IRF IRGB4086PBF Pdd trench igbt Datasheet

PD - 96222
IRGB4086PbF
IRGS4086PbF
PDP TRENCH IGBT
Features
l Advanced Trench IGBT Technology
l Optimized for Sustain and Energy Recovery
Circuits in PDP Applications
TM)
l Low VCE(on) and Energy per Pulse (EPULSE
for Improved Panel Efficiency
l High Repetitive Peak Current Capability
l Lead Free Package
Key Parameters
VCE min
VCE(ON) typ. @ IC = 70A
IRP max @ TC= 25°C
TJ max
300
1.90
250
150
c
V
V
A
°C
C
G
G
E
n-channel
G
G ate
C
E
G
C
E
TO-220AB
D2 Pak
IRGB4086PbF IRGS4086PbF
C
C ollector
E
E m itter
Description
This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced
trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel
efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current
capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP
applications.
Absolute Maximum Ratings
Max.
Units
±30
V
70
40
A
Continuous Collector, VGE @ 15V
Repetitive Peak Current
Power Dissipation
250
160
W
63
1.3
W/°C
-40 to + 150
°C
300
10lb in (1.1N m)
N
Parameter
VGE
IC @ TC = 25°C
Gate-to-Emitter Voltage
Continuous Collector Current, VGE @ 15V
IC @ TC = 100°C
IRP @ TC = 25°C
PD @TC = 25°C
PD @TC = 100°C
TJ
TSTG
c
Power Dissipation
Linear Derating Factor
Operating Junction and
Storage Temperature Range
Soldering Temperature for 10 seconds
Mounting Torque, 6-32 or M3 Screw
x
x
Thermal Resistance
Parameter
RθJC (IGBT)
RθCS
RθJA
www.irf.com
Thermal Resistance Junction-to-Case-(each IGBT)
Case-to-Sink (flat, greased surface)
Junction-to-Ambient (typical socket mount)
Weight
df
d
Typ.
Max.
–––
0.24
–––
6.0 (0.21)
0.8
–––
40
–––
Units
°C/W
g (oz)
1
02/02/09
IRGB/S4086PbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
BVCES
Collector-to-Emitter Breakdown Voltag 300
∆ΒVCES/∆TJ Breakdown Voltage Temp. Coefficient –––
–––
–––
VCE(on)
Static Collector-to-Emitter Voltage
–––
–––
–––
VGE(th)
Gate Threshold Voltage
2.6
∆VGE(th)/∆TJ Gate Threshold Voltage Coefficient
–––
ICES
Collector-to-Emitter Leakage Current –––
–––
–––
IGES
Gate-to-Emitter Forward Leakage
–––
Gate-to-Emitter Reverse Leakage
–––
gfe
Forward Transconductance
–––
Qg
Total Gate Charge
–––
Qgc
Gate-to-Collector Charge
–––
td(on)
Turn-On delay time
—
tr
Rise time
—
td(off)
Turn-Off delay time
—
tf
Fall time
—
td(on)
Turn-On delay time
—
tr
Rise time
—
td(off)
Turn-Off delay time
—
tf
Fall time
—
tst
Shoot Through Blocking Time
100
–––
0.29
1.29
1.49
1.90
2.57
2.27
–––
-11
2.0
5.0
100
–––
–––
29
65
22
36
31
112
65
30
33
145
–––
1075
–––
1432
–––
–––
–––
–––
2250
110
58
5.0
EPULSE
Ciss
Coss
Crss
LC
Energy per Pulse
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Internal Collector Inductance
98
–––
–––
V VGE = 0V, ICE = 1 mA
–––
V/°C Reference to 25°C, ICE = 1mA
VGE = 15V, ICE = 25A
1.55
VGE = 15V, ICE = 40A
1.67
2.10
V VGE = 15V, ICE = 70A
VGE = 15V, ICE = 120A
2.96
VGE = 15V, ICE = 70A, TJ = 150°C
–––
5.0
V VCE = VGE, ICE = 500µA
––– mV/°C
25
µA VCE = 300V, VGE = 0V
VCE = 300V, VGE = 0V, TJ = 100°C
–––
VCE = 300V, VGE = 0V, TJ = 150°C
–––
100
nA VGE = 30V
VGE = -30V
-100
–––
S VCE = 25V, ICE = 25A
–––
nC VCE = 200V, IC = 25A, VGE = 15V
–––
IC = 25A, VCC = 196V
—
—
ns RG = 10Ω, L=200µH, LS= 200nH
TJ = 25°C
—
—
IC = 25A, VCC = 196V
—
—
ns RG = 10Ω, L=200µH, LS= 200nH
TJ = 150°C
—
—
–––
ns VCC = 240V, VGE = 15V, RG= 5.1Ω
L = 220nH, C= 0.40µF, VGE = 15V
–––
µJ VCC = 240V, RG= 5.1Ω, TJ = 25°C
L = 220nH, C= 0.40µF, VGE = 15V
–––
VCC = 240V, RG= 5.1Ω, TJ = 100°C
VGE = 0V
–––
–––
pF VCE = 30V
e
e
e
e
e
ƒ = 1.0MHz,
–––
–––
nH
LE
Internal Emitter Inductance
Notes:
 Half sine wave with duty cycle = 0.1, ton=2µsec.
‚ Rθ is measured at TJ of approximately 90°C.
2
–––
Conditions
Typ. Max. Units
13
–––
See Fig.13
Between lead,
6mm (0.25in.)
from package
and center of die contact
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
„ When mounted on 1" square PCB (FR-4 or G-10 Material).
For recomended footprint and soldering techniques refer
to application note #AN-994.
www.irf.com
IRGB/S4086PbF
240
240
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
200
200
160
VGE = 8.0V
VGE = 6.0V
120
ICE (A)
ICE (A)
160
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
120
80
80
40
40
0
VGE = 8.0V
VGE = 6.0V
0
0
4
8
12
16
0
4
8
VCE (V)
Fig 1. Typical Output Characteristics @ 25°C
160
VGE = 8.0V
VGE = 6.0V
120
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
200
ICE (A)
ICE (A)
240
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
160
16
Fig 2. Typical Output Characteristics @ 75°C
240
200
12
VCE (V)
120
80
80
40
40
0
VGE = 8.0V
VGE = 6.0V
0
0
4
8
12
16
0
4
8
VCE (V)
12
16
VCE (V)
Fig 3. Typical Output Characteristics @ 125°C
Fig 4. Typical Output Characteristics @ 150°C
240
10
IC = 25A
200
8
T J = 25°C
T J = 150°C
VCE (V)
ICE (A)
160
120
TJ = 25°C
TJ = 150°C
6
4
80
2
40
0
0
2
4
6
8
10
12
14
VGE (V)
Fig 5. Typical Transfer Characteristics
www.irf.com
16
5
10
15
20
V GE (V)
Fig 6. VCE(ON) vs. Gate Voltage
3
IRGB/S4086PbF
80
300
Repetitive Peak Current (A)
IC, Collector Current (A)
70
60
50
40
30
20
200
100
ton= 2µs
Duty cycle = 0.1
Half Sine Wave
10
0
0
0
25
50
75
100
125
25
150
T C, Case Temperature (°C)
Fig 7. Maximum Collector Current vs. Case Temperature
75
100
125
150
Case Temperature (°C)
Fig 8. Typical Repetitive Peak Current vs. Case Temperature
1600
1500
1400
VCC = 240V
1300
L = 220nH
C = variable
L = 220nH
C = 0.4µF
1400
100°C
1200
Energy per Pulse (µJ)
Energy per Pulse (µJ)
50
1100
1000
900
800
25°C
700
100°C
1200
1000
800
25°C
600
600
400
500
200
400
160
170
180
190
200
210
220
150 160 170 180 190 200 210 220 230 240
230
VCE, Collector-to-Emitter Voltage (V)
IC, Peak Collector Current (A)
Fig 9. Typical EPULSE vs. Collector Current
2000
Fig 10. Typical EPULSE vs. Collector-to-Emitter Voltage
1000
VCC = 240V
L = 220nH
t = 1µs half sine
C= 0.4µF
100
1200
10 µs
100 µs
IC (A)
Energy per Pulse (µJ)
1600
C= 0.3µF
800
400
10
1ms
C= 0.2µF
1
0
25
50
75
100
125
TJ, Temperature (ºC)
Fig 11. EPULSE vs. Temperature
4
150
1
10
100
1000
V CE (V)
Fig 12. Forward Bias Safe Operating Area
www.irf.com
IRGB/S4086PbF
25
VGE, Gate-to-Source Voltage (V)
10000
Capacitance (pF)
Cies
1000
100
Coes
Cres
ID= 25A
VDS = 240V
VDS = 200V
VDS = 150V
20
15
10
5
0
10
0
100
200
0
300
20
VCE (V)
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage
40
60
80
100
QG Total Gate Charge (nC)
Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage
1
Thermal Response ( ZthJC )
D = 0.50
0.20
0.1
0.10
0.05
τJ
0.02
0.01
0.01
R1
R1
τJ
τ1
R2
R2
R3
R3
Ri (°C/W)
τC
τ1
τ2
τ2
Ci= τi/Ri
Ci= τi/Ri
SINGLE PULSE
( THERMAL RESPONSE )
τ3
τ3
τ
τι (sec)
0.084697 0.000038
0.374206 0.001255
0.341867 0.013676
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case (IGBT)
www.irf.com
5
IRGB/S4086PbF
A
RG
C
DRIVER
PULSE A
L
VCC
B
RG
PULSE B
Ipulse
DUT
tST
Fig 16b. tst Test Waveforms
Fig 16a. tst and EPULSE Test Circuit
VCE
Energy
L
IC Current
VCC
DUT
0
1K
Fig 16c. EPULSE Test Waveforms
6
Fig. 17 - Gate Charge Circuit (turn-off)
www.irf.com
IRGB/S4086PbF
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
TO-220AB Part Marking Information
(;$03/( 7+,6,6$1,5)
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(&
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
'$7(&2'(
<($5 :((.
/,1(&
TO-220AB packages are not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
www.irf.com
7
IRGB/S4086PbF
D2Pak Package Outline
(Dimensions are shown in millimeters (inches))
D2Pak Part Marking Information
7+,6,6$1,5)6:,7+
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(/
,17(51$7,21$/
5(&7,),(5
/2*2
3$57180%(5
)6
'$7(&2'(
<($5 :((.
/,1(/
$66(0%/<
/27&2'(
7+,6,6$1,5)6:,7+
/27&2'(
For GB Production
$66(0%/('21::
,17+($66(0%/</,1(/
,17(51$7,21$/
5(&7,),(5
/2*2
3$57180%(5
)6
/27&2'(
'$7(&2'(
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
8
www.irf.com
IRGB/S4086PbF
D2Pak Tape & Reel Information
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
0.368 (.0145)
0.342 (.0135)
15.42 (.609)
15.22 (.601)
24.30 (.957)
23.90 (.941)
TRL
10.90 (.429)
10.70 (.421)
1.75 (.069)
1.25 (.049)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
60.00 (2.362)
MIN.
26.40 (1.039)
24.40 (.961)
3
30.40 (1.197)
MAX.
4
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.02/2009
www.irf.com
9
Similar pages