ADPOW APT30GT60BR The thunderbolt igbtâ ¢ is a new generation of high voltage power igbts. Datasheet

APT30GT60BR(G)
600V
TYPICAL PERFORMANCE CURVES
®
APT30GT60BR
APT30GT60BRG*
*G Denotes RoHS Compliant, Pb Free Terminal Finish.
Thunderbolt IGBT®
TO
-2
The Thunderblot IGBT® is a new generation of high voltage power IGBTs. Using Non- Punch
Through Technology, the Thunderblot IGBT® offers superior ruggedness and ultrafast
switching speed.
• Low Forward Voltage Drop
• High Freq. Switching to 100KHz
• Low Tail Current
• Ultra Low Leakage Current
G
C
47
E
C
• RBSOA and SCSOA Rated
G
E
MAXIMUM RATINGS Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT30GT60BR(G)
VCES
Collector-Emitter Voltage
600
VGE
Gate-Emitter Voltage
±30
I C1
Continuous Collector Current @ TC = 25°C
64
I C2
Continuous Collector Current @ TC = 110°C
30
I CM
SSOA
PD
TJ,TSTG
TL
Pulsed Collector Current
1
UNIT
Volts
Amps
110
Switching Safe Operating Area @ TJ = 150°C
110A @ 600V
Total Power Dissipation
Watts
250
Operating and Storage Junction Temperature Range
-55 to 150
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
Symbol
Characteristic / Test Conditions
MIN
V(BR)CES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA)
600
VGE(TH)
Gate Threshold Voltage
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C)
2
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C)
2
Gate-Emitter Leakage Current (VGE = ±20V)
4
5
1.6
2.0
2.5
2.8
50
1000
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
Volts
µA
nA
6-2008
I GES
Collector-Emitter On Voltage (VGE = 15V, I C = 30A, Tj = 125°C)
3
Units
Rev E
I CES
Collector-Emitter On Voltage (VGE = 15V, I C = 30A, Tj = 25°C)
MAX
052-6211
VCE(ON)
(VCE = VGE, I C = 700µA, Tj = 25°C)
TYP
DYNAMIC CHARACTERISTICS
Symbol
APT30GT60BR(G)
Test Conditions
Characteristic
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
Qg
Total Gate Charge
3
Qge
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
SSOA
Switching Safe Operating Area
MIN
TYP
Capacitance
1600
VGE = 0V, VCE = 25V
150
f = 1 MHz
92
Gate Charge
7.5
VGE = 15V
145
VCE = 300V
10
I C = 30A
60
tr
Current Rise Time
VCC = 400V
20
td(off)
Turn-off Delay Time
VGE = 15V
225
80
525
605
600
Eon1
I C = 30A
Current Fall Time
Turn-on Switching Energy
Turn-on Switching Energy (Diode)
Eoff
Turn-off Switching Energy
td(on)
Turn-on Delay Time
tr
Current Rise Time
td(off)
tf
RG = 10Ω
4
Eon2
TJ = +25°C
5
6
Inductive Switching (125°C) VCC = 400V
VGE = 15V
Turn-off Delay Time
I C = 30A
Current Fall Time
Eon1
Turn-on Switching Energy
Eon2
Turn-on Switching Energy (Diode)
Eoff
Turn-off Switching Energy
V
nC
110
15V, L = 100µH,VCE = 600V Inductive Switching (25°C) 12
Turn-on Delay Time
RG = 10Ω
44
55
TJ = +125°C
6
UNIT
pF
TJ = 150°C, R G = 10Ω, VGE =
td(on)
tf
MAX
A
ns
µJ
12
20
245
100
570
965
830
ns
µJ
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RθJC
Junction to Case (IGBT)
.50
RθJC
Junction to Case (DIODE)
5.9
N/A
WT
Package Weight
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
052-6211
Rev E
6-2008
4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode.
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
APT Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
100
V
GE
= 15V
15 &13V
TJ = -55°C
80
70
IC, COLLECTOR CURRENT (A)
TJ = 25°C
60
50
TJ = 125°C
40
30
20
10
10V
80
9V
60
8V
40
7V
20
0
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(TJ = 25°C)
70
60
50
40
TJ = 125°C
20
TJ = 25°C
10
0
J
VCE = 120V
12
VCE = 300V
10
8
VCE = 480V
6
4
2
0
2
4
6
8
10
12
VGE, GATE-TO-EMITTER VOLTAGE (V)
I = 30A
C
T = 25°C
14
0
20
IC = 60A
3.5
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
3.0
IC = 30A
2.5
2.0
1.5
IC = 15A
1.0
0.5
0
6
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
3.5
2.5
1.0
0.5
0
0.80
0.75
0.70
-50 -25
0
25 50 75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Threshold Voltage vs. Junction Temperature
IC, DC COLLECTOR CURRENT(A)
0.85
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
25
50
75
100
125
150
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
80
0.90
IC = 15A
1.5
1.10
0.95
IC = 30A
2.0
90
1.00
IC = 60A
3.0
1.15
1.05
60 80 100 120 140 160
GATE CHARGE (nC)
FIGURE 4, Gate Charge
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
4.0
VGS(TH), THRESHOLD VOLTAGE
(NORMALIZED)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
4.5
40
0
70
60
50
40
30
20
10
0
-50
-25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
6-2008
TJ = -55°C
80
30
FIGURE 2, Output Characteristics (TJ = 125°C)
Rev E
250µs PULSE
TEST<0.5 % DUTY
CYCLE
90
0
5
10
15
20
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
100
IC, COLLECTOR CURRENT (A)
11V
100
6V
0
0
120
052-6211
IC, COLLECTOR CURRENT (A)
90
APT30GT60BR(G)
140
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
14
VGE = 15V
12
10
8
6
4
VCE = 400V
T = 25°C, or 125°C
2 RJ = 10Ω
G
0
APT30GT60BR(G)
300
16
L = 100µH
250
VGE =15V,TJ=25°C
150
100
50 VCE = 400V
RG = 10Ω
0
0
VGE =15V,TJ=125°C
200
L = 100µH
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
60
160
RG = 10Ω, L = 100µH, VCE = 400V
0
RG = 10Ω, L = 100µH, VCE = 400V
140
50
TJ = 125°C, VGE = 15V
40
tf, FALL TIME (ns)
tr, RISE TIME (ns)
120
30
20
2000
V
= 400V
CE
V
= +15V
GE
R = 10Ω
G
2500
0
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
EOFF, TURN OFF ENERGY LOSS (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
3000
TJ = 125°C
2000
1500
1000
500
TJ = 25°C
G
1500
TJ = 125°C
1000
TJ = 25°C
500
0
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
0
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
4500
3000
V
= 400V
CE
V
= +15V
GE
T = 125°C
4000
Eon2,60A
J
3500
3000
Eoff,60A
1500
Eon2,30A
Eoff,30A
1000
Eoff,15A
500
0
Eon2,15A
0
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (µJ)
SWITCHING ENERGY LOSSES (µJ)
V
= 400V
CE
V
= +15V
GE
R = 10Ω
0
0
6-2008
TJ = 25°C, VGE = 15V
0
0
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
Rev E
60
20
0
052-6211
80
40
TJ = 25 or 125°C,VGE = 15V
10
100
V
= 400V
CE
V
= +15V
GE
R = 10Ω
Eon2,60A
G
2500
2000
1500
Eoff,60A
1000
Eon2,30A
Eoff,15A
500
0
Eoff,30A
Eon2,15A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
IC, COLLECTOR CURRENT (A)
Cies
P
C, CAPACITANCE ( F)
1,000
500
Coes
100
APT30GT60BR(G)
120
3,000
Cres
50
100
80
60
40
20
10
0
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
100 200 300 400 500 600 700
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
0.50
D = 0.9
0.40
0.7
0.30
0.5
0.20
Note:
PDM
ZθJC, THERMAL IMPEDANCE (°C/W)
0.60
0.3
t1
t2
0.10
0
t
0.1
0.05
10-5
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
0.00245
0.207
0.00548
0.209
0.165
Case temperature. (°C)
FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL
Fmax = min (fmax, fmax2)
0.05
fmax1 =
td(on) + tr + td(off) + tf
10
5
1
T = 125°C
J
T = 75°C
C
D = 50 %
V
= 400V
CE
R = 10Ω
fmax2 =
Pdiss - Pcond
Eon2 + Eoff
Pdiss =
TJ - TC
RθJC
G
5
15
25
35
45
55
65
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
6-2008
0.0838
50
Rev E
Power
(watts)
RC MODEL
052-6211
Junction
temp. (°C)
FMAX, OPERATING FREQUENCY (kHz)
140
APT30GT60BR(G)
Gate Voltage
10%
APT40DQ60
TJ = 125°C
td(on)
IC
V CC
90%
V CE
Collector Current
tr
5%
5%
10%
Collector Voltage
A
Switching Energy
D.U.T.
Figure 22, Turn-on Switching Waveforms and Definitions
Figure 21, Inductive Switching Test Circuit
90%
td(off)
TJ = 125°C
Gate Voltage
tf
Collector Voltage
90%
10%
0
Collector Current
Switching Energy
Figure 23, Turn-off Switching Waveforms and Definitions
TO-247 Package Outline
e1 SAC: Tin, Silver, Copper
4.69 (.185)
5.31 (.209)
15.49 (.610)
16.26 (.640)
1.49 (.059)
2.49 (.098)
6.15 (.242) BSC
Collector
20.80 (.819)
21.46 (.845)
3.50 (.138)
3.81 (.150)
4.50 (.177) Max.
Rev E
6-2008
0.40 (.016)
0.79 (.031) 19.81 (.780)
20.32 (.800)
052-6211
5.38 (.212)
6.20 (.244)
2.21 (.087)
2.59 (.102)
2.87 (.113)
3.12 (.123)
1.65 (.065)
2.13 (.084)
1.01 (.040)
1.40 (.055)
Gate
Collector
Emitter
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
Similar pages