AD ADUCM320I Fully differential and single-ended mode Datasheet

Precision Analog Microcontroller, 14-Bit Analog
I/O with MDIO Interface, ARM Cortex-M3
ADuCM320i
Data Sheet
FEATURES
Analog input/output
Multichannel, 14-bit, 1 MSPS analog-to-digital
converter (ADC)
Up to 16 ADC input channels
0 V to VREF analog input range
Fully differential and single-ended modes
AVDD and IOVDD monitors
12-bit voltage output digital-to-analog converters (VDACs)
8 VDACs with a range of 0 V to 2.5 V or AVDD outputs
12-bit current output DACs (IDACs)
4 IDACS with a range of 0 mA to 150 mA outputs
Voltage comparator
Microcontroller
ARM Cortex-M3 processor, 32-bit RISC architecture
Serial wire port supports code download and debug
Clocking options
80 MHz PLL with programmable divider
Trimmed on-chip oscillator (±3%)
External 16 MHz crystal option
External clock source up to 80 MHz
Memory
2 × 128 kB independent Flash/EE memories
10,000 cycle Flash/EE endurance
20-year Flash/EE retention
32 kB SRAM
In circuit reprogrammability via I2C
Rev. 0
On-chip peripherals
MDIO slave up to 4 MHz
2 × I2C, 2 × SPI, UART
Multiple general-purpose input/output (GPIO) pins: 3.6 V
compliant
7 × 1.2 V compatible when used for MDIO
32-element programmable logic array (PLA)
3 general-purpose timers
Wake-up timer
Watchdog timer
16-bit pulse width modulator (PWM)
Power
Supply range: 2.9 V to 3.6 V, and 1.8 V to 2.5 V for IDACs
Flexible operating modes for low power applications
Package and temperature range
6 mm × 6mm, 96-ball CSP_BGA package
Fully specified for −40°C to +85°C ambient operation
Tools
Low cost QuickStart development system
Full third party support
APPLICATIONS
Optical networking
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
©2015 Analog Devices, Inc. All rights reserved.
Technical Support
www.analog.com
ADUCM320I* Product Page Quick Links
Last Content Update: 08/30/2016
Comparable Parts
Design Resources
View a parametric search of comparable parts
•
•
•
•
Documentation
Application Notes
• AN-1322: ADuCM320 Code Execution Speed
• AN-806: Flash Programming via I2C—Protocol Type 5
Data Sheet
• ADuCM320i: Precision Analog Microcontroller, 14-Bit
Analog I/O with MDIO Interface, ARM Cortex-M3 Data
Sheet
User Guides
• UG-868: ADuCM320i/ADuCM322/ADuCM322i
Reference Manual
Software and Systems Requirements
ADuCM320i Material Declaration
PCN-PDN Information
Quality And Reliability
Symbols and Footprints
Discussions
View all ADuCM320i EngineerZone Discussions
Sample and Buy
Visit the product page to see pricing options
Technical Support
Submit a technical question or find your regional support
number
• IAR EWARM
• Keil MDKARM
* This page was dynamically generated by Analog Devices, Inc. and inserted into this data sheet. Note: Dynamic changes to
the content on this page does not constitute a change to the revision number of the product data sheet. This content may be
frequently modified.
ADuCM320i
Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
ESD Caution................................................................................ 17
Applications ....................................................................................... 1
Pin Configuration and Function Descriptions........................... 18
Revision History ............................................................................... 2
Typical Performance Characteristics ........................................... 23
Functional Block Diagram .............................................................. 3
Applications Information .............................................................. 24
General Description ......................................................................... 4
Recommended Circuit and Component Values .................... 24
Specifications..................................................................................... 5
Packaging and Ordering Information ......................................... 26
Microcontroller Electrical Specifications .................................. 5
Outline Dimensions ................................................................... 26
Timing Specifications ................................................................ 11
Ordering Guide .......................................................................... 26
Absolute Maximum Ratings ..................................................... 17
REVISION HISTORY
8/15—Revision 0: Initial Version
Rev. 0 | Page 2 of 26
Data Sheet
ADuCM320i
FUNCTIONAL BLOCK DIAGRAM
BUF_VREF2V5
2.5V BAND GAP
XTALO XTALI ECLKIN
1.8 V LDO
CLOCK SYSTEM
32.768kHz
16MHz OSC
80MHz PLL
AIN0
AIN5
AIN6
14-BIT
SAR ADC
MUX
DGNDx
AVDDx
AGNDx
IOVDDx
IOGNDx
AIN15
INTERNAL
CHANNELS:
TEMPERATURE,
AVDD, IOV DD
COMPARATOR
VDAC0
VDAC
VDAC7
VDAC
IDAC0
IDAC
IDAC3
IDAC
ARM
CORTEX-M3
PROCESSOR
MEMORY
2 × 128kB FLASH
32kB SRAM
DMA
NVIC
GPIO PORTS
UART
2 × SPI
2 × I2C
EXT IRQS
MDIO
PLA
GENERALPURPOSE
I/O PORTS
3 × GP TIMER
WD TIMER
WAKE-UP TIMER
PWM
PWM0 TO
PWM6
ADuCM320i
RESET SYSTEM
SERIAL WIRE
SWDIO
PVDDx
PGND
RESET
Figure 1.
Rev. 0 | Page 3 of 26
13422-001
SWCLK
ADuCM320i
Data Sheet
GENERAL DESCRIPTION
The ADuCM320i is a fully integrated single package device that
incorporates high performance analog peripherals together
with digital peripherals controlled by an 80 MHz ARM®
Cortex™-M3 processor and integral flash for code and data.
The ADC on the ADuCM320i provides 14-bit, 1 MSPS data
acquisition on up to 16 input pins that can be programmed for
single-ended or differential operation. The voltage at the IDAC
output pins can also be measured by the ADC, which is useful for
controlling the power consumption of the current DACs.
Additionally, chip temperature and supply voltages can be
measured.
The ADC input voltage is 0 V to VREF. A sequencer is provided,
which allows a user to select a set of ADC channels to be measured
in sequence without software involvement during the sequence.
The sequence can optionally repeat automatically at a user
selectable rate.
Up to eight VDACs are provided with output ranges that are
programmable to one of two voltage ranges.
Four IDAC sources are provided. The output currents are
programmable with a range of 0 mA to 150 mA. A low drift
band gap reference and voltage comparator completes the
analog input peripheral set.
The ADuCM320i can be configured so that the digital and analog
outputs retain their output voltages and currents through a
watchdog or software reset sequence. Thus, a product can remain
functional even while the ADuCM320i is resetting itself.
The ADuCM320i has a low power ARM Cortex-M3 processor
and a 32-bit RISC machine that offers up to 100 MIPS peak
performance. Also integrated on chip are 2 × 128 kB Flash/EE
memory and 32 kB of SRAM. The flash comprises two separate
128 kB blocks supporting execution from one flash block and
simultaneous writing/erasing of the other flash block.
The ADuCM320i operates from an on-chip oscillator or a
16 MHz external crystal and a PLL at 80 MHz. This clock can
optionally be divided down to reduce current consumption.
Additional low power modes can be set via software. In normal
operating mode, the ADuCM320i digital core consumes about
300 µA per MHz.
The device includes an MDIO interface capable of operating at
up to 4 MHz. The capability to simultaneously execute from
one flash block and write/erase the other flash block makes the
ADuCM320i ideal for 10G, 40G, and 100G optical applications.
User programming is eased by incorporating PHYADR and
DEVADD hardware comparators. In addition, the nonerasable
kernel code plus flags in user flash provide assistance by
allowing user code to robustly switch between the two blocks
of user flash code and data spaces.
The ADuCM320i integrates a range of on-chip peripherals that
can be configured under software control, as required in the application. These peripherals include 1 × UART, 2 × I2C, and 2 × SPI
serial input/output (I/O) communication controllers, GPIO,
32-element programmable logic array, 3 general-purpose timers,
plus a wake-up timer and system watchdog timer. A 16-bit
PWM with seven output channels is also provided.
GPIO pins on the device power up in high impedance input
mode. In output mode, the software chooses between opendrain mode and push-pull mode. The pull-up resistors can be
disabled and enabled in software. In GPIO output mode, the
inputs can remain enabled to monitor the pins. The GPIO pins
can also be programmed to handle digital or analog peripheral
signals, in which case the pin characteristics are matched to the
specific requirement.
A large support ecosystem is available for the ARM Cortex-M3
processor to ease product development of the ADuCM320i.
Access is via the ARM serial wire debug port (SW-DP). On-chip
factory firmware supports in-circuit serial download via I2C.
These features are incorporated into a low cost QuickStart™
development system supporting this precision analog
microcontroller family.
Note that throughout this data sheet, multifunction pins, such
as VDAC0/P5.3, are referred to either by the entire pin name or
by a single function of the pin, for example, VDAC0, when only
that function is relevant.
Rev. 0 | Page 4 of 26
Data Sheet
ADuCM320i
SPECIFICATIONS
MICROCONTROLLER ELECTRICAL SPECIFICATIONS
AVDD (the voltage applied to the AVDD3 and AVDD4 pin) = IOVDDx (the voltage applied to the IOVDDx pins (IOVDD0, IOVDD1,
IOVDD2)) = VDD1 (the voltage applied to the VDD1 pin) = 2.9 V to 3.6 V (see Figure 14) maximum difference between supplies = 0.3 V,
VREF = 2.5 V internal reference, fCORE = 80 MHz, TA = −40°C to +85°C, unless otherwise noted. PVDDx (the voltage applied to the PVDDx pins
(PVDD0, PVDD1, PVDD2, PVDD3)) for IDACs = 1.8 V to 2.5 V. Power-up sequence must be VDD1, IOVDDx, AVDDx, and then PVDDx,
but no delays in the sequence are required.
Table 1.
Parameter
ADC BASIC SPECIFICATIONS
ADC Power-Up Time
Data Rate
DC Accuracy 1
Resolution1
Integral Nonlinearity
Differential Nonlinearity
Symbol
Min
INL
DNL
−0.99
±1.75
±1.75
LSB
±0.75
+1
LSB
±3
LSB
±200
+1.2
−250
−2.6
+2
±1
±400
−4
µV
µV/°C
µV
µV/°C
LSB
+2
µV
µV/°C
+3
µV
µV/°C
−350
−4.5
Match
ADC DYNAMIC PERFORMANCE
LSB
±0.75
−2.25
Input Buffer On
Gain Drift1
Unit
µs
MSPS
Bits
Bits
LSB
1
14
16
ADC ENDPOINT ERRORS
Offset Error
Input Buffer Off
Drift1
Input Buffer On
Drift1
Match
Full-Scale Error
Input Buffer Off
Gain Drift1
Input Buffer
Disabled
Enabled
Total Harmonic Distortion
Input Buffer
Disabled
Enabled
Peak Harmonic or Spurious Noise
Channel-to-Channel Crosstalk
Max
5
fSAMPLE
DC Code Distribution
Signal-to-Noise Ratio
Typ
±1
Test Conditions/Comments
Single-ended mode, unless
otherwise stated
1 LSB = 2.5 V/214
Number of data bits
2.5 V internal reference; 1 LSB =
2.5 V/214
2.5 V external reference; 1 LSB =
2.5 V/214
2.5 V internal reference; 1 LSB =
2.5 V/214
2.5 V external reference; 1 LSB =
2.5 V/214
ADC input 1.25 V; 1 LSB =
2.5 V/214
Using 2.5 V external reference
Using 2.5 V external reference
Matching compared to AIN8
Full-scale error drift minus
offset error drift
Full-scale error drift minus
offset error drift
LSB
fIN = 665.25 Hz sine wave,
fSAMPLE = 100 kSPS; input filter =
15 Ω, 2 nF
Includes distortion and noise
components
SNR
80
74
dB
dB
−86
−83
−88
−90
dB
dB
dB
dB
THD
Rev. 0 | Page 5 of 26
Measured on adjacent channels
ADuCM320i
Parameter
ADC INPUT
Input Voltage Ranges
Single-Ended Mode1
Differential Mode1
Data Sheet
Symbol
Compliance1
Common Mode1
Leakage Current
AIN0 to AIN4, AIN6 to AIN15
AIN5
Input Current
Input Capacitance
ADC INPUT BUFFER 2
Voltage Compliance1
Input Current
Min
Max
Unit
Test Conditions/Comments
Input buffer not enabled
AGND4
−VREF
VREF
+VREF
V
Voltage between differential
pins
AGND4
0.9
AVDD4
1.6
V
Output Impedance
Load Current1
VDAC CHANNEL SPECIFICATIONS
DC Accuracy1
Resolution1
Relative Accuracy 4
Differential Nonlinearity4
±1.5
±20
±9
±6
±4
nA
nA
µA/V
µA/V
µA/V
20
pF
0.15
ON-CHIP VOLTAGE REFERENCE
Accuracy
Reference Temperature Coefficient1
Power Supply Rejection Ratio
Internal VREF Power-On Time
EXTERNAL REFERENCE INPUT
Range1
Input Current
BUFFERED REFFERNCE OUTPUT
Output Voltage
Accuracy
Reference Temperature Coefficient1
Typ
−34
PSRR
±100
2.5
V
nA
2.51
V
±5
+4
mV
ppm/°C
dB
ms
2.5
200
V
µA
2.504
±8
−5
+40
V
mV
µV/°C
1.2
Ω
mA
−15
60
50
1.8
−55
10
12
12
INL
DNL
±15
mV
±4
−0.99
Offset Error
±3
Drift
Gain Error 5
±13
±0.3
±0.4
6.5
0.1
Drift
Mismatch
+1
Bits
Bits
LSB
LSB
Rev. 0 | Page 6 of 26
±0.85
±1
µV/°C
%
%
ppm/°C
%
Pin shared with comparator
At 1 MSPS; buffer off
≤800 kSPS; buffer off
500 kSPS; buffer off;
ADCCNVC[25:16] = 0x1E
During ADC acquisition
When enabled by software
Reduced accuracy below 0.15 V
VIN = 0.15 V to 2.5 V, ADC
converting
0.47 µF from VREF_1V2 to
AGND4; reference is measured
with all ADCs, VDACs, and
IDACs enabled
TA = 25°C
ADC
TA = 25°C, load = 1.2 mA
100 nF from BUF_VREF2V5 to
AGND4
TA = 25°C
RL = 5 kΩ, CL = 100 pF 3
1 LSB = 2.5 V/212
Number of data bits
1 LSB = 2.5 V/212
Guaranteed monotonic, 1 LSB =
2.5 V/212
2.5 V internal reference, DAC
Output Code 0
0 V to internal VREF range
0 V to AVDD range
Excluding reference drift
% of full scale on DAC0
Data Sheet
Parameter
Analog Outputs
Output Voltage Range 11
Output Voltage Range 21
Output Impedance
DAC AC Characteristics
Output Settling Time
Glitch Energy
ADuCM320i
Symbol
Min
Typ
Max
Unit
2.5
AVDDx − 0.15
2
V
V
Ω
10
±20
µs
nV-sec
Settled to ±1 LSB
1 LSB change when the
maximum number of bits
changes simultaneously in the
DACxDAT register
Bits
Combination of overlapping
11 bits and 5 bits
0.15
0.15
IDAC CHANNEL SPECIFICATIONS
Resolution1
14
Full-Scale Output1
Supply Voltage Each Channel1
1.8
2.5
mA
V
0.4
0.4
PVDDx – 0.4
PVDDx – 0.25
V
V
±0.75
±3.5
±0.75
%
%
%
±6
+1.5
µA/°C
µA/°C
µA/°C
LSB
LSB
150
Output Compliance Range
IDAC0, IDAC1
IDAC2, IDAC3
Full-Scale Error
IDAC0, IDAC1
IDAC2, IDAC3
Full-Scale Error Drift
IDAC0, IDAC1
−40°C to +85°C
25°C to 85°C
IDAC2, IDAC3
Integral Nonlinearity
Differential Nonlinearity
Zero-Scale Error
Zero-Scale Error Drift
IDAC0, IDAC1
IDAC2, IDAC3
Noise Current
Pull-Down Current
Settling Time
To 0.1%
To 1%
Full Scale to 0 mA
Overheat Shutdown
PVDD ACPSRR
100 Hz
1 kHz
10 kHz
100 kHz
Test Conditions/Comments
Separate PVDDx supply for each
channel
See Figure 11
See Figure 11
IDAC set to 85% of full scale
25°C to 105°C range
−40°C to +105°C range
−40°C to +105°C range
Internal VREF
INL
DNL
25
5
2
±3
−0.99
−220
±50
µA
±300
±800
2
−165
nA/°C
nA/°C
µA
µA
−100
100
50
20
135
µs
µs
µs
°C
51
45
25
10
dB
dB
dB
dB
Rev. 0 | Page 7 of 26
Internal VREF
1 LSB = 150 mA/211
Guaranteed 11-bit monotonic,
1 LSB = 150 mA/211
IDACxCON[5:2] = 0
When enabled
IDACxCON[5:2] = 0
±4 mA change from midscale
±4 mA change from midscale
Pull-down enabled
Junction temperature
IDACxCON[5:2] = 0
ADuCM320i
Parameter
COMPARATOR
Input
Offset Voltage
Bias Current
Voltage Range1
Capacitance
Hysteresis1
Response Time
TEMPERATURE SENSOR
Data Sheet
Symbol
Min
Typ
±10
1
7
0.5
°C
AVDDx − 1.2
7
8.5
Accuracy1
15
1.34
POR
Unit
mV
nA
V
pF
mV
µs
AGNDx
Resolution
POWER-ON RESET
PIN RESET
Minimum Time To Reset
Maximum Time Not To Reset
WATCHDOG TIMER
Timeout Period
FLASH/EE MEMORY
Endurance1
Data Retention1
DIGITAL INPUTS
Input Leakage Current
Logic 1 GPIO
Max
2.85
1.43
V
2.9
V
µs
µs
32
sec
Default at power-up
Cycles
Years
TJ = 85°C
WDT
10,000
20
nA
Logic 0 GPIO
10
nA
PRTADDRx, MCK
1
16
10
6.5
8.5
5
5
10
µA
µA
pF
pF
pF
pF
pF
pF
Low
High
When enabled in software
AFECOMP[2:1] = 0
Indicates die temperature, see
Figure 9
When precision calibrated by
the user 6
ADC measured voltage for
temperature sensor channel
without calibration, TA = 25°C
1.2
0.5
1
Input Capacitance
MCK, PRTADDRx
MDIO
XTALI
XTALO
All Other Pins
LOGIC INPUTS
GPIO Input Voltage
Low
High
MDIO
PRTADDRx Input Voltage
Low
High
MCK, MDIO Input Voltage
Test Conditions/Comments
VINL
VINH
0.58 × IOVDDx
VINL
VINH
0.84
0.25 × IOVDDx
V
V
0.36
V
V
VIH = IOVDD, pull-up resistor
disabled
VIL = 0 V, pull-up resistor
disabled
Pull-up disabled
Pull-up to 1.8 V enabled
Setup time ≥10 ns; hold time
≥10 ns; MCK/MDIO
VINL
VINH
0.36
0.84
Rev. 0 | Page 8 of 26
V
V
Data Sheet
Parameter
XTALI Input Voltage
Low
High
Pull-Up Current
Pull-Down Current
LOGIC OUTPUTS
GPIO Output Voltage 7
High
Low
GPIO Short-Circuit Current1
MDIO
Output Voltage
High
Low
Delay Time
OSCILLATORS
Internal System Oscillator
Accuracy
System PLL
External Crystal Oscillator
ADuCM320i
Symbol
VINL
VINH
Typ
VOH
VOL
Max
Unit
120
100
V
V
µA
µA
1.1
1.7
30
30
IOVDDx − 0.4
0.4
11
VOH
VOL
1.0
0.2
100
16
±0.5
80
16
32 kHz Internal Oscillator
Accuracy
External Clock
START-UP TIME
At Power-On
After Other Reset
From All Power-Down Modes
PROGRAMMABLE LOGIC ARRAY
Propagation Delay
Pin
Element
EXTERNAL INTERRUPTS
Pulse Width1
Level Triggered
Edge Triggered
POWER REQUIREMENTS 8
Power Supply Voltage Range
AVDDx to AGNDx and IOVDDx
to DGNDx1
Analog Power Supply Currents
AVDDx Current
Digital Power Supply Current
IOVDDx Current in Normal Mode
Min
32.768
±5
0.05
±3
±20
80
Test Conditions/Comments
VIN = 0 V, see Figure 10
VIN = 3.3 V, see Figure 10
All digital outputs excluding
XTALO
V
V
mA
ISOURCE = 2 mA
ISINK = 2 mA
See Figure 13
V
V
ns
ISOURCE = 4 mA
ISINK = 4 mA
MCK to MDIO out
MHz
%
MHz
MHz
kHz
%
MHz
40
1.5
ms
ms
1.25
µs
17
1.5
ns
ns
Main system clock
Can be selected in place of
internal oscillator
Use for watchdog
Can be selected in place of PLL
Processor clock = 80 MHz
POR to first user code execution
Reset to first user code
execution
PLA
7
1
2.9
From input pin to output pin
Per PLA cell
ns
ns
3.3
3.6
V
6.3
mA
Analog peripherals in idle mode
4
mA
All GPIO pull-up resistors
enabled
Rev. 0 | Page 9 of 26
ADuCM320i
Parameter
VDDx Current
Normal Mode
Data Sheet
Symbol
Min
CORE_SLEEP Mode
SYS_SLEEP Mode
Hibernate Mode
Additional Power Supply Currents
ADC
ADC Input Buffer
IDAC
DAC
Total Supply Current
Thermal Performance
Impedance, Junction to
Ambient
35
Typ
Unit
Test Conditions/Comments
29
mA
20
10
16
8
6.6
mA
mA
mA
mA
mA
CD = 0 (80 MHz clock)
executing typical code
CD = 1 executing typical code
CD = 7 executing typical code
4.1
mA
4.0
16.5
340
mA
mA
µA
40
45
Max
45
mA
°C/W
Continuously converting at
100 kSPS
Both buffers enabled
Excluding load current
Per powered up DAC,
excluding load current
VDD1, IOVDDx, AVDDx
connected together; condition
when entering user code:
peripheral clocks on,
peripherals idle, no load
currents
JEDEC 2S2P
These numbers are not production tested but are guaranteed by design and/or characterization data at production release.
Enabling the input buffer changes the ADC input characteristics as described in these specifications (the ADC Input Buffer specifications).
3
The data in the Microcontroller Electrical Specifications section also applies for a load of RL = 1 kΩ and CL = 100 pF to ground but only for 0 V to 2.5 V. However, this is
not production tested.
4
DAC linearity is calculated using a reduced code range of 100 to 3900.
5
DAC gain error is calculated using a reduced code range of 100 to an internal 2.5 V VREF.
6
Due to self heating, internal temperature measurements cannot be used to predict external temperatures. This value is only relevant after user calibration and only for
internal and external conditions identical to those at calibration.
7
The average current from all GPIO pins must not exceed 3 mA per pin.
8
Power specifcations exclude any load currents to external circuits.
1
2
Rev. 0 | Page 10 of 26
Data Sheet
ADuCM320i
TIMING SPECIFICATIONS
I2C Timing
Table 2. I2C Timing in Standard Mode (100 kHz)
Parameter
tL
tH
tSHD
tDSU
tDHD
tRSU
tPSU
tBUF
tR
tF
tVD; DAT
tVD;ACK
Description
SCL low pulse width
SCL high pulse width
Start condition hold time
Data setup time
Data hold time (SDA held internally for 300 ns after falling edge of SCL)
Setup time for repeated start
Stop condition setup time
Bus-free time between a stop condition and a start condition
Rise time for both SCL and SDA
Fall time for both SCL and SDA
Data valid time
Data valid acknowledge time
Min
4.7
4.0
4.0
250
0
4.7
4.0
4.7
Slave
Typ
Max
Unit
µs
ns
µs
ns
µs
µs
µs
µs
µs
ns
µs
µs
3.45
1
300
3.45
3.45
15
Table 3. I2C Timing in Fast Mode (400 kHz)
Description
SCL low pulse width
SCL high pulse width
Start condition hold time
Data setup time
Data hold time (SDA held internally for 300 ns after falling edge of SCL)
Setup time for repeated start
Stop condition setup time
Bus-free time between a stop condition and a start condition
Rise time for both SCL and SDA
Fall time for both SCL and SDA
Data valid time
Data valid acknowledge time
Min
1.3
0.6
0.6
100
0
0.6
0.6
1.3
20
Max
Unit
µs
ns
µs
ns
µs
µs
µs
µs
ns
ns
µs
µs
300
300
0.9
0.9
15
tBUF
tR
SDA (I/O)
MSB
LSB
ACK
tDSU
tDSU
tVD; DAT
tR
tVD; ACK
1
S
tF
tRSU
tH
tSHD
SCL (I)
MSB
tDHD
tDHD
tPSU
P
Slave
Typ
2–7
8
tL
STOP
START
CONDITION CONDITION
9
1
S(R)
REPEATED
START
Figure 2. I2C-Compatible Interface Timing
Rev. 0 | Page 11 of 26
tF
13422-002
Parameter
tL
tH
tSHD
tDSU
tDHD
tRSU
tPSU
tBUF
tR
tF
tVD; DAT
tVD; ACK
ADuCM320i
Data Sheet
SPI Timing
Table 4. SPI Master Mode Timing (Phase Mode = 1)
Description
SCLK low pulse width
SCLK high pulse width
Data output valid after SCLK edge
Data input setup time before SCLK edge
Data input hold time after SCLK edge
Data output fall time
Data output rise time
SCLK rise time
SCLK fall time
SCLK
(POLARITY = 0)
Min
Typ
(SPIDIV + 1) × tHCLK/2
(SPIDIV + 1) × tHCLK/2
3
½ SCLK
SCLK
SCLK
25
25
20
0
Max
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
tSH
tSL
tSR
SCLK
(POLARITY = 1)
tDAV
tDF
MOSI
MISO
MSB
MSB IN
tSF
tDR
BIT 6 TO BIT 1
BIT 6 TO BIT 1
tDSU
LSB
LSB IN
13422-003
Parameter
tSL
tSH
tDAV
tDSU
tDHD
tDF
tDR
tSR
tSF
tDHD
Figure 3. SPI Master Mode Timing (Phase Mode = 1)
Rev. 0 | Page 12 of 26
Data Sheet
ADuCM320i
Table 5. SPI Master Mode Timing (Phase Mode = 0)
Description
SCLK low pulse width
SCLK high pulse width
Data output valid after SCLK edge
Data output setup before SCLK edge
Data input setup time before SCLK edge
Data input hold time after SCLK edge
Data output fall time
Data output rise time
SCLK rise time
SCLK fall time
Min
Typ
(SPIDIV + 1) × tHCLK/2
(SPIDIV + 1) × tHCLK/2
3
½ SCLK
SCLK
SCLK
25
25
20
20
0
Max
Unit
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
SCLK
(POLARITY = 0)
tSH
tSL
tSR
tSF
SCLK
(POLARITY = 1)
tDAV
tDOSU
MOSI
MISO
tDF
MSB
MSB IN
tDR
BIT 6 TO BIT 1
BIT 6 TO BIT 1
LSB
LSB IN
tDSU
13422-004
Parameter
tSL
tSH
tDAV
tDOSU
tDSU
tDHD
tDF
tDR
tSR
tSF
tDHD
Figure 4. SPI Master Mode Timing (Phase Mode = 0)
Rev. 0 | Page 13 of 26
ADuCM320i
Data Sheet
Table 6. SPI Slave Mode Timing (Phase Mode = 1)
Parameter
tCS
Description
CS to SCLK edge
Min
10
tSL
tSH
tDAV
tDSU
tDHD
tDF
tDR
tSR
tSF
tSFS
SCLK low pulse width
SCLK high pulse width
Data output valid after SCLK edge
Data input setup time before SCLK edge
Data input hold time after SCLK edge
Data output fall time
Data output rise time
SCLK rise time
SCLK fall time
CS high after SCLK edge
Typ
Max
(SPIDIV + 1) × tHCLK
(SPIDIV + 1) × tHCLK
20
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
10
10
25
25
1
1
20
CS
tSFS
tCS
SCLK
(POLARITY = 0)
tSH
tSL
tSR
tSF
SCLK
(POLARITY = 1)
tDAV
MISO
tDF
MSB
MOSI
MSB IN
tDR
BIT 6 TO BIT 1
BIT 6 TO BIT 1
LSB
LSB IN
13422-005
tDSU
tDHD
Figure 5. SPI Slave Mode Timing (Phase Mode = 1)
Rev. 0 | Page 14 of 26
Unit
ns
Data Sheet
ADuCM320i
Table 7. SPI Slave Mode Timing (Phase Mode = 0)
Parameter
tCS
Description
CS to SCLK edge
Min
10
tSL
tSH
tDAV
tDSU
tDHD
tDF
tDR
tSR
tSF
tDOCS
tSFS
SCLK low pulse width
SCLK high pulse width
Data output valid after SCLK edge
Data input setup time before SCLK edge
Data input hold time after SCLK edge
Data output fall time
Data output rise time
SCLK rise time
SCLK fall time
Data output valid after CS edge
CS high after SCLK edge
Typ
Max
Unit
ns
(SPIDIV + 1) × tHCLK
(SPIDIV + 1) × tHCLK
20
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
10
10
25
25
1
1
20
10
CS
tCS
tSFS
SCLK
(POLARITY = 0)
tSH
tSL
tSF
tSR
SCLK
(POLARITY = 1)
tDAV
tDOCS
tDF
MOSI
MSB
MSB IN
BIT 6 TO BIT 1
BIT 6 TO BIT 1
LSB
LSB IN
13422-006
MISO
tDR
tDSU
tDHD
Figure 6. SPI Slave Mode Timing (Phase Mode = 0)
Rev. 0 | Page 15 of 26
ADuCM320i
Data Sheet
Table 8. MDIO vs MCK Timing
Parameter
tSETUP
tHOLD
tDELAY
Description
MDIO setup before MCK edge
MDIO valid after MCK edge
Data output after MCK edge
Min
10
10
Typ
Max
Unit
ns
ns
ns
100
MCK
VIH
VIL
CFP
INPUT
MDIO
VIH
VIL
CFP
INPUT
MDIO
tSETUP
tHOLD
Figure 7. MDIO Timing
Rev. 0 | Page 16 of 26
tDELAY
13422-007
VOH
VOL
CFP
OUTPUT
Data Sheet
ADuCM320i
ABSOLUTE MAXIMUM RATINGS
All requirements applicable to each pin must be met. Where
multiple limits apply to a pin each one must be met individually.
The limits apply according to the functionality of the pins at the
time. Pins that can be either analog or digital, that is, that have
two types indicated in the pin descriptions, must meet the limits
for both types. For pin types, see Table 10.
When powered up, all ground pins and ADC_REFN must be
connected together to a node referred to as GND in Table 9.
The limits that are listed must be reduced by any difference
between any GNDx pin. Also, AVDD3 must be connected to
AVDD4 and IOVDD1 must be connected to IOVDD3.
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
ESD CAUTION
Table 9.
Parameter
Any Pin to GND
Any PVDDx Pin to GND
MDIO 1, MCK, and PRTADDR0 to
PRTADDR4 in MDIO Mode to GND
Between Any of AVDDx, IOVDDx, and
VDD1 Pins
Any Type I Pin to GND 2
Any Type AI or AO Pin to GND 3
Any IDACx, CDAMPx, IDAC_TST, IREF to
GND
ADC_REFP to GND
Total Positive GPIO Pin Currents
Total Negative GPIO Pin Currents
Maximum Power Dissipation
Operating Ambient Temperature Range
Storage Temperature Range
Operating Junction Temperature Range
ESD HBM
ESD FICDM
Rating
−0.3 V to +3.9 V
−0.3 V to +2.8 V
−0.3 V to +2.1 V
−0.3 V to +0.3 V
−0.3 V to IOVDDx + 0.3 V
−0.3 V to AVDDx + 0.3 V
−0.3 V to PVDDx + 0.3 V
−0.3 V to AVDDx + 0.3 V
0 mA to 30 mA
−30 mA to 0 mA
1W
−40°C to +85°C
−65°C to +160°C
−40°C to +120°C
4 kV
1 kV
Note that this pin is always in MDIO mode.
This limit does not apply if no current can be drawn by external circuits on
IOVDDx because, in this case, IOVDD follows to a suitable level.
3
This limit does not apply if no current can be drawn by external circuits on
AVDDx because, in this case, AVDD follows to a suitable level.
1
2
Rev. 0 | Page 17 of 26
ADuCM320i
Data Sheet
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
1
2
3
4
5
A
IDAC_
TST
IDAC0
PVDD0
PV DD2
IDAC 2
PGND
IDAC 3
P V DD3
B
IOVDD1
RES ET
P3.3/
PRTADDR3/
PLAI[15]
CDA MP0
CDA MP2
PGND
CDAMP3
CDAMP1
P1.0/SIN/ P1.1/SOUT/
ECLKIN/ PLACLK1/
PLAI[5]
PLAI[4]
C
IOG ND1
P0.0/
SCLK0/
PLAI[0]
P2.3/BM
P1.3/
PWM1/
PLAI[7]
P1.4/
PWM2/
SCLK1/
PLAO[10]
P1.5/
PWM3/
MISO1/
PLAO[11]
P1.6/
PWM4/
MOSI1/
PLAO[12]
D
P0.2/
MOSI0/
PLAI[2]
P0.1/
MISO0/
PLAI[1]
P3.2/
PRTADDR2/
PLAI[14]
P2.4/IRQ5/
ADCCONV/
PWM6/
PLAO[18]
DGND2
IOVDD2
E
P0.5/
SDA0 /
PLAO[3]
P0.4/
SCL0/
PLAO[2]
P0.3/
IRQ0/CS0/
PLACLK0/
PLAI[3]
SWCLK
SWDIO
IOG ND2
F
P2.6/
IRQ7/
PLAO[20]
P0.7/
SDA1/
PLAO[5]
P0.6/
SCL1/
PLAO[4]
AVDD_
REG0
AVDD_
RE G1
VRE F_1V2
G
P2.7/
IRQ8/
PLAO[21]
P3.1/
PRTADDR1/
PLAI[13]
P3.0/
PRTADDR0/
PLAI[12]
AIN15/
P4.7
AIN13/
P4.5
AVDD4
H
P3.5/
MCK/
PLAO[27]
XTALO
MDIO
AIN14/
P4.6
AIN12/
P4.4
AGND4
J
IOVDD3
XTALI
VDAC7/
P5.2
VDAC4
AGND1
AIN0
AIN1
AIN2
AIN7
AIN10
AIN11/
BUF_
VREF2V5
K
IOG ND3
DVDD_
2V5
VDAC6/
P5.1
VDAC3/
P5.0
VDAC1
VDD1
AGND2
AIN3
AIN6
AIN9/
P4.3
ADC _
REFP
L
DGND1
DVD D_1V8
VDAC5
VDAC2 /
P3.7/
PLAO[29]
VDAC0/
P5.3
AVDD3
AGND3
AIN4
AIN5
AIN8/
P4.2
ADC _
REFN
IDAC
P2.2/
P2.0/IRQ2/
IRQ4/POR/ PWMTRIP/
CLKOUT/ PLACLK2/
PLAI[10]
PLAI[8]
7
8
ADuCM320i
TO P VIEW
(Not to Scale)
9
P VDD1
10
11
IDAC1
IREF
P1.2/
PWM0/
PLAI[6]
P1.7/IRQ1/
P3.4/
PWM5/
PRTADDR4/
CS1/
PLAO[26]
PLAO[13]
ANALOG
Figure 8. Pin Configuration
Table 10. Pin Function Descriptions
Pin No.
B2
C2
Mnemonic
RESET
P0.0/SCLK0/PLAI[0]
Type 1
I
I/O
D2
P0.1/MISO0/PLAI[1]
I/O
D1
P0.2/MOSI0/PLAI[2]
I/O
E3
P0.3/IRQ0/CS0/PLACLK0/PLAI[3]
I/O
E2
P0.4/SCL0/PLAO[2]
I/O
Description
Reset Input (Active Low). An internal pull-up resistor is included.
Digital I/O Port 0.0 (P0.0).
SPI0 Clock (SCLK0).
Input to PLA Element 0 (PLAI[0]).
Digital I/O Port 0.1 (P0.1).
SPI0 Master Input, Slave Output (MISO0).
Input to PLA Element 1 (PLAI[1]).
Digital I/O Port 0.2 (P0.2).
SPI0 Master Output, Slave Input (MOSI0).
Input to PLA Element 2 (PLAI[2]).
Digital I/O Port 0.3 (P0.3).
External Interrupt 0 (IRQ0).
SPI0 Chip Select 0 (CS0). When using SPI0, configure this pin as CS0.
PLA Clock 0 (PLACLK0).
Input to PLA Element 3 (PLAI[3]).
Digital I/O Port 0.4 (P0.4).
I2C0 Serial Clock (SCL0).
Output of PLA Element 2 (PLAO[2]).
Rev. 0 | Page 18 of 26
13422-008
DIGITAL
6
Data Sheet
ADuCM320i
Pin No.
E1
Mnemonic
P0.5/SDA0/PLAO[3]
Type 1
I/O
F3
P0.6/SCL1/PLAO[4]
I/O
F2
P0.7/SDA1/PLAO[5]
I/O
B9
P1.0/SIN/ECLKIN/PLAI[4]
I/O
B10
P1.1/SOUT/PLACLK1/PLAI[5]
I/O
B11
P1.2/PWM0/PLAI[6]
I/O
C6
P1.3/PWM1/PLAI[7]
I/O
C7
P1.4/PWM2/SCLK1/PLAO[10]
I/O
C8
P1.5/PWM3/MISO1/PLAO[11]
I/O
C9
P1.6/PWM4/MOSI1/PLAO[12]
I/O
C10
P1.7/IRQ1/PWM5/CS1/PLAO[13]
I/O
C5
P2.0/IRQ2/PWMTRIP/PLACLK2/PLAI[8]
I/O
C4
P2.2/IRQ4/POR/CLKOUT/PLAI[10]
I/O
Description
Digital I/O Port 0.5 (P0.5).
I2C0 Serial Data (SDA0).
Output of PLA Element 3 (PLAO[3]).
Digital I/O Port 0.6 (P0.6).
I2C1 Serial Clock (SCL1).
Output of PLA Element 4 (PLAO[4]).
Digital I/O Port 0.7 (P0.7).
I2C1 Serial Data (SDA1).
Output of PLA Element 5 (PLAO[5]).
Digital I/O Port 1.0 (P1.0).
UART Input (SIN).
External Input Clock (ECLKIN).
Input to PLA Element 4 (PLAI[4]).
Digital I/O Port 1.1 (P1.1).
UART Output (SOUT)
PLA Clock 1(PLACLK1).
Input to PLA Element 5 (PLAI[5]).
Digital I/O Port 1.2 (P1.2).
PWM Output 0 (PWM0).
Input to PLA Element 6 (PLAI[6]).
Digital I/O Port 1.3 (P1.3).
PWM Output 1 (PWM1).
Input to PLA Element 7 (PLAI[7]).
Digital I/O Port 1.4 (P1.4).
PWM Output 2 (PWM2).
SPI1 Clock (SCLK1).
Output of PLA Element 10 (PLAO[10]).
Digital I/O Port 1.5 (P1.5).
PWM Output 3 (PWM3).
SPI1 Master Input, Slave Output (MISO1).
Output of PLA Element 11 (PLAO[11]).
Digital I/O Port 1.6 (P1.6).
PWM Output 4 (PWM4).
SPI1 Master Output, Slave Input (MOSI1).
Output of PLA Element 12 (PLAO[12]).
Digital I/O Port 1.7 (P1.7).
External Interrupt 1 (IRQ1).
PWM Output 5 (PWM5).
SPI1 Chip Select 1 (CS1). When using SPI1, configure this pin as CS1.
Output of PLA Element 13 (PLAO[13]).
Digital I/O Port 2.0 (P2.0).
External Interrupt 2 (IRQ2).
PWM Trip (PWMTRIP).
PLA Input Clock 2 (PLACLK2).
Input to PLA Element 8 (PLAI[8]).
Digital I/O Port 2.2 (P2.2).
External Interrupt 4 (IRQ4).
Reset Output (POR).
Clock Output (CLKOUT).
Input to PLA Element 10 (PLAI[10]).
Rev. 0 | Page 19 of 26
ADuCM320i
Data Sheet
Pin No.
C3
Mnemonic
P2.3/BM
Type 1
I/O
D9
P2.4/IRQ5/ADCCONV/PWM6/PLAO[18]
I/O
F1
P2.6/IRQ7/PLAO[20]
I/O
G1
P2.7/IRQ8/PLAO[21]
I/O
G3
P3.0/PRTADDR0/PLAI[12]
I/O
G2
P3.1/PRTADDR1/PLAI[13]
I/O
D3
P3.2/PRTADDR2/PLAI[14]
I/O
B3
P3.3/PRTADDR3/PLAI[15]
I/O
C11
P3.4/PRTADDR4/PLAO[26]
I/O
H1
P3.5/MCK/PLAO[27]
I/O
H3
E9
E10
F11
MDIO
SWCLK
SWDIO
VREF_1V2
I/O
I
I/O
S
A11
IREF
AI
J6
J7
J8
K8
L8
L9
K9
J9
AIN0
AIN1
AIN2
AIN3
AIN4
AIN5
AIN6
AIN7
AI
AI
AI
AI
AI
AI
AI
AI
Description
Digital I/O Port 2.3 (P2.3).
Boot Mode (BM). This pin determines the start-up sequence after every reset.
Pull-up is enabled at power-up.
Digital I/O Port 2.4 (P2.4).
External Interrupt 5 (IRQ5).
External Input to Start ADC Conversions (ADCCONV).
PWM Output 6 (PWM6).
Output of PLA Element 18 (PLAO[18]).
Digital I/O Port 2.6 (P2.6).
External Interrupt 7 (IRQ7).
Output of PLA Element 20 (PLAO[20]).
Digital I/O Port 2.7 (P2.7).
External Interrupt 8 (IRQ8).
Output of PLA Element 21 (PLAO[21]).
Digital I/O Port 3.0 (P3.0).
MDIO Port Address Bit 0 (PRTADDR0). See the digital inputs parameter in Table 1
for details.
Input to PLA Element 12 (PLAI[12]).
Digital I/O Port 3.1 (P3.1).
MDIO Port Address Bit 1 (PRTADDR1). See the digital inputs parameter in Table 1
for details.
Input to PLA Element 13 (PLAI[13]).
Digital I/O Port 3.2 (P3.2).
MDIO Port Address Bit 2 (PRTADDR2). See the digital inputs parameter in Table 1
for details.
Input to PLA Element 14 (PLAI[14]).
Digital I/O Port 3.3 (P3.3).
MDIO Port Address Bit 3 (PRTADDR3). See the digital inputs parameter in Table 1
for details.
Input of PLA Element 15 (PLAI[15]).
Digital I/O Port 3.4 (P3.4).
MDIO Port Address Bit 4 (PRTADDR4). See the digital inputs parameter in Table 1
for details.
Output of PLA Element 26 (PLAO[26]).
Digital I/O Port 3.5 (P3.5).
MDIO Clock (MCK) See the digital inputs parameter in Table 1 for more details.
Output of PLA Element 27 (PLAO[27]).
MDIO Data.
Serial Wire Debug Clock.
Serial Wire Bidirectional Data.
1.2 V Reference. This pin cannot be used to source current externally. Connect
VREF_1V2 to AGNDx via a 470 nF capacitor.
IDAC Reference Current. This pin generates the reference current for the IDACs
and is set by an external resistor, REXT. Connect REXT from IREF to AGND4.
Analog Input 0.
Analog Input 1.
Analog Input 2.
Analog Input 3.
Analog Input 4.
Analog Input 5. AIN5 can be the negative input for the comparator.
Analog Input 6. AIN6 is also the positive input for the comparator.
Analog Input 7.
Rev. 0 | Page 20 of 26
Data Sheet
ADuCM320i
Pin No.
L10
Mnemonic
AIN8/P4.2
Type 1
AI/I/O
K10
AIN9/P4.3
AI/I/O
J10
J11
AIN10
AIN11/BUF_VREF2V5
AI
AI/AO
H10
AIN12/P4.4
AI/I/O
G10
AIN13/P4.5
AI/I/O
H9
AIN14/P4.6
AI/I/O
G9
AIN15/P4.7
AI/I/O
L5
VDAC0/P5.3
AO/I/O
K5
L4
VDAC1
VDAC2/P3.7/PLAO[29]
AO
AO/I/O
K4
VDAC3/P5.0
AO/I/O
J4
L3
K3
VDAC4
VDAC5
VDAC6/P5.1
AO
AO
AO/I/O
J3
VDAC7/P5.2
AO/I/O
A2
A3
B4
A10
A9
B8
A5
A4
B5
A7
A8
B7
B6
A6
A1
L2
IDAC0
PVDD0
CDAMP0
IDAC1
PVDD1
CDAMP1
IDAC2
PVDD2
CDAMP2
IDAC3
PVDD3
CDAMP3
PGND
PGND
IDAC_TST
DVDD_1V8
AO
S
AI
AO
S
AI
AO
S
AI
AO
S
AI
S
S
AI/AO
AO
K2
DVDD_2V5
AO
Description
Analog Input 8 (AIN8).
Digital I/O Port 4.2 (P4.2).
Analog Input 9 (AIN9).
Digital I/O Port 4.3 (P4.3).
Analog Input 10.
Analog Input 11 (AIN11).
Buffered 2.5 V Bias (BUF_VREF2V5). The maximum load is 1.2 mA. Connect
BUF_VREF2V5 to AGNDx via a 100 nF capacitor.
Analog Input 12 (AIN12).
Digital I/O Port 4.4 (P4.4).
Analog Input 13 (AIN13).
Digital I/O Port 4.5 (P4.5).
Analog Input 14 (AIN14).
Digital I/O Port 4.6 (P4.6).
Analog Input 15 (AIN15).
Digital I/O Port 4.7 (P4.7).
Voltage DAC0 Output (VDAC0).
Digital I/O Port 5.3 (P5.3).
Voltage DAC1 Output.
Voltage DAC2 Output (VDAC2).
Digital I/O Port 3.7 (P3.7).
Output of PLA Element 29 (PLAO[29]).
Voltage DAC3 Output (VDAC3).
Digital I/O Port 5.0 (P5.0).
Voltage DAC4 Output (VDAC4).
Voltage DAC5 Output (VDAC5).
Voltage DAC6 Output (VDAC6).
Digital I/O Port 5.1 (P5.1).
Voltage DAC7 Output (VDAC7).
Digital I/O Port 5.2 (P5.2).
IDAC0. 0 mA to 150 mA full-scale output.
Power for IDAC0.
Damping Capacitor 0. Connect a damping capacitor from this pin to PVDD0.
IDAC1. 0 mA to 150 mA full-scale output.
Power for IDAC1.
Damping Capacitor 1. Connect a damping capacitor from this pin to PVDD1.
IDAC2. 0 mA to 150 mA full-scale output.
Power for IDAC2.
Damping Capacitor 2. Connect a damping capacitor from this pin to PVDD2.
IDAC3. 0 mA to 150 mA full-scale output.
Power for IDAC3.
Damping Capacitor 3. Connect a damping capacitor from this pin to PVDD3.
Power Supply Ground for IDACs.
Power Supply Ground for IDACs.
Pin for IDAC Test Purposes. Leave IDAC_TST unconnected.
1.8 V Digital Supply. A 470 nF capacitor to DGND1 must be connected to this
pin to stabilize the internal 1.8 V regulator that supplies flash memory and the
ARM Cortex-M3 processor.
2.5 V Digital Supply. A 470 nF capacitor to IOGND3 must be connected to this
pin to stabilize the internal 2.5 V regulator that supplies the analog digital
control.
Rev. 0 | Page 21 of 26
ADuCM320i
Data Sheet
Pin No.
F9
Mnemonic
AVDD_REG0
Type 1
AO
F10
AVDD_REG1
AO
L1
D10
B1
D11
J1
C1
E11
K1
J5
K7
L7
H11
K6
L6
G11
L11
DGND1
DGND2
IOVDD1
IOVDD2
IOVDD3
IOGND1
IOGND2
IOGND3
AGND1
AGND2
AGND3
AGND4
VDD1
AVDD3
AVDD4
ADC_REFN
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
AO/A
K11
ADC_REFP
AO/A
H2
XTALO
O
J2
XTALI
I
1
Description
Analog Regulator 0 Supply. A 470 nF capacitor to AGND4 must be connected to
this pin to stabilize the internal 2.5 V regulator that supplies the ADC.
Analog Regulator 1 Supply. Output of 2.5 V on-chip LDO regulator. A 470 nF
capacitor to AGND4 must be connected to this pin. This regulator supplies the
IDACs.
Digital Ground 1 for DVDD_1V8.
Digital Ground 2. Connect to DGND1.
3.3 V GPIO Supply.
3.3 V GPIO Supply and Interdie Communications.
3.3 V GPIO Supply.
Ground for IOVDD1.
Ground for IOVDD2.
Ground for IOVDD3 and Interdie Communications.
Analog Ground for VDD1.
ESD Ground for Pad Ring.
Ground for AVDD3.
Ground for AVDD4, AVDD_REG0, and AVDD_REG1.
3.3 V Supply for Digital Die.
VDAC and IDAC Supply (3.3 V).
ADC Supply (3.3 V).
Negative Decoupling Capacitor Connection for ADC Reference Buffer. Connect
this pin to AGND4.
Positive Decoupling Capacitor Connection for ADC Reference Buffer. Connect
this pin to a 4.7 µF capacitor to the ADC_REFN pin. ADC_REFP can be overdriven
by an external reference.
Output from the Crystal Oscillator Inverter. When not using an external crystal,
leave XTALO unconnected.
Input to the Crystal Oscillator Inverter and Input to the Internal Clock Generator
Circuits. When not using an external crystal, connect XTALI to DGNDx.
I is digital input, O is digital output, S is supply, AI is analog input, and AO is analog output.
Rev. 0 | Page 22 of 26
Data Sheet
ADuCM320i
TYPICAL PERFORMANCE CHARACTERISTICS
0
50000
IDAC0
IDAC1
IDAC2
IDAC3
–10
PVDD AC PSRR (dB)
ADC CODE (LSB 16)
45000
DEVICE 1
DEVICE 2
DEVICE 3
DEVICE 4
DEVICE 5
40000
35000
–20
–30
–40
–50
30000
–40
–20
0
20
40
60
80
100
–70
13422-009
25000
–60
120
TEMPERATURE (°C)
100
3.0
2.5
OUTPUT VOLTAGE (V)
PIN CURRENT (µA)
70
100k
Figure 12. Typical PVDD AC PSRR vs. Frequency
MAX PULL-UP
MIN PULL-UP
MIN PULL-DOWN
MAX PULL-DOWN
80
10k
FREQUENCY (Hz)
Figure 9. Typical Temperature Measurement (ADC Code) vs. Internal
Temperature (VDD = 3.3 V, 50 kSPS)
90
1k
13422-012
–60
60
50
40
30
20
10
VOH MAX
VOH MIN
VOL MIN
VOL MAX
2.0
1.5
1.0
0.5
0
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
PIN VOLTAGE (V)
0
13422-010
6
8
10
12
14
16
Figure 13. Typical Output Voltage vs. Load Current
IDAC2
IDAC3
IDAC0
IDAC1
3.6
VDD1 (V)
250
200
150
AFTER 40ms VDD1 MUST
STAY ABOVE 2.9V INCLUDING
NOISE EXCURSIONS
3.0
2.9
100
40ms min
50
0
0
25
50
75
100
125
150
IDAC OUTPUT CURRENT (mA)
13422-011
IDAC HEADROOM (mV)
300
4
LOAD CURRENT (mA)
Figure 10. Typical Pull-Up/Pull-Down Pin Current vs. Pin Voltage
(VDD = 3.3 V, 25°C)
350
2
Figure 11. Typical IDAC Headroom vs. IDAC Output Current
VDD1 MUST BE ABOVE 3V
FOR AT LEAST 40ms TO
COMPLETE POR
TIME (Not to Scale)
Figure 14. VDD1 Power-On Requirements
Rev. 0 | Page 23 of 26
13422-014
–10
13422-013
0
ADuCM320i
Data Sheet
APPLICATIONS INFORMATION
capacitor near to each ball and their associated GND balls
(PGND). In addition, place at least one 10 μF capacitor at the
source of the PVDDx supply.
RECOMMENDED CIRCUIT AND COMPONENT
VALUES
Figure 15 shows a typical connection diagram for the
ADuCM320i.
Supplies and regulators must be adequately decoupled with
capacitors connected between the AVDDx, PVDDx, DVDD_x,
AVDD_REGx, IOVDDx, and VDD1 balls and their associated
GND balls (AGNDx, PGND, IOGNDx, and DGNDx). Table 10
indicates which ground balls are paired with which supply balls.
There are four digital supply balls, IOVDD1, IOVDD2, IOVDD3,
and VDD1. Decouple these balls with a 100 nF capacitor placed
as near as possible to each of the four balls and their associated
GND balls (IOGNDx and AGND1, respectively). In addition,
place a 10 μF capacitor conveniently near to these balls.
Similarly, the analog supply pins, AVDD3 and AVDD4, each
require a 100 nF capacitor placed as near as possible to each ball
and its associated AGNDx ball, and place a 10 μF capacitor
conveniently near to these balls.
The IDACs source their output currents from the PVDDx
supply balls. Each PVDDx supply ball must have a 100 nF
The IDAC output filters depend on a 10 nF capacitor being
placed between the CDAMPx and PVDDx pins.
The ADC reference requires a 4.7 μF capacitor placed between
ADC_REFP and ADC_REFN and located as near as possible to
each ball. ADC_REFN must be connected directly to AGND4.
The ADuCM320i contains four internal regulators. These
regulators require external decoupling capacitors. The
DVDD_1V8 and DVDD_2V5 balls each require a 470 nF
capacitor to DGND1 and IOGND3, respectively. AVDD_REG0
and AVDD_REG1 each require a decoupling capacitor to
AGND4.
To generate an accurate and low drift reference current, connect
the IREF ball to AGND4 via a low ppm 3.16 kΩ resistor.
Take care in the layout to ensure that currents flowing from the
ground end of each decoupling capacitor to its associated
ground ball share as little track as possible with other ground
currents on the printed circuit board.
Rev. 0 | Page 24 of 26
Data Sheet
ADuCM320i
VDD1
DVDD
0.47µF 0.47µF
D11
J1
K6
L2
K2
L1
D10
C1
E11
K1
IOVDD2
IOVDD3
VDD1
DVDD_1V8
DVDD_2V5
DGND1
DGND2
IOGND1
IOGND2
IOGND3
10kΩ
B1
IOVDD1
VDD1
RESET
B2
RESET
12pF
DGND
J2
XTALI
H2
XTALO
A3
PVDD0
A9
PVDD1
VDD1
PVDD
B7
CDAMP3
PGND
B6
PGND
SWDIO E10
ADC_REFN
A6
P1.1/SOUT B10
L6
G11
F11
A11
K11
L11
AGND4
CDAMP2
AGND3
CDAMP1
B5
AGND2
B8
SWCLK E9
AGND1
CDAMP0
AVDD_REG1
B4
P1.0/SIN/ECLKIN/PLAI[4] B9
F10
J5
K7
L7
H11
AVDD_REG0
PVDD3
ADC_REFP
10nF
PVDD2
A8
IREF
10nF
A4
VREF_1V2
10nF
P2.3/BM C3
ADuCM320i
AVDD4
10nF
10kΩ
AVDD3
12pF
F9
0.47µF 3.16kΩ 4.7µF
RESET
RESET
GND
SWDIO
Tx
0.47µF 0.47µF
AGND
DGND
SWCLK
Rx
NC
VDD1
DVDD
1.6Ω
10µF
VIN
ADP7102ARDZ3.3
VIN
0.1µF
10µF
1.6Ω
VOUT
10kΩ
EN/UVLO
0.1µF
10µF
PG
GND
DGND
ADP1741ACPZ
+2.5V
DGND DGND1
DVDD
SENSE/ADJ
0.1µF
10µF
0.1µF
AGND1
AVDD
0.1µF
AGND AGND
PVDD
VIN VOUT
30kΩ
EN
10µF
EP
GND
PGND
10µF
ADJ
SS
10kΩ
PGND
10µF
PGND
Figure 15. Recommended Circuit and Component Values
Rev. 0 | Page 25 of 26
13422-015
INTERFACE BOARD CONNECTOR
AVDD
ADuCM320i
Data Sheet
PACKAGING AND ORDERING INFORMATION
OUTLINE DIMENSIONS
6.10
6.00 SQ
5.90
A1 BALL
CORNER
A1 BALL
CORNER
11 10 9 8 7 6 5 4 3 2 1
A
B
C
D
E
F
G
H
J
K
L
5.00 REF
SQ
0.50
BSC
1.200
1.083
1.000
BOTTOM VIEW
DETAIL A
DETAIL A
0.223 NOM
0.173 MIN
SEATING
PLANE
0.35
0.30
0.25
BALL DIAMETER
0.93
0.86
0.79
COPLANARITY
0.08
04-02-2013-A
0.50
REF
TOP VIEW
COMPLIANT TO JEDEC STANDARDS MO-195-AC
WITH THE EXCEPTION TO BALL COUNT.
Figure 16. 96-Ball Chip Scale Package Ball Grid Array [CSP_BGA]
(BC-96-2)
Dimensions shown in millimeters
ORDERING GUIDE
Model 1
Temperature Range
Package Description
ADUCM320BBCZI
ADUCM320BBCZI-RL
EVAL-ADUCM320IQSPZ
−40°C to +85°C
−40°C to +85°C
96-Ball Chip Scale Package Ball Grid Array [CSP_BGA]
96-Ball Chip Scale Package Ball Grid Array [CSP_BGA]
Evaluation Board with QuickStart Development System
1
Package
Option
Ordering
Quantity
BC-96-2
BC-96-2
429
2,500
1
Z = RoHS Compliant Part.
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).
©2015 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D13422-0-8/15(0)
www.analog.com/ADuCM320i
Rev. 0 | Page 26 of 26
Similar pages