To all our customers Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp. The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself. Note : Mitsubishi Electric will continue the business operations of high frequency & optical devices and power devices. Renesas Technology Corp. Customer Support Dept. April 1, 2003 MITSUBISHI INSULATED GATE BIPOLAR TRANSISTOR CT60AM-18B RESONANT INVERTER USE CT60AM-18B OUTLINE DRAWING Dimensions in mm φ 3.2 4 wr ¡VCES ............................................................................... 900V ¡IC ......................................................................................... 60A ¡Integrated Fast Recovery Diode q w e r q e TO-3PL APPLICATION Microwave ovens, electromagnetic cooking devices, rice-cookers MAXIMUM RATINGS (Tc = 25°C) Ratings Unit V CES VGES Symbol Collector-emitter voltage Gate-emitter voltage Parameter VGE = 0V VCE = 0V 900 ±20 V V VGEM IC Peak gate-emitter voltage VCE = 0V ±30 60 V A 120 A 40 200 A W –40 ~ +150 –40 ~ +150 °C °C I CM Collector current Collector current (Pulsed) IE PC Emitter current Maximum power dissipation Tj T stg Junction temperature Storage temperature Conditions TC = 25°C Sep. 2000 MITSUBISHI INSULATED GATE BIPOLAR TRANSISTOR CT60AM-18B RESONANT INVERTER USE ELECTRICAL CHARACTERISTICS (Tj = 25°C unless otherwise noted) Symbol Parameter V (BR) CES I CES Collector-emitter breakdown voltage I GES VGE(th) V CE(sat) Cies Coes Cres t d (on) tr t d (off) tf E tail I Ctail V EC Trr Rth (j-c) Rth (j-c) Limits Test conditions Collector-emitter leakage current Gate-emitter leakage current Gate-emitter threshold voltage Collector-emitter saturation voltage IC = 1mA, VGE = 0V VCE = 900V, VGE = 0V Typ. — — Max. — 1 VGE = ±20V, VCE = 0V VCE = 10V, IC = 6mA — 2.0 — 4.0 ±0.5 6.0 µA V IC = 60A, VCE = 15V — — 2.0 5000 2.7 — V pF VCE = 25V, VGE = 0V, f = 1MHz — 125 — pF — — 85 0.05 — — pF µs IC = 60A, Resistance load, VCC = 300V, VGE = 15V, R G = 10Ω — — 0.12 0.30 — — µs µs ICP = 60A, Tj = 125°C, — — 0.25 0.6 — 1.0 µs mJ/pls dv/dt = 200V/µs IE = 60A, VGE = 0V — — A V IE = 60A, di/dt = 20A/µs Junction to case Junction to case Input capacitance Output capacitance Reverse transfer capacitance Turn-on delay time Rise time Turn-off delay time Fall time Tail loss Collector tail current Emitter-collector voltage Reverse recovery time Thermal resistance (IGBT part) Thermal resistance Unit Min. 900 — V mA 6 12 — — 0.5 3 2 µs — — — — 0.63 4.0 °C/W °C/W PERFORMANCE CURVES COLLECTOR CURRENT IC (A) 200 COLLECTOR-EMITTER SATURATION VOLTAGE VCE(sat) (V) OUTPUT CHARACTERISTICS (TYPICAL) TC = 25°C Pulse Test PC = 200W 160 15V 10V 120 80 9V VGE = 20V 8V 40 0 7V 0 1 2 3 4 5 COLLECTOR-EMITTER VOLTAGE VCE (V) COLLECTOR-EMITTER SATURATION VOLTAGE VS.GATE-EMITTER VOLTAGE (TYPICAL) 5 4 3 IC = 120A 60A 2 30A 15A 1 TC = 25°C Pulse Test 0 0 4 8 12 16 20 GATE-EMITTER VOLTAGE VGE (V) Sep. 2000 MITSUBISHI INSULATED GATE BIPOLAR TRANSISTOR CT60AM-18B RESONANT INVERTER USE CAPACITANCE VS. COLLECTOR-EMITTER VOLTAGE (TYPICAL) COLLECTOR CURRENT IC (A) 200 CAPACITANCE Cies, Coes, Cres (pF) COLLECTOR CURRENT VS. GATE-EMITTER VOLTAGE (TYPICAL) VCE = 5V Pulse Test 160 120 80 25°C 40 0 0 4 8 12 16 20 Cies 103 7 5 3 2 102 7 5 3 Tj = 25°C 2 VGE = 0V 101 3 5 7 100 2 3 5 7 101 2 3 5 7 102 2 3 SWITCHING CHARACTERISTICS (TYPICAL) SWITCHING TIME VS.GATE RESISTANCE (TYPICAL) 3 Tj = 25°C td(off) 2 tf tr 102 7 5 td(on) 3 Tj = 25°C VCC = 300V VGE = 15V RG = 10Ω 101 0 10 2 3 5 7 101 2 3 SWITCHING TIME (ns) 2 VCC = 300V 2 VGE = 15V 103 IC = 60A 7 5 3 tf 2 td(off) tr 102 7 5 td(on) 3 0 10 5 7 102 COLLECTOR CURRENT IC (A) GATE-EMITTER VOLTAGE VS. GATE CHARGE CHARACTERISTIC (TYPICAL) 20 16 VCE = 250V 400V 8 600V 4 0 80 160 240 320 GATE CHARGE Qg (nc) 5 7 101 5 7 102 2 3 TRANSFER CHARACTERISTICS (TYPICAL) 80 IC = 60A Tj = 25°C 12 2 3 GATE RESISTANCE RG (Ω) EMITTER CURRENT IE (A) GATE-EMITTER VOLTAGE VGE (V) Cres f = 1MHZ COLLECTOR-EMITTER VOLTAGE VCE (V) 3 0 Coes GATE-EMITTER VOLTAGE VGE (V) 103 7 5 SWITCHING TIME (ns) 104 7 5 3 2 400 VGE = 0V Pulse Test 64 48 32 TC = 25°C 16 0 0 0.8 1.6 2.4 3.2 4.0 EMITTER-COLLECTOR VOLTAGE VEC (V) Sep. 2000 MITSUBISHI INSULATED GATE BIPOLAR TRANSISTOR CT60AM-18B GATE-EMITTER THRESHOLD VOLTAGE VGS (th) (V) 7.0 VCE = 400V IC = 20mA 6.0 5.0 4.0 3.0 2.0 –50 0 50 100 150 TRANSIENT THERMAL IMPEDANCE Zth (j – c) (°C/ W) JUNCTION TEMPERATURE tj (°C) IGBT TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS 10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7 100 2 3 5 7 101 100 7 5 3 2 2 10–1 10–1 7 5 7 5 3 3 2 2 10–2 10–2 5 710–5 2 3 5 710–4 2 3 5 710–3 PULSE WIDTH tw (s) COLLECTOR-EMITTER BREAKDOWN VOLTAGE V (BR) CES (25°C) THRESHOLD VOLTAGE VS. JUNCTION TEMPERATURE (TYPICAL) TRANSIENT THERMAL IMPEDANCE Zth (j – c) (°C/ W) COLLECTOR-EMITTER BREAKDOWN VOLTAGE V (BR) CES (t°C) RESONANT INVERTER USE BREAKDOWN VOLTAGE VS. JUNCTION TEMPERATURE (TYPICAL) 1.4 VGE = 0V IC = 1mA 1.2 1.0 0.8 0.6 0.4 –50 0 50 100 150 CHANNEL TEMPERATURE tj (°C) DIODE TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS 10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7 100 2 3 5 7 101 101 7 5 3 2 100 7 5 5 3 2 3 2 10–1 10–1 7 5 7 5 3 2 3 2 10–2 10–2 5 710–5 2 3 5 710–4 2 3 5 710–3 PULSE WIDTH tw (s) Sep. 2000