0’ to
’1’ to ’0’, etc. with successive Bus Read Operations from addresses within blocks that have not
erased correctly. The Alternative Toggle Bit does
not change if the addressed block has erased correctly.
17/38
M29W400DT, M29W400DB
Table 7. Status Register Bits
Operation
Address
DQ7
DQ6
DQ5
DQ3
DQ2
RB
Program
Any Address
DQ7
Toggle
0
–
–
0
Program During Erase
Suspend
Any Address
DQ7
Toggle
0
–
–
0
Program Error
Any Address
DQ7
Toggle
1
–
–
0
Chip Erase
Any Address
0
Toggle
0
1
Toggle
0
Block Erase before
timeout
Erasing Block
0
Toggle
0
0
Toggle
0
Non-Erasing Block
0
Toggle
0
0
No Toggle
0
Erasing Block
0
Toggle
0
1
Toggle
0
Non-Erasing Block
0
Toggle
0
1
No Toggle
0
Erasing Block
1
No Toggle
0
–
Toggle
1
Block Erase
Erase Suspend
Non-Erasing Block
Data read as normal
1
Good Block Address
0
Toggle
1
1
No Toggle
0
Faulty Block Address
0
Toggle
1
1
Toggle
0
Erase Error
Note: Unspecified data bits should be ignored.
Figure 8. Data Polling Flowchart
Figure 9. Data Toggle Flowchart
START
START
READ DQ6
READ DQ5 & DQ7
at VALID ADDRESS
READ
DQ5 & DQ6
DQ7
=
DATA
YES
DQ6
=
TOGGLE
NO
NO
YES
NO
DQ5
=1
NO
YES
DQ5
=1
YES
READ DQ7
at VALID ADDRESS
READ DQ6
TWICE
DQ7
=
DATA
YES
DQ6
=
TOGGLE
NO
FAIL
PASS
AI03598
NO
YES
FAIL
PASS
AI01370C
18/38
M29W400DT, M29W400DB
MAXIMUM RATING
Stressing the device above the rating listed in the
Absolute Maximum Ratings" table may cause permanent damage to the device. Exposure to Absolute Maximum Rating conditions for extended
periods may affect device reliability. These are
stress ratings only and operation of the device at
these or any other conditions above those indicated in the Operating sections of this specification is
not implied. Refer also to the STMicroelectronics
SURE Program and other relevant quality documents.
Table 8. Absolute Maximum Ratings
Symbol
Parameter
Min
Max
Unit
TBIAS
Temperature Under Bias
–50
125
°C
TSTG
Storage Temperature
–65
150
°C
TLEAD
Lead Temperature during Soldering
(1)
°C
VIO
Input or Output Voltage (2,3)
–0.6
VCC +0.6
V
VCC
Supply Voltage
–0.6
4
V
VID
Identification Voltage
–0.6
13.5
V
ECOPACK®
Note: 1. Compliant with the JEDEC Std J-STD-020B (for small body, Sn-Pb or Pb assermbly), the ST
and the European directive on Restrictions on Hazardous Substances (RoHS) 2002/95/EU.
2. Minimum voltage may undershoot to –2V during transition and for less than 20ns during transitions.
3. Maximum voltage may overshoot to VCC +2V during transition and for less than 20ns during transitions.
7191395 specification,
19/38
M29W400DT, M29W400DB
DC AND AC PARAMETERS
Conditions summarized in Table 9., Operating and
AC Measurement Conditions. Designers should
check that the operating conditions in their circuit
match the operating conditions when relying on
the quoted parameters.
This section summarizes the operating measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC and
AC characteristics Tables that follow, are derived
from tests performed under the Measurement
Table 9. Operating and AC Measurement Conditions
M29W400D
Parameter
45
55
70
Unit
Min
Max
Min
Max
Min
Max
VCC Supply Voltage
3.0
3.6
2.7
3.6
2.7
3.6
Ambient Operating Temperature (range 6)
–40
85
–40
85
–40
85
Ambient Operating Temperature (range 1)
0
70
0
70
0
70
V
°C
Load Capacitance (CL)
30
Input Rise and Fall Times
30
100
10
Input Pulse Voltages
Input and Output Timing Ref. Voltages
Figure 10. AC Measurement I/O Waveform
10
pF
10
ns
0 to VCC
0 to VCC
0 to VCC
V
VCC/2
VCC/2
VCC/2
V
Figure 11. AC Measurement Load Circuit
VCC
VCC
VCC
VCC/2
25kΩ
0V
DEVICE
UNDER
TEST
AI04498
0.1µF
CL
25kΩ
AI04499
CL includes JIG capacitance
Table 10. Device Capacitance
Symbol
CIN
COUT
Parameter
Input Capacitance
Output Capacitance
Note: Sampled only, not 100% tested.
20/38
Test Condition
Min
Max
Unit
VIN = 0V
6
pF
VOUT = 0V
12
pF
M29W400DT, M29W400DB
Table 11. DC Characteristics
Symbol
Parameter
Test Condition
Min
Max
Unit
0V ≤ VIN ≤ VCC
±1
µA
ILI
Input Leakage Current
ILO
Output Leakage Current
0V ≤ VOUT ≤ VCC
±1
µA
ICC1
Supply Current (Read)
E = VIL, G = VIH,
f = 6MHz
10
mA
ICC2
Supply Current (Standby)
E = VCC ±0.2V,
RP = VCC ±0.2V
100
µA
Supply Current (Program/Erase)
Program/Erase
Controller active
20
mA
ICC3 (1)
VIL
Input Low Voltage
–0.5
0.8
V
VIH
Input High Voltage
0.7VCC
VCC +0.3
V
VOL
Output Low Voltage
IOL = 1.8mA
0.45
V
VOH
Output High Voltage
IOH = –100µA
VID
Identification Voltage
IID
Identification Current
VLKO
VCC –0.4
11.5
V
12.5
V
100
µA
2.3
V
A9 = VID
Program/Erase Lockout Supply
Voltage
1.8
Note: 1. Sampled only, not 100% tested.
Figure 12. Read Mode AC Waveforms
tAVAV
A0-A17/
A–1
VALID
tAVQV
tAXQX
E
tELQV
tEHQX
tELQX
tEHQZ
G
tGLQX
tGHQX
tGHQZ
tGLQV
DQ0-DQ7/
DQ8-DQ15
VALID
tBHQV
BYTE
tELBL/tELBH
tBLQZ
AI02907
21/38
M29W400DT, M29W400DB
Table 12. Read AC Characteristics
M29W400D
Symbol
Alt
Parameter
Test Condition
Unit
45
55
70
tAVAV
tRC
Address Valid to Next Address Valid
E = VIL,
G = VIL
Min
45
55
70
ns
tAVQV
tACC
Address Valid to Output Valid
E = VIL,
G = VIL
Max
45
55
70
ns
tELQX (1)
tLZ
Chip Enable Low to Output Transition
G = VIL
Min
0
0
0
ns
tELQV
tCE
Chip Enable Low to Output Valid
G = VIL
Max
45
55
70
ns
tGLQX (1)
tOLZ
Output Enable Low to Output
Transition
E = VIL
Min
0
0
0
ns
tGLQV
tOE
Output Enable Low to Output Valid
E = VIL
Max
25
30
35
ns
tEHQZ (1)
tHZ
Chip Enable High to Output Hi-Z
G = VIL
Max
20
25
30
ns
tGHQZ (1)
tDF
Output Enable High to Output Hi-Z
E = VIL
Max
20
25
30
ns
tEHQX
tGHQX
tAXQX
tOH
Chip Enable, Output Enable or
Address Transition to Output Transition
Min
0
0
0
ns
tELBL
tELBH
tELFL
tELFH
Chip Enable to BYTE Low or High
Max
5
5
5
ns
tBLQZ
tFLQZ
BYTE Low to Output Hi-Z
Max
25
25
30
ns
tBHQV
tFHQV
BYTE High to Output Valid
Max
30
30
40
ns
Note: 1. Sampled only, not 100% tested.
22/38
M29W400DT, M29W400DB
Figure 13. Write AC Waveforms, Write Enable Controlled
tAVAV
A0-A17/
A–1
VALID
tWLAX
tAVWL
tWHEH
E
tELWL
tWHGL
G
tGHWL
tWLWH
W
tWHWL
tDVWH
DQ0-DQ7/
DQ8-DQ15
tWHDX
VALID
VCC
tVCHEL
RB
tWHRL
AI01869C
Table 13. Write AC Characteristics, Write Enable Controlled
M29W400D
Symbol
Alt
Parameter
Unit
45
55
70
tAVAV
tWC
Address Valid to Next Address Valid
Min
45
55
70
ns
tELWL
tCS
Chip Enable Low to Write Enable Low
Min
0
0
0
ns
tWLWH
tWP
Write Enable Low to Write Enable High
Min
30
30
30
ns
tDVWH
tDS
Input Valid to Write Enable High
Min
25
30
45
ns
tWHDX
tDH
Write Enable High to Input Transition
Min
0
0
0
ns
tWHEH
tCH
Write Enable High to Chip Enable High
Min
0
0
0
ns
tWHWL
tWPH
Write Enable High to Write Enable Low
Min
30
30
30
ns
tAVWL
tAS
Address Valid to Write Enable Low
Min
0
0
0
ns
tWLAX
tAH
Write Enable Low to Address Transition
Min
40
45
45
ns
Output Enable High to Write Enable Low
Min
0
0
0
ns
tGHWL
tWHGL
tOEH
Write Enable High to Output Enable Low
Min
0
0
0
ns
tWHRL (1)
tBUSY
Program/Erase Valid to RB Low
Max
30
30
35
ns
tVCHEL
tVCS
VCC High to Chip Enable Low
Min
50
50
50
µs
Note: 1. Sampled only, not 100% tested.
23/38
M29W400DT, M29W400DB
Figure 14. Write AC Waveforms, Chip Enable Controlled
tAVAV
A0-A17/
A–1
VALID
tELAX
tAVEL
tEHWH
W
tWLEL
tEHGL
G
tGHEL
tELEH
E
tEHEL
tDVEH
DQ0-DQ7/
DQ8-DQ15
tEHDX
VALID
VCC
tVCHWL
RB
tEHRL
AI01870C
Table 14. Write AC Characteristics, Chip Enable Controlled
M29W400D
Symbol
Alt
Parameter
Unit
45
55
70
tAVAV
tWC
Address Valid to Next Address Valid
Min
45
55
70
ns
tWLEL
tWS
Write Enable Low to Chip Enable Low
Min
0
0
0
ns
tELEH
tCP
Chip Enable Low to Chip Enable High
Min
30
30
30
ns
tDVEH
tDS
Input Valid to Chip Enable High
Min
25
30
45
ns
tEHDX
tDH
Chip Enable High to Input Transition
Min
0
0
0
ns
tEHWH
tWH
Chip Enable High to Write Enable High
Min
0
0
0
ns
tEHEL
tCPH
Chip Enable High to Chip Enable Low
Min
30
30
30
ns
tAVEL
tAS
Address Valid to Chip Enable Low
Min
0
0
0
ns
tELAX
tAH
Chip Enable Low to Address Transition
Min
40
45
45
ns
Output Enable High Chip Enable Low
Min
0
0
0
ns
tGHEL
tEHGL
tOEH
Chip Enable High to Output Enable Low
Min
0
0
0
ns
tEHRL (1)
tBUSY
Program/Erase Valid to RB Low
Max
30
30
35
ns
tVCHWL
tVCS
VCC High to Write Enable Low
Min
50
50
50
µs
Note: 1. Sampled only, not 100% tested.
24/38
M29W400DT, M29W400DB
Figure 15. Reset/Block Temporary Unprotect AC Waveforms
W, E, G
tPHWL, tPHEL, tPHGL
RB
tRHWL, tRHEL, tRHGL
tPLPX
RP
tPHPHH
tPLYH
AI02931
Table 15. Reset/Block Temporary Unprotect AC Characteristics
M29W400D
Symbol
tPHWL (1)
tPHEL
Alt
Parameter
Unit
45
55
70
tRH
RP High to Write Enable Low, Chip Enable Low,
Output Enable Low
Min
50
50
50
ns
tRB
RB High to Write Enable Low, Chip Enable Low,
Output Enable Low
Min
0
0
0
ns
tPLPX
tRP
RP Pulse Width
Min
500
500
500
ns
tPLYH (1)
tREADY
RP Low to Read Mode
Max
10
10
10
µs
tPHPHH (1)
tVIDR
RP Rise Time to VID
Min
500
500
500
ns
tPHGL (1)
tRHWL (1)
tRHEL (1)
tRHGL
(1)
Note: 1. Sampled only, not 100% tested.
25/38
M29W400DT, M29W400DB
PACKAGE MECHANICAL
Figure 16. SO44 - 44 lead Plastic Small Outline, 525 mils body width, Package Outline
A
A2
C
b
e
CP
D
N
E
EH
1
A1
α
L
SO-d
Note: Drawing is not to scale.
Table 16. SO44 – 44 lead Plastic Small Outline, 525 mils body width, Package Mechanical Data
millimeters
inches
Symbol
Typ
Min
A
Max
Typ
Min
2.80
A1
Max
0.1102
0.10
0.0039
A2
2.30
2.20
2.40
0.0906
0.0866
0.0945
b
0.40
0.35
0.50
0.0157
0.0138
0.0197
C
0.15
0.10
0.20
0.0059
0.0039
0.0079
CP
0.08
0.0030
D
28.20
28.00
28.40
1.1102
1.1024
1.1181
E
13.30
13.20
13.50
0.5236
0.5197
0.5315
EH
16.00
15.75
16.25
0.6299
0.6201
0.6398
e
1.27
–
–
0.0500
–
–
L
0.80
a
N
26/38
0.0315
8
44
8
44
M29W400DT, M29W400DB
Figure 17. TSOP48 – 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Outline
1
48
e
D1
B
24
L1
25
A2
E1
E
A
α
A1
DIE
L
C
CP
TSOP-G
Note: Drawing is not to scale.
Table 17. TSOP48 – 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Mechanical Data
millimeters
inches
Symbol
Typ
Min
A
Max
Typ
Min
1.200
Max
0.0472
A1
0.100
0.050
0.150
0.0039
0.0020
0.0059
A2
1.000
0.950
1.050
0.0394
0.0374
0.0413
B
0.220
0.170
0.270
0.0087
0.0067
0.0106
0.100
0.210
0.0039
0.0083
C
CP
0.080
0.0031
D1
12.000
11.900
12.100
0.4724
0.4685
0.4764
E
20.000
19.800
20.200
0.7874
0.7795
0.7953
E1
18.400
18.300
18.500
0.7244
0.7205
0.7283
e
0.500
–
–
0.0197
–
–
L
0.600
0.500
0.700
0.0236
0.0197
0.0276
L1
0.800
α
3
0
5
0.0315
0
5
3
27/38
M29W400DT, M29W400DB
Figure 18. TFBGA48 6x9mm – 6x8 ball array – 0.80mm pitch, Bottom View Package Outline
D
D1
FD
FE
SD
SE
BALL "A1"
E
E1
ddd
e
e
b
A
A2
A1
BGA-Z00
Note: Drawing is not to scale.
Table 18. TFBGA48 6x9mm – 6x8 active ball array – 0.80mm pitch, Package Mechanical Data
millimeters
inches
Symbol
Typ
Min
A
Typ
Min
1.200
A1
Max
0.0472
0.200
A2
0.0079
1.000
0.0394
b
0.400
0.350
0.450
0.0157
0.0138
0.0177
D
6.000
5.900
6.100
0.2362
0.2323
0.2402
D1
4.000
–
–
0.1575
–
–
ddd
28/38
Max
0.100
0.0039
E
9.000
8.900
9.100
0.3543
0.3504
0.3583
e
0.800
–
–
0.0315
–
–
E1
5.600
–
–
0.2205
–
–
FD
1.000
–
–
0.0394
–
–
FE
1.700
–
–
0.0669
–
–
SD
0.400
–
–
0.0157
–
–
SE
0.400
–
–
0.0157
–
–
M29W400DT, M29W400DB
Figure 19. TFBGA48 6x8mm – 6x8 ball array – 0.80mm pitch, Bottom View Package Outline
D
D1
FD
FE
SD
SE
E
E1
BALL "A1"
ddd
e
e
b
A
A2
A1
BGA-Z32
Note: Drawing is not to scale.
Table 19. TFBGA48 6x8mm – 6x8 active ball array – 0.80mm pitch, Package Mechanical Data
millimeters
inches
Symbol
Typ
Min
A
Max
Typ
Min
1.200
A1
0.0472
0.260
A2
0.0102
0.900
b
Max
0.350
0.450
0.0354
0.0138
0.0177
D
6.000
5.900
6.100
0.2362
0.2323
0.2402
D1
4.000
–
–
0.1575
–
–
ddd
0.100
0.0039
E
8.000
7.900
8.100
0.3150
0.3110
0.3189
E1
5.600
–
–
0.2205
–
–
e
0.800
–
–
0.0315
–
–
FD
1.000
–
–
0.0394
–
–
FE
1.200
–
–
0.0472
–
–
SD
0.400
–
–
0.0157
–
–
SE
0.400
–
–
0.0157
–
–
29/38
M29W400DT, M29W400DB
PART NUMBERING
Table 20. Ordering Information Scheme
Example:M29W400D
55
N
6
T
Device Type
M29
Operating Voltage
W = VCC = 2.7 to 3.6V
Device Function
400D = 4 Mbit (512Kx8 or 256Kx16), Boot Block
Array Matrix
T = Top Boot
B = Bottom Boot
Speed
45 = 45ns
55 = 55ns
70 = 70ns
Package
M = SO44
N = TSOP48: 12 x 20mm
ZA = TFBGA48: 6 x 9mm
ZE = TFBGA48: 6 x 8mm
Temperature Range
6 = –40 to 85 °C
1 = 0 to 70 °C
Option
Blank = Standard Packing
T = Tape & Reel Packing
E = Lead-free and RoHS Package, Standard Packing
F = Lead-free and RoHS Package, Tape & Reel Packing
Devices are shipped from the factory with the memory content bits erased to ’1’.
For a list of available options (Speed, Package, etc.) or for further information on any aspect of this device,
please contact the ST Sales Office nearest to you.
30/38
M29W400DT, M29W400DB
APPENDIX A. BLOCK ADDRESS TABLE
Table 21. Top Boot Block Addresses
M29W400DT
Table 22. Bottom Boot Block Addresses
M29W400D
#
Size
(Kbytes)
Address Range
(x8)
Address Range
(x16)
#
Size
(Kbytes)
Address Range
(x8)
Address Range
(x16)
10
16
7C000h-7FFFFh
3E000h-3FFFFh
10
64
70000h-7FFFFh
38000h-3FFFFh
9
8
7A000h-7BFFFh
3D000h-3DFFFh
9
64
60000h-6FFFFh
30000h-37FFFh
8
8
78000h-79FFFh
3C000h-3CFFFh
8
64
50000h-5FFFFh
28000h-2FFFFh
7
32
70000h-77FFFh
38000h-3BFFFh
7
64
40000h-4FFFFh
20000h-27FFFh
6
64
60000h-6FFFFh
30000h-37FFFh
6
64
30000h-3FFFFh
18000h-1FFFFh
5
64
50000h-5FFFFh
28000h-2FFFFh
5
64
20000h-2FFFFh
10000h-17FFFh
4
64
40000h-4FFFFh
20000h-27FFFh
4
64
10000h-1FFFFh
08000h-0FFFFh
3
64
30000h-3FFFFh
18000h-1FFFFh
3
32
08000h-0FFFFh
04000h-07FFFh
2
64
20000h-2FFFFh
10000h-17FFFh
2
8
06000h-07FFFh
03000h-03FFFh
1
64
10000h-1FFFFh
08000h-0FFFFh
1
8
04000h-05FFFh
02000h-02FFFh
0
64
00000h-0FFFFh
00000h-07FFFh
0
16
00000h-03FFFh
00000h-01FFFh
31/38
M29W400DT, M29W400DB
APPENDIX B. BLOCK PROTECTION
Block protection can be used to prevent any operation from modifying the data stored in the Flash.
Each Block can be protected individually. Once
protected, Program and Erase operations on the
block fail to change the data.
There are three techniques that can be used to
control Block Protection, these are the Programmer technique, the In-System technique and Temporary Unprotection. Temporary Unprotection is
controlled by the Reset/Block Temporary Unprotection pin, RP; this is described in the Signal Descriptions section.
Unlike the Command Interface of the Program/
Erase Controller, the techniques for protecting and
unprotecting blocks change between different
Flash memory suppliers. For example, the techniques for AMD parts will not work on STMicroelectronics parts. Care should be taken when
changing drivers for one part to work on another.
Programmer Technique
The Programmer technique uses high (VID) voltage levels on some of the bus pins. These cannot
be achieved using a standard microprocessor bus,
therefore the technique is recommended only for
use in Programming Equipment.
To protect a block follow the flowchart in Figure
20., Programmer Equipment Block Protect Flowchart.To unprotect the whole chip it is necessary to
protect all of the blocks first, then all blocks can be
unprotected at the same time. To unprotect the
chip follow Figure 21., Programmer Equipment
Chip Unprotect Flowchart. Table 23., Programmer
Technique Bus Operations, BYTE = VIH or VIL,
gives a summary of each operation.
The timing on these flowcharts is critical. Care
should be taken to ensure that, where a pause is
specified, it is followed as closely as possible. Do
not abort the procedure before reaching the end.
Chip Unprotect can take several seconds and a
user message should be provided to show that the
operation is progressing.
In-System Technique
The In-System technique requires a high voltage
level on the Reset/Blocks Temporary Unprotect
pin, RP. This can be achieved without violating the
maximum ratings of the components on the microprocessor bus, therefore this technique is suitable
for use after the Flash has been fitted to the system.
To protect a block follow the flowchart in Figure
22., In-System Equipment Block Protect Flowchart. To unprotect the whole chip it is necessary
to protect all of the blocks first, then all the blocks
can be unprotected at the same time. To unprotect
the chip follow Figure 23., In-System Equipment
Chip Unprotect Flowchart.
The timing on these flowcharts is critical. Care
should be taken to ensure that, where a pause is
specified, it is followed as closely as possible. Do
not allow the microprocessor to service interrupts
that will upset the timing and do not abort the procedure before reaching the end. Chip Unprotect
can take several seconds and a user message
should be provided to show that the operation is
progressing.
Table 23. Programmer Technique Bus Operations, BYTE = VIH or VIL
E
G
W
Address Inputs
A0-A17
Data Inputs/Outputs
DQ15A–1, DQ14-DQ0
Block Protect
VIL
VID
VIL Pulse
A9 = VID, A12-A17 Block Address
Others = X
X
Chip Unprotect
VID
VID
VIL Pulse
A9 = VID, A12 = VIH, A15 = VIH
Others = X
X
Block Protection
Verify
VIL
VIL
VIH
A0 = VIL, A1 = VIH, A6 = VIL, A9 = VID,
A12-A17 Block Address
Others = X
Pass = XX01h
Retry = XX00h
Block Unprotection
Verify
VIL
VIL
VIH
A0 = VIL, A1 = VIH, A6 = VIH, A9 = VID,
A12-A17 Block Address
Others = X
Retry = XX01h
Pass = XX00h
Operation
32/38
M29W400DT, M29W400DB
Figure 20. Programmer Equipment Block Protect Flowchart
START
Set-up
ADDRESS = BLOCK ADDRESS
W = VIH
n=0
G, A9 = VID,
E = VIL
Protect
Wait 4µs
W = VIL
Wait 100µs
W = VIH
E, G = VIH,
A0, A6 = VIL,
A1 = VIH
E = VIL
Verify
Wait 4µs
G = VIL
Wait 60ns
Read DATA
DATA
NO
=
01h
YES
A9 = VIH
E, G = VIH
++n
= 25
NO
End
YES
PASS
A9 = VIH
E, G = VIH
FAIL
AI03469
33/38
M29W400DT, M29W400DB
Figure 21. Programmer Equipment Chip Unprotect Flowchart
START
Set-up
PROTECT ALL BLOCKS
n=0
CURRENT BLOCK = 0
A6, A12, A15 = VIH(1)
E, G, A9 = VID
Unprotect
Wait 4µs
W = VIL
Wait 10ms
W = VIH
E, G = VIH
ADDRESS = CURRENT BLOCK ADDRESS
A0 = VIL, A1, A6 = VIH
E = VIL
Wait 4µs
G = VIL
INCREMENT
CURRENT BLOCK
Verify
Wait 60ns
Read DATA
NO
End
NO
34/38
++n
= 1000
DATA
=
00h
YES
LAST
BLOCK
YES
YES
A9 = VIH
E, G = VIH
A9 = VIH
E, G = VIH
FAIL
PASS
NO
AI03470
M29W400DT, M29W400DB
Figure 22. In-System Equipment Block Protect Flowchart
Set-up
START
n=0
RP = VID
Protect
WRITE 60h
ADDRESS = BLOCK ADDRESS
A0 = VIL, A1 = VIH, A6 = VIL
WRITE 60h
ADDRESS = BLOCK ADDRESS
A0 = VIL, A1 = VIH, A6 = VIL
Wait 100µs
Verify
WRITE 40h
ADDRESS = BLOCK ADDRESS
A0 = VIL, A1 = VIH, A6 = VIL
Wait 4µs
READ DATA
ADDRESS = BLOCK ADDRESS
A0 = VIL, A1 = VIH, A6 = VIL
DATA
NO
=
01h
YES
End
RP = VIH
ISSUE READ/RESET
COMMAND
PASS
++n
= 25
NO
YES
RP = VIH
ISSUE READ/RESET
COMMAND
FAIL
AI03471
35/38
M29W400DT, M29W400DB
Figure 23. In-System Equipment Chip Unprotect Flowchart
START
Set-up
PROTECT ALL BLOCKS
n=0
CURRENT BLOCK = 0
RP = VID
WRITE 60h
ANY ADDRESS WITH
A0 = VIL, A1 = VIH, A6 = VIH
Unprotect
WRITE 60h
ANY ADDRESS WITH
A0 = VIL, A1 = VIH, A6 = VIH
Wait 10ms
Verify
WRITE 40h
ADDRESS = CURRENT BLOCK ADDRESS
A0 = VIL, A1 = VIH, A6 = VIH
Wait 4µs
READ DATA
ADDRESS = CURRENT BLOCK ADDRESS
A0 = VIL, A1 = VIH, A6 = VIH
NO
End
NO
++n
= 1000
YES
DATA
=
00h
INCREMENT
CURRENT BLOCK
YES
LAST
BLOCK
NO
YES
RP = VIH
RP = VIH
ISSUE READ/RESET
COMMAND
ISSUE READ/RESET
COMMAND
FAIL
PASS
AI03472
36/38
M29W400DT, M29W400DB
REVISION HISTORY
Table 24. Document Revision History
Date
Version
26-Jul-2002
-01
First Issue
2.0
Revision numbering modified: a minor revision will be indicated by incrementing the digit
after the dot, and a major revision, by incrementing the digit before the dot (revision
version 01 equals 1.0). Revision History moved to end of document.
Typical after 100k W/E Cycles column removed from Table 4, Program, Erase Times and
Program, Erase Endurance Cycles, Data Retention and Erase Suspend Latency Time
parameters added. Common Flash Interface removed from datasheet.
Lead-free package options E and F added to Table 20., Ordering Information Scheme.
Document promoted from Product Preview to Preliminary Data status.
28-May-2003
2.1
tWLWH and tELEH parameters modified for all Speed Classes in Tables 13 and 14,
respectively (“Write AC Characteristics, Write Enable Controlled” and “Write AC
Characteristics, Chip Enable Controlled”). Minor text changes. TSOP48 package updated
(Figure 17 and Table 17).
30-Sep-2003
2.2
Document status changed to Full datasheet. TFBGA48 6x8 package added.
TLEAD parameter added in Table 8., Absolute Maximum Ratings.
6-Oct-2003
2.3
tGLQV modified in Table 12, Read AC Characteristics.
16-Jan-2004
3.0
RB pin description corrected in Table 1., Signal Names.
8-Jun-2004
4.0
Tape and Reel option updated in Table 20., Ordering Information Scheme.
Lead-free packaging promotion updated in FEATURES SUMMARY, SUMMARY
DESCRIPTION, MAXIMUM RATING and PART NUMBERING sections.
19-Feb-2003
Revision Details
37/38
M29W400DT, M29W400DB
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
ECOPACK® is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners.
© 2004 STMicroelectronics - All rights reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore Spain - Sweden - Switzerland - United Kingdom - United States
www.st.com
38/38
Similar pages