PD - 97772 IRFB4510PbF HEXFET® Power MOSFET Applications l High Efficiency Synchronous Rectification in SMPS l Uninterruptible Power Supply l High Speed Power Switching l Hard Switched and High Frequency Circuits D G S VDSS RDS(on) typ. max. ID (Silicon Limited) Benefits l Improved Gate, Avalanche and Dynamic dV/dt Ruggedness l Fully Characterized Capacitance and Avalanche SOA l Enhanced body diode dV/dt and dI/dt Capability l Lead-Free 100V 10.7mΩ 13.5mΩ 62A D G D S TO-220AB IRFB4510PbF G D S Gate Drain Source Absolute Maximum Ratings Symbol ID @ TC = 25°C Parameter Max. Continuous Drain Current, VGS @ 10V (Silicon Limited) Units 62 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited) 44 IDM Pulsed Drain Current 250 PD @TC = 25°C Maximum Power Dissipation 140 W Linear Derating Factor 0.95 VGS Gate-to-Source Voltage ± 20 W/°C V dv/dt TJ Peak Diode Recovery 3.2 Operating Junction and TSTG Storage Temperature Range c e A V/ns °C -55 to + 175 300 Soldering Temperature, for 10 seconds (1.6mm from case) x Avalanche Characteristics EAS (Thermally limited) Single Pulse Avalanche Energy IAR Avalanche Current EAR Repetitive Avalanche Energy d f x 10lb in (1.1N m) Mounting torque, 6-32 or M3 screw 130 mJ See Fig. 14, 15, 22a, 22b, A mJ Thermal Resistance Symbol Parameter i Typ. Max. RθJC Junction-to-Case ––– 1.05 RθCS Case-to-Sink, Flat Greased Surface 0.50 ––– RθJA Junction-to-Ambient, TO-220 ––– 62 www.irf.com i Units °C/W 1 4/10/12 IRFB4510PbF Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter V(BR)DSS ΔV(BR)DSS/ΔTJ RDS(on) VGS(th) IDSS Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Internal Gate Resistance RG Min. Typ. Max. Units 100 ––– ––– 2.0 ––– ––– ––– ––– ––– ––– 0.11 10.7 ––– ––– ––– ––– ––– 0.6 Conditions ––– V VGS = 0V, ID = 250μA ––– V/°C Reference to 25°C, ID = 5mA 13.5 mΩ VGS = 10V, ID = 37A 4.0 V VDS = VGS, ID = 100μA 20 μA VDS = 100V, VGS = 0V 250 VDS = 80V, VGS = 0V, TJ = 125°C 100 nA VGS = 20V -100 VGS = -20V ––– Ω f c Dynamic @ TJ = 25°C (unless otherwise specified) Symbol Parameter gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Total Gate Charge Sync. (Qg - Qgd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Effective Output Capacitance (Energy Related) Effective Output Capacitance (Time Related) g Diode Characteristics Symbol IS Parameter VSD trr Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Qrr Reverse Recovery Charge IRRM ton Reverse Recovery Current Forward Turn-On Time ISM c Notes: Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.192mH RG = 25Ω, IAS = 37A, VGS =10V. Part not recommended for use above this value. ISD ≤ 37A, di/dt ≤ 1550A/μs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. Pulse width ≤ 400μs; duty cycle ≤ 2%. 2 Min. Typ. Max. Units h 100 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 58 14 18 40 13 32 28 28 3180 220 120 260 325 ––– 87 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– S nC Conditions VDS = 25V, ID = 37A ID = 37A VDS =50V VGS = 10V ID = 37A, VDS =0V, VGS = 10V VDD = 65V ID = 37A RG =2.7Ω VGS = 10V VGS = 0V VDS = 50V ƒ = 1.0MHz, See Fig.5 VGS = 0V, VDS = 0V to 80V , See Fig.1 VGS = 0V, VDS = 0V to 80V f ns pF f f h g Min. Typ. Max. Units Conditions D MOSFET symbol showing the G ––– ––– 250 A integral reverse S p-n junction diode. ––– ––– 1.3 V TJ = 25°C, IS = 37A, VGS = 0V ––– 54 81 ns TJ = 25°C VR = 85V, ––– 60 90 TJ = 125°C IF = 37A di/dt = 100A/μs ––– 95 140 nC TJ = 25°C ––– 130 195 TJ = 125°C ––– 3.3 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) ––– ––– 62 A f f Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS . Rθ is measured at TJ approximately 90°C. www.irf.com IRFB4510PbF 1000 1000 100 BOTTOM 10 1 4.0V ≤ 60μs PULSE WIDTH Tj = 25°C 0.1 0.1 1 10 100 BOTTOM 4.0V 10 ≤ 60μs PULSE WIDTH Tj = 175°C 1 100 0.1 VDS , Drain-to-Source Voltage (V) 10 100 Fig 2. Typical Output Characteristics 3.0 RDS(on) , Drain-to-Source On Resistance (Normalized) 1000 ID, Drain-to-Source Current(Α) 1 VDS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 100 TJ = 175°C 10 TJ = 25°C 1 VDS = 50V ≤ 60μs PULSE WIDTH 0.1 2.0 3.0 4.0 5.0 6.0 ID = 37A VGS = 10V 2.5 2.0 1.5 1.0 0.5 0.0 7.0 -60 -40 -20 0 VGS, Gate-to-Source Voltage (V) 100000 Fig 4. Normalized On-Resistance vs. Temperature 14 VGS, Gate-to-Source Voltage (V) VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Coss = Cds + Cgd 10000 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics C, Capacitance (pF) VGS 15V 10V 6.0V 5.0V 4.8V 4.5V 4.3V 4.0V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 6.0V 5.0V 4.8V 4.5V 4.3V 4.0V Ciss 1000 Coss Crss 100 ID= 37A VDS = 80V VDS = 50V 12 10 VDS = 20V 8 6 4 2 0 10 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage www.irf.com 0 20 40 60 80 QG Total Gate Charge (nC) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage 3 IRFB4510PbF 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 100 TJ = 175°C 10 TJ = 25°C 1 OPERATION IN THIS AREA LIMITED BY R DS (on) 100 1msec 10 10msec 1 Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1 1.6 ID, Drain Current (A) 60 50 40 30 20 10 0 75 100 125 150 175 V(BR)DSS, Drain-to-Source Breakdown Voltage (V) 70 50 100 Fig 8. Maximum Safe Operating Area Fig 7. Typical Source-Drain Diode Forward Voltage 25 10 VDS, Drain-toSource Voltage (V) VSD, Source-to-Drain Voltage (V) 125 Id = 5mA 120 115 110 105 100 95 -60 -40 -20 0 20 40 60 80 100120140160180 TJ , Junction Temperature (°C) TJ , Temperature ( °C ) Fig 9. Maximum Drain Current vs. Case Temperature Fig 10. Drain-to-Source Breakdown Voltage 600 EAS , Single Pulse Avalanche Energy (mJ) 1.2 1.0 0.8 Energy (μJ) DC 0.1 0.1 0.6 0.4 0.2 0.0 0 20 40 60 80 VDS, Drain-to-Source Voltage (V) Fig 11. Typical COSS Stored Energy 4 100μsec 100 ID 4.7A 12A BOTTOM 37A 500 TOP 400 300 200 100 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature (°C) Fig 12. Maximum Avalanche Energy vs. DrainCurrent www.irf.com IRFB4510PbF Thermal Response ( ZthJC ) °C/W 10 1 D = 0.50 0.20 0.10 0.1 0.05 0.02 0.01 0.01 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 100 Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔTj = 150°C and Tstart =25°C (Single Pulse) Avalanche Current (A) 0.01 10 0.05 0.10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ΔΤ j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth EAR , Avalanche Energy (mJ) 140 Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 16a, 16b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) TOP Single Pulse BOTTOM 1% Duty Cycle ID = 37A 120 100 80 60 40 20 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature (°C) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav Fig 15. Maximum Avalanche Energy vs. Temperature www.irf.com 5 4.5 24 4.0 20 3.5 16 IRRM - (A) VGS(th), Gate threshold Voltage (V) IRFB4510PbF 3.0 2.5 2.0 1.5 8 ID = 100μA ID = 250μA ID = 1.0mA ID = 1.0A IF = 24A VR = 80V 4 TJ = 125°C TJ = 25°C 0 1.0 -75 -50 -25 0 100 200 300 400 500 600 700 800 900 1000 25 50 75 100 125 150 175 200 TJ , Temperature ( °C ) dif / dt - (A / μs) Fig 16. Threshold Voltage vs. Temperature Fig. 17 - Typical Recovery Current vs. dif/dt 24 600 20 500 16 400 QRR - (nC) IRRM - (A) 12 12 8 4 0 300 200 IF = 37A VR = 80V IF = 24A VR = 80V 100 TJ = 125°C TJ = 25°C TJ = 125°C TJ = 25°C 0 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 dif / dt - (A / μs) dif / dt - (A / μs) Fig. 19 - Typical Stored Charge vs. dif/dt Fig. 18 - Typical Recovery Current vs. dif/dt 600 500 QRR - (nC) 400 300 200 100 0 IF = 37A VR = 80V TJ = 125°C TJ = 25°C 100 200 300 400 500 600 700 800 900 1000 dif / dt - (A / μs) 6 Fig. 20 - Typical Stored Charge vs. dif/dt www.irf.com IRFB4510PbF D.U.T Driver Gate Drive - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS tp 15V DRIVER L VDS D.U.T RG + V - DD IAS 20V tp A I AS 0.01Ω Fig 22a. Unclamped Inductive Test Circuit Fig 22b. Unclamped Inductive Waveforms LD VDS VDS 90% + VDD D.U.T 10% VGS VGS Second Pulse Width < 1μs Duty Factor < 0.1% td(on) Fig 23a. Switching Time Test Circuit tr td(off) tf Fig 23b. Switching Time Waveforms Id Vds Vgs L DUT 0 20K 1K VCC Vgs(th) S Qgodr Fig 24a. Gate Charge Test Circuit www.irf.com Qgd Qgs2 Qgs1 Fig 24b. Gate Charge Waveform 7 IRFB4510PbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) TO-220AB Part Marking Information EXAMPLE: THIS IS AN IRF1010 LOT CODE 1789 AS S EMBLED ON WW 19, 2000 IN T HE AS S EMBLY LINE "C" Note: "P" in assembly line position indicates "Lead - Free" INTERNATIONAL RECT IFIER LOGO AS S EMBLY LOT CODE PART NUMBER DATE CODE YEAR 0 = 2000 WEEK 19 LINE C TO-220AB packages are not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/pkhexfet.html Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. 8 IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 04/12 www.irf.com