Renesas CT60AM-18B Mitsubishi insulated gate bipolar transistor resonant inverter use Datasheet

To all our customers
Regarding the change of names mentioned in the document, such as Mitsubishi
Electric and Mitsubishi XX, to Renesas Technology Corp.
The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas
Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog
and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.)
Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi
Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names
have in fact all been changed to Renesas Technology Corp. Thank you for your understanding.
Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been
made to the contents of the document, and these changes do not constitute any alteration to the
contents of the document itself.
Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices
and power devices.
Renesas Technology Corp.
Customer Support Dept.
April 1, 2003
MITSUBISHI INSULATED GATE BIPOLAR TRANSISTOR
CT60AM-18B
RESONANT INVERTER USE
CT60AM-18B
OUTLINE DRAWING
Dimensions in mm
φ 3.2
4
wr
¡VCES ............................................................................... 900V
¡IC ......................................................................................... 60A
¡Integrated Fast Recovery Diode
q
w
e
r
q
e
TO-3PL
APPLICATION
Microwave ovens, electromagnetic cooking devices, rice-cookers
MAXIMUM RATINGS (Tc = 25°C)
Ratings
Unit
V CES
VGES
Symbol
Collector-emitter voltage
Gate-emitter voltage
Parameter
VGE = 0V
VCE = 0V
900
±20
V
V
VGEM
IC
Peak gate-emitter voltage
VCE = 0V
±30
60
V
A
120
A
40
200
A
W
–40 ~ +150
–40 ~ +150
°C
°C
I CM
Collector current
Collector current (Pulsed)
IE
PC
Emitter current
Maximum power dissipation
Tj
T stg
Junction temperature
Storage temperature
Conditions
TC = 25°C
Sep. 2000
MITSUBISHI INSULATED GATE BIPOLAR TRANSISTOR
CT60AM-18B
RESONANT INVERTER USE
ELECTRICAL CHARACTERISTICS
(Tj = 25°C unless otherwise noted)
Symbol
Parameter
V (BR) CES
I CES
Collector-emitter breakdown voltage
I GES
VGE(th)
V CE(sat)
Cies
Coes
Cres
t d (on)
tr
t d (off)
tf
E tail
I Ctail
V EC
Trr
Rth (j-c)
Rth (j-c)
Limits
Test conditions
Collector-emitter leakage current
Gate-emitter leakage current
Gate-emitter threshold voltage
Collector-emitter saturation voltage
IC = 1mA, VGE = 0V
VCE = 900V, VGE = 0V
Typ.
—
—
Max.
—
1
VGE = ±20V, VCE = 0V
VCE = 10V, IC = 6mA
—
2.0
—
4.0
±0.5
6.0
µA
V
IC = 60A, VCE = 15V
—
—
2.0
5000
2.7
—
V
pF
VCE = 25V, VGE = 0V, f = 1MHz
—
125
—
pF
—
—
85
0.05
—
—
pF
µs
IC = 60A, Resistance load,
VCC = 300V, VGE = 15V, R G = 10Ω
—
—
0.12
0.30
—
—
µs
µs
ICP = 60A, Tj = 125°C,
—
—
0.25
0.6
—
1.0
µs
mJ/pls
dv/dt = 200V/µs
IE = 60A, VGE = 0V
—
—
A
V
IE = 60A, di/dt = 20A/µs
Junction to case
Junction to case
Input capacitance
Output capacitance
Reverse transfer capacitance
Turn-on delay time
Rise time
Turn-off delay time
Fall time
Tail loss
Collector tail current
Emitter-collector voltage
Reverse recovery time
Thermal resistance (IGBT part)
Thermal resistance
Unit
Min.
900
—
V
mA
6
12
—
—
0.5
3
2
µs
—
—
—
—
0.63
4.0
°C/W
°C/W
PERFORMANCE CURVES
COLLECTOR CURRENT IC (A)
200
COLLECTOR-EMITTER
SATURATION VOLTAGE VCE(sat) (V)
OUTPUT CHARACTERISTICS
(TYPICAL)
TC = 25°C
Pulse Test
PC = 200W
160
15V 10V
120
80
9V
VGE = 20V
8V
40
0
7V
0
1
2
3
4
5
COLLECTOR-EMITTER VOLTAGE VCE (V)
COLLECTOR-EMITTER SATURATION
VOLTAGE VS.GATE-EMITTER VOLTAGE
(TYPICAL)
5
4
3
IC = 120A
60A
2
30A
15A
1
TC = 25°C
Pulse Test
0
0
4
8
12
16
20
GATE-EMITTER VOLTAGE VGE (V)
Sep. 2000
MITSUBISHI INSULATED GATE BIPOLAR TRANSISTOR
CT60AM-18B
RESONANT INVERTER USE
CAPACITANCE VS.
COLLECTOR-EMITTER VOLTAGE
(TYPICAL)
COLLECTOR CURRENT IC (A)
200
CAPACITANCE Cies, Coes, Cres (pF)
COLLECTOR CURRENT VS.
GATE-EMITTER VOLTAGE
(TYPICAL)
VCE = 5V
Pulse Test
160
120
80
25°C
40
0
0
4
8
12
16
20
Cies
103
7
5
3
2
102
7
5
3 Tj = 25°C
2 VGE = 0V
101
3 5 7 100 2 3 5 7 101 2 3 5 7 102 2 3
SWITCHING CHARACTERISTICS
(TYPICAL)
SWITCHING TIME VS.GATE RESISTANCE
(TYPICAL)
3
Tj = 25°C
td(off)
2
tf
tr
102
7
5
td(on)
3
Tj = 25°C
VCC = 300V
VGE = 15V
RG = 10Ω
101 0
10
2 3
5 7 101
2 3
SWITCHING TIME (ns)
2 VCC = 300V
2
VGE = 15V
103 IC = 60A
7
5
3
tf
2
td(off)
tr
102
7
5
td(on)
3 0
10
5 7 102
COLLECTOR CURRENT IC (A)
GATE-EMITTER VOLTAGE
VS. GATE CHARGE CHARACTERISTIC
(TYPICAL)
20
16
VCE = 250V
400V
8
600V
4
0
80
160
240
320
GATE CHARGE Qg (nc)
5 7 101
5 7 102
2 3
TRANSFER CHARACTERISTICS
(TYPICAL)
80
IC = 60A
Tj = 25°C
12
2 3
GATE RESISTANCE RG (Ω)
EMITTER CURRENT IE (A)
GATE-EMITTER VOLTAGE VGE (V)
Cres
f = 1MHZ
COLLECTOR-EMITTER VOLTAGE VCE (V)
3
0
Coes
GATE-EMITTER VOLTAGE VGE (V)
103
7
5
SWITCHING TIME (ns)
104
7
5
3
2
400
VGE = 0V
Pulse Test
64
48
32
TC = 25°C
16
0
0
0.8
1.6
2.4
3.2
4.0
EMITTER-COLLECTOR VOLTAGE VEC (V)
Sep. 2000
MITSUBISHI INSULATED GATE BIPOLAR TRANSISTOR
CT60AM-18B
GATE-EMITTER THRESHOLD
VOLTAGE VGS (th) (V)
7.0
VCE = 400V
IC = 20mA
6.0
5.0
4.0
3.0
2.0
–50
0
50
100
150
TRANSIENT THERMAL IMPEDANCE Zth (j – c) (°C/ W)
JUNCTION TEMPERATURE tj (°C)
IGBT TRANSIENT THERMAL IMPEDANCE
CHARACTERISTICS
10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7 100 2 3 5 7 101
100
7
5
3
2
2
10–1
10–1
7
5
7
5
3
3
2
2
10–2
10–2
5 710–5 2 3 5 710–4 2 3 5 710–3
PULSE WIDTH tw (s)
COLLECTOR-EMITTER BREAKDOWN VOLTAGE V (BR) CES (25°C)
THRESHOLD VOLTAGE VS.
JUNCTION TEMPERATURE
(TYPICAL)
TRANSIENT THERMAL IMPEDANCE Zth (j – c) (°C/ W)
COLLECTOR-EMITTER BREAKDOWN VOLTAGE V (BR) CES (t°C)
RESONANT INVERTER USE
BREAKDOWN VOLTAGE VS.
JUNCTION TEMPERATURE
(TYPICAL)
1.4
VGE = 0V
IC = 1mA
1.2
1.0
0.8
0.6
0.4
–50
0
50
100
150
CHANNEL TEMPERATURE tj (°C)
DIODE TRANSIENT THERMAL
IMPEDANCE CHARACTERISTICS
10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7 100 2 3 5 7 101
101
7
5
3
2
100
7
5
5
3
2
3
2
10–1
10–1
7
5
7
5
3
2
3
2
10–2
10–2
5 710–5 2 3 5 710–4 2 3 5 710–3
PULSE WIDTH tw (s)
Sep. 2000
Similar pages