TI MAX3222CDWR 3-v to 5.5-v multichannel rs-232 line driver/receiver Datasheet

± SLLS408G − JANUARY 2000 − REVISED MARCH 2004
D RS-232 Bus-Pin ESD Protection Exceeds
D
D
D
D
D
D
D
D
D
DB, DW, OR PW PACKAGE
(TOP VIEW)
±15 kV Using Human-Body Model (HBM)
Meets or Exceeds the Requirements of
TIA/EIA-232-F and ITU v.28 Standards
Operates With 3-V to 5.5-V VCC Supply
Operates Up To 250 kbit/s
Two Drivers and Two Receivers
Low Standby Current . . . 1 µA Typical
External Capacitors . . . 4 × 0.1 µF
Accepts 5-V Logic Input With 3.3-V Supply
Alternative High-Speed Pin-Compatible
Device (1 Mbit/s)
− SNx5C3222
Applications
− Battery-Powered Systems, PDAs,
Notebooks, Laptops, Palmtop PCs, and
Hand-Held Equipment
EN
C1+
V+
C1−
C2+
C2−
V−
DOUT2
RIN2
ROUT2
1
20
2
19
3
18
4
17
5
16
6
15
7
14
8
13
9
12
10
11
PWRDOWN
VCC
GND
DOUT1
RIN1
ROUT1
NC
DIN1
DIN2
NC
NC − No internal connection
description/ordering information
The MAX3222 consists of two line drivers, two line receivers, and a dual charge-pump circuit with
±15-kV ESD protection pin to pin (serial-port connection pins, including GND). The device meets the
requirements of TIA/EIA-232-F and provides the electrical interface between an asynchronous communication
controller and the serial-port connector. The charge pump and four small external capacitors allow operation
from a single 3-V to 5.5-V supply. The device operates at data signaling rates up to 250 kbit/s and a maximum
of 30-V/µs driver output slew rate.
ORDERING INFORMATION
SOIC (DW)
−0°C to 70°C
SSOP (DB)
TSSOP (PW)
SOIC (DW)
−40°C to 85°C
ORDERABLE
PART NUMBER
PACKAGE†
TA
SSOP (DB)
TSSOP (PW)
Tube of 25
MAX3222CDW
Reel of 2000
MAX3222CDWR
Tube of 70
MAX3222CDB
Reel of 2000
MAX3222CDBR
Tube of 70
MAX3222CPW
Reel of 2000
MAX3222CPWR
Tube of 25
MAX3222IDW
Reel of 2000
MAX3222IDWR
Tube of 70
MAX3222IDB
Reel of 2000
MAX3222IDBR
Tube of 70
MAX3222IPW
Reel of 2000
MAX3222IPWR
TOP-SIDE
MARKING
MAX3222C
MA3222C
MA3222C
MAX3222I
MB3222I
MB3222I
† Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are
available at www.ti.com/sc/package.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  2004, Texas Instruments Incorporated
!"#$ % &'!!($ #% )'*+&#$ ,#$(
!,'&$% &!" $ %)(&&#$% )(! $-( $(!"% (.#% %$!'"($%
%$#,#!, /#!!#$0 !,'&$ )!&(%%1 ,(% $ (&(%%#!+0 &+',(
$(%$1 #++ )#!#"($(!%
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
± SLLS408G − JANUARY 2000 − REVISED MARCH 2004
description/ordering information (continued)
The MAX3222 can be placed in the power-down mode by setting PWRDOWN low, which draws only 1 µA from
the power supply. When the device is powered down, the receivers remain active while the drivers are placed
in the high-impedance state. Also, during power down, the onboard charge pump is disabled; V+ is lowered to
VCC, and V− is raised toward GND. Receiver outputs also can be placed in the high-impedance state by setting
EN high.
Function Tables
EACH DRIVER
INPUTS
DIN
PWRDOWN
OUTPUT
DOUT
X
L
Z
L
H
H
H
H
L
H = high level, L = low level, X = irrelevant,
Z = high impedance
EACH RECEIVER
INPUTS
RIN
EN
OUTPUT
ROUT
H
L
L
H
L
L
X
H
Z
Open
L
H
H = high level, L = low level, X = irrelevant,
Z = high impedance (off), Open = input
disconnected or connected driver off
logic diagram (positive logic)
DIN1
DIN2
PWRDOWN
EN
ROUT1
ROUT2
2
13
17
12
8
20
DOUT1
DOUT2
Powerdown
1
15
16
10
9
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
RIN1
RIN2
± SLLS408G − JANUARY 2000 − REVISED MARCH 2004
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage range, VCC (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 6 V
Positive output supply voltage range, V+ (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 7 V
Negative output supply voltage range, V− (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.3 V to −7 V
Supply voltage difference, V+ − V− (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 V
Input voltage range, VI: Drivers, EN, PWRDOWN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to 6 V
Receivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −25 V to 25 V
Output voltage range, VO: Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −13.2 V to 13.2 V
Receivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to VCC + 0.3 V
Package thermal impedance, θJA (see Notes 2 and 3): DB package . . . . . . . . . . . . . . . . . . . . . . . . . . . 70°C/W
DW package . . . . . . . . . . . . . . . . . . . . . . . . . . 58°C/W
PW package . . . . . . . . . . . . . . . . . . . . . . . . . . 83°C/W
Operating virtual junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −65°C to 150°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltages are with respect to network GND.
2. Maximum power dissipation is a function of TJ(max), θJA, and TA. The maximum allowable power dissipation at any allowable
ambient temperature is PD = (TJ(max) − TA)/θJA. Operating at the absolute maximum TJ of 150°C can affect reliability.
3. The package thermal impedance is calculated in accordance with JESD 51-7.
recommended operating conditions (see Note 4 and Figure 5)
Supply voltage
VCC = 3.3 V
VCC = 5 V
VIH
Driver and control high-level input voltage
DIN, EN, PWRDOWN
VIL
VI
Driver and control low-level input voltage
DIN, EN, PWRDOWN
Driver and control input voltage
DIN, EN, PWRDOWN
VI
Receiver input voltage
VCC = 3.3 V
VCC = 5 V
MAX3222C
TA
Operating free-air temperature
MAX3222I
MIN
NOM
MAX
3
3.3
3.6
4.5
5
5.5
UNIT
V
2
V
2.4
0.8
V
0
5.5
V
−25
25
V
0
70
−40
85
°C
NOTE 4: Test conditions are C1−C4 = 0.1 µF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 µF, C2−C4 = 0.33 µF at VCC = 5 V ± 0.5 V.
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (see Note 4 and Figure 5)
PARAMETER
II
ICC
TEST CONDITIONS
Input leakage current (EN, PWRDOWN)
Supply current
No load, PWRDOWN at VCC
MIN
TYP‡
MAX
±0.01
±1
µA
0.3
1
mA
10
µA
Supply current (powered off)
No load, PWRDOWN at GND
1
‡ All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C.
NOTE 4: Test conditions are C1−C4 = 0.1 µF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 µF, C2−C4 = 0.33 µF at VCC = 5 V ± 0.5 V.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
UNIT
3
± SLLS408G − JANUARY 2000 − REVISED MARCH 2004
DRIVER SECTION
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (see Note 4 and Figure 5)
PARAMETER
TEST CONDITIONS
MIN
TYP†
VOH
VOL
High-level output voltage
DOUT at RL = 3 kΩ to GND,
DIN = GND
5
5.4
Low-level output voltage
DOUT at RL = 3 kΩ to GND,
DIN = VCC
−5
−5.4
IIH
IIL
High-level input current
VI = VCC
VI at GND
Low-level input current
IOS
Short-circuit output current‡
VCC = 3.6 V,
VCC = 5.5 V,
ro
Output resistance
VCC, V+, and V− = 0 V,
VO = ±2 V
PWRDOWN = GND,
VCC = 3 V to 3.6 V
VO = ±12 V,
PWRDOWN = GND,
VCC = 4.5 V to 5.5 V
VO = ±10 V,
Ioff
Output leakage current
VO = 0 V
VO = 0 V
300
MAX
UNIT
V
V
±0.01
±1
µA
±0.01
±1
µA
±35
±60
mA
Ω
10M
±25
µA
±25
† All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C.
‡ Short-circuit durations should be controlled to prevent exceeding the device absolute power-dissipation ratings, and not more than one output
should be shorted at a time.
NOTE 4: Test conditions are C1−C4 = 0.1 µF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 µF, C2−C4 = 0.33 µF at VCC = 5 V ± 0.5 V.
switching characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (see Note 4 and Figure 5)
PARAMETER
TEST CONDITIONS
MIN
TYP†
150
250
kbit/s
300
ns
MAX
Maximum data rate
CL = 1000 pF,
One DOUT switching,
RL = 3 kΩ,
See Figure 1
tsk(p)
Pulse skew§
CL = 150 pF to 2500 pF,
See Figure 2
RL = 3 kΩ to 7 kΩ,
SR(tr)
Slew rate, transition region
(See Figure 1)
RL = 3 kΩ to 7 kΩ,
VCC = 3.3 V
CL = 150 pF to 1000 pF
6
30
CL = 150 pF to 2500 pF
4
30
† All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C.
§ Pulse skew is defined as |tPLH − tPHL| of each channel of the same device.
NOTE 4: Test conditions are C1−C4 = 0.1 µF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 µF, C2−C4 = 0.33 µF at VCC = 5 V ± 0.5 V.
4
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
UNIT
V/µs
± SLLS408G − JANUARY 2000 − REVISED MARCH 2004
RECEIVER SECTION
electrical characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (see Note 4 and Figure 5)
PARAMETER
VOH
VOL
TEST CONDITIONS
High-level output voltage
IOH = −1 mA
IOL = 1.6 mA
Low-level output voltage
VIT+
Positive-going input threshold voltage
VCC = 3.3 V
VCC = 5 V
VIT−
Negative-going input threshold voltage
VCC = 3.3 V
VCC = 5 V
Vhys
Ioff
Input hysteresis (VIT+ − VIT−)
TYP†
MIN
VCC − 0.6 V
MAX
VCC − 0.1 V
V
0.4
1.5
2.4
1.8
2.4
0.6
1.2
0.8
1.5
±0.05
EN = VCC
ri
Input resistance
VI = ±3 V to ±25 V
3
5
† All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C.
NOTE 4: Test conditions are C1−C4 = 0.1 µF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 µF, C2−C4 = 0.33 µF at VCC = 5 V ± 0.5 V.
V
V
V
0.3
Output leakage current
UNIT
V
±10
µA
7
kΩ
switching characteristics over recommended ranges of supply voltage and operating free-air
temperature (unless otherwise noted) (see Note 4)
PARAMETER
TEST CONDITIONS
MIN
TYP†
MAX
UNIT
tPLH
tPHL
Propagation delay time, low- to high-level output
CL = 150 pF, See Figure 3
300
ns
Propagation delay time, high- to low-level output
CL= 150 pF, See Figure 3
300
ns
ten
Output enable time
CL= 150 pF, RL = 3 kΩ,
See Figure 4
200
ns
tdis
Output disable time
CL= 150 pF, RL = 3 kΩ,
See Figure 4
200
ns
tsk(p) Pulse skew‡
See Figure 3
300
† All typical values are at VCC = 3.3 V or VCC = 5 V, and TA = 25°C.
‡ Pulse skew is defined as |tPLH − tPHL| of each channel of the same device.
NOTE 4: Test conditions are C1−C4 = 0.1 µF at VCC = 3.3 V ± 0.3 V; C1 = 0.047 µF, C2−C4 = 0.33 µF at VCC = 5 V ± 0.5 V.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
ns
5
± SLLS408G − JANUARY 2000 − REVISED MARCH 2004
PARAMETER MEASUREMENT INFORMATION
3V
Input
Generator
(see Note B)
1.5 V
RS-232
Output
50 Ω
RL
1.5 V
0V
CL
(see Note A)
3V
PWRDOWN
tTHL
tTLH
VOH
3V
3V
Output
−3 V
−3 V
VOL
TEST CIRCUIT
VOLTAGE WAVEFORMS
SR(tr) +
t
THL
6V
or t
TLH
NOTES: A. CL includes probe and jig capacitance.
B. The pulse generator has the following characteristics: PRR = 250 kbit/s, ZO = 50 Ω, 50% duty cycle, tr ≤ 10 ns, tf ≤ 10 ns.
Figure 1. Driver Slew Rate
3V
Generator
(see Note B)
RS-232
Output
50 Ω
RL
Input
1.5 V
1.5 V
0V
CL
(see Note A)
tPHL
tPLH
VOH
3V
PWRDOWN
50%
50%
Output
VOL
TEST CIRCUIT
VOLTAGE WAVEFORMS
NOTES: A. CL includes probe and jig capacitance.
B. The pulse generator has the following characteristics: PRR = 250 kbit/s, ZO = 50 Ω, 50% duty cycle, tr ≤ 10 ns, tf ≤ 10 ns.
Figure 2. Driver Pulse Skew
EN
0V
3V
Input
1.5 V
1.5 V
−3 V
Output
Generator
(see Note B)
50 Ω
tPHL
CL
(see Note A)
tPLH
VOH
50%
Output
50%
VOL
TEST CIRCUIT
VOLTAGE WAVEFORMS
NOTES: A. CL includes probe and jig capacitance.
B. The pulse generator has the following characteristics: ZO = 50 Ω, 50% duty cycle, tr ≤ 10 ns, tf ≤ 10 ns.
Figure 3. Receiver Propagation Delay Times
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
± SLLS408G − JANUARY 2000 − REVISED MARCH 2004
PARAMETER MEASUREMENT INFORMATION
VCC
S1
GND
RL
Output
3 V or 0 V
CL
(see Note A)
EN
3V
Input
1.5 V
0V
tPZH
(S1 at GND)
tPHZ
S1 at GND)
VOH
Output
50%
0.3 V
Generator
(see Note B)
1.5 V
50 Ω
tPLZ
(S1 at VCC)
0.3 V
Output
50%
VOL
tPZL
(S1 at VCC)
TEST CIRCUIT
VOLTAGE WAVEFORMS
NOTES: A. CL includes probe and jig capacitance.
B. The pulse generator has the following characteristics: ZO = 50 Ω, 50% duty cycle, tr ≤ 10 ns, tf ≤ 10 ns.
Figure 4. Receiver Enable and Disable Times
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
± SLLS408G − JANUARY 2000 − REVISED MARCH 2004
APPLICATION INFORMATION
1
EN
2
+
C1
−
3
C3†
+
20
Powerdown
VCC
C1+
V+
GND
PWRDOWN
19
18
+ C
BYPASS
− = 0.1 µF
−
4
5
17
C1−
16
C2+
DOUT1
RIN1
+
C2
−
6
7
C4
DOUT2
RIN2
ROUT2
−
15
C2−
14
V−
ROUT1
NC
+
8
13
9
12
10
11
DIN1
DIN2
NC
† C3 can be connected to VCC or GND.
NOTES: A. Resistor values shown are nominal.
B. NC − No internal connection
C. Nonpolarized ceramic capacitors are acceptable. If polarized tantalum or electrolytic capacitors are used, they should be
connected as shown.
VCC vs CAPACITOR VALUES
VCC
3.3 V " 0.3 V
C1
0.1 µF
C2, C3, and C4
0.1 µF
5 V " 0.5 V
0.047 µF
0.33 µF
3 V to 5.5 V
0.1 µF
0.47 µF
Figure 5. Typical Operating Circuit and Capacitor Values
8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
PACKAGE OPTION ADDENDUM
www.ti.com
23-Sep-2005
PACKAGING INFORMATION
(1)
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
MAX3222CDB
ACTIVE
SSOP
DB
20
70
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
MAX3222CDBE4
ACTIVE
SSOP
DB
20
70
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
MAX3222CDBR
ACTIVE
SSOP
DB
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
MAX3222CDBRE4
ACTIVE
SSOP
DB
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
MAX3222CDW
ACTIVE
SOIC
DW
20
25
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
MAX3222CDWE4
ACTIVE
SOIC
DW
20
25
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
MAX3222CDWR
ACTIVE
SOIC
DW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
MAX3222CDWRE4
ACTIVE
SOIC
DW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
MAX3222CPW
ACTIVE
TSSOP
PW
20
70
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
MAX3222CPWE4
ACTIVE
TSSOP
PW
20
70
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
MAX3222CPWR
ACTIVE
TSSOP
PW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
MAX3222CPWRE4
ACTIVE
TSSOP
PW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
MAX3222IDB
ACTIVE
SSOP
DB
20
70
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
MAX3222IDBE4
ACTIVE
SSOP
DB
20
70
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
MAX3222IDBR
ACTIVE
SSOP
DB
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
MAX3222IDBRE4
ACTIVE
SSOP
DB
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
MAX3222IDW
ACTIVE
SOIC
DW
20
25
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
MAX3222IDWE4
ACTIVE
SOIC
DW
20
25
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
MAX3222IDWR
ACTIVE
SOIC
DW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
MAX3222IDWRE4
ACTIVE
SOIC
DW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
MAX3222IPW
ACTIVE
TSSOP
PW
20
70
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
MAX3222IPWE4
ACTIVE
TSSOP
PW
20
70
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
MAX3222IPWR
ACTIVE
TSSOP
PW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
MAX3222IPWRE4
ACTIVE
TSSOP
PW
20
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
The marketing status values are defined as follows:
Addendum-Page 1
Lead/Ball Finish
MSL Peak Temp (3)
PACKAGE OPTION ADDENDUM
www.ti.com
23-Sep-2005
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 2
MECHANICAL DATA
MSSO002E – JANUARY 1995 – REVISED DECEMBER 2001
DB (R-PDSO-G**)
PLASTIC SMALL-OUTLINE
28 PINS SHOWN
0,38
0,22
0,65
28
0,15 M
15
0,25
0,09
8,20
7,40
5,60
5,00
Gage Plane
1
14
0,25
A
0°–ā8°
0,95
0,55
Seating Plane
2,00 MAX
0,10
0,05 MIN
PINS **
14
16
20
24
28
30
38
A MAX
6,50
6,50
7,50
8,50
10,50
10,50
12,90
A MIN
5,90
5,90
6,90
7,90
9,90
9,90
12,30
DIM
4040065 /E 12/01
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-150
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
MECHANICAL DATA
MTSS001C – JANUARY 1995 – REVISED FEBRUARY 1999
PW (R-PDSO-G**)
PLASTIC SMALL-OUTLINE PACKAGE
14 PINS SHOWN
0,30
0,19
0,65
14
0,10 M
8
0,15 NOM
4,50
4,30
6,60
6,20
Gage Plane
0,25
1
7
0°– 8°
A
0,75
0,50
Seating Plane
0,15
0,05
1,20 MAX
PINS **
0,10
8
14
16
20
24
28
A MAX
3,10
5,10
5,10
6,60
7,90
9,80
A MIN
2,90
4,90
4,90
6,40
7,70
9,60
DIM
4040064/F 01/97
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Body dimensions do not include mold flash or protrusion not to exceed 0,15.
Falls within JEDEC MO-153
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products
Applications
Amplifiers
amplifier.ti.com
Audio
www.ti.com/audio
Data Converters
dataconverter.ti.com
Automotive
www.ti.com/automotive
DSP
dsp.ti.com
Broadband
www.ti.com/broadband
Interface
interface.ti.com
Digital Control
www.ti.com/digitalcontrol
Logic
logic.ti.com
Military
www.ti.com/military
Power Mgmt
power.ti.com
Optical Networking
www.ti.com/opticalnetwork
Microcontrollers
microcontroller.ti.com
Security
www.ti.com/security
Telephony
www.ti.com/telephony
Video & Imaging
www.ti.com/video
Wireless
www.ti.com/wireless
Mailing Address:
Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright  2005, Texas Instruments Incorporated
Similar pages