IRF IRHE58Z30 Radiation hardened power mosfet surface mount (lcc-18) Datasheet

PD - 93863E
IRHE57Z30
JANSR2N7494U5
30V, N-CHANNEL
RADIATION HARDENED
POWER MOSFET
SURFACE MOUNT (LCC-18)
REF: MIL-PRF-19500/700
5
Product Summary
Part Number
IRHE57Z30
IRHE53Z30
TECHNOLOGY
™
Radiation Level RDS(on)
100K Rads (Si) 0.07Ω
300K Rads (Si) 0.07Ω
ID
QPL Part Number
12A* JANSR2N7494U5
12A* JANSF2N7494U5
IRHE54Z30
500K Rads (Si)
0.07Ω
12A* JANSG2N7494U5
IRHE58Z30
1000K Rads (Si)
0.07Ω
12A* JANSH2N7494U5
LCC-18
International Rectifier’s R5TM technology provides
high performance power MOSFETs for space
applications. These devices have been characterized
for Single Event Effects (SEE) with useful performance
up to an LET of 80 (MeV/(mg/cm2)). The combination
of low RDS(on) and low gate charge reduces the power
losses in switching applications such as DC to DC
converters and motor control. These devices retain
all of the well established advantages of MOSFETs
such as voltage control, fast switching, ease of
paralleling and temperature stability of electrical
parameters.
Features:
n
n
n
n
n
n
n
n
n
Single Event Effect (SEE) Hardened
Low RDS(on)
Low Total Gate Charge
Simple Drive Requirements
Ease of Paralleling
Hermetically Sealed
Ceramic Package
Surface Mount
Light Weight
Absolute Maximum Ratings
Pre-Irradiation
Parameter
ID @ VGS = 12V, TC = 25°C
ID @ VGS = 12V, TC = 100°C
IDM
PD @ TC = 25°C
VGS
EAS
IAR
EAR
dv/dt
TJ
T STG
Continuous Drain Current
Continuous Drain Current
Pulsed Drain Current À
Max. Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Single Pulse Avalanche Energy Á
Avalanche Current À
Repetitive Avalanche Energy À
Peak Diode Recovery dv/dt Â
Operating Junction
Storage Temperature Range
Pckg. Mounting Surface Temp.
Weight
Units
12*
8.0
48
25
0.2
±20
156
12
2.5
2.3
-55 to 150
A
W
W/°C
V
mJ
A
mJ
V/ns
o
C
300 (for 5s)
0.42 (Typical)
g
* Current is limited by package
For footnotes refer to the last page
www.irf.com
1
04/26/06
IRHE57Z30, JANSR2N7495U5
Pre-Irradiation
Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)
Parameter
Min
Drain-to-Source Breakdown Voltage
—
—
V
—
0.025
—
V/°C
—
—
0.07
Ω
2.0
8.0
—
—
—
—
—
—
4.0
—
10
25
V
S( )
Gate-to-Source Leakage Forward
Gate-to-Source Leakage Reverse
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain (‘Miller’) Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Inductance
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
6.1
100
-100
65
20
10
25
100
35
30
—
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
—
—
—
2184
940
35
—
—
—
∆BV DSS /∆T J Temperature Coefficient of Breakdown
Voltage
RDS(on)
Static Drain-to-Source On-State
Resistance
VGS(th)
Gate Threshold Voltage
g fs
Forward Transconductance
IDSS
Zero Gate Voltage Drain Current
IGSS
IGSS
Qg
Q gs
Q gd
td(on)
tr
td(off)
tf
LS + LD
Ciss
C oss
Crss
Typ Max Units
30
Test Conditions
VGS = 0V, I D = 1.0mA
Reference to 25°C, ID = 1.0mA
VGS = 12V, ID = 8.0A Ã
nC
VDS = VGS, ID = 1.0mA
VDS ≥ 15V, IDS = 8.0A Ã
VDS= 24V ,VGS=0V
VDS = 24V,
VGS = 0V, TJ = 125°C
VGS = 20V
VGS = -20V
VGS =12V, I D = 12A
VDS = 15V
ns
VDD = 15V, ID = 12A
VGS =12V, RG = 7.5Ω
Ω
BVDSS
µA
nA
nH
Measured from the center of
drain pad to center of source pad
pF
VGS = 0V, VDS = 25V
f = 1.0MHz
Source-Drain Diode Ratings and Characteristics
Parameter
Min Typ Max Units
IS
ISM
VSD
trr
Q RR
Continuous Source Current (Body Diode)
Pulse Source Current (Body Diode) À
Diode Forward Voltage
Reverse Recovery Time
Reverse Recovery Charge
ton
Forward Turn-On Time
—
—
—
—
—
—
—
—
—
—
12*
48
1.8
102
196
Test Conditions
A
V
ns
nC
Tj = 25°C, IS = 12A, VGS = 0V Ã
Tj = 25°C, IF = 12A, di/dt ≤100A/µs
VDD ≤ 25V Ã
Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD.
* Current is limited by package
Thermal Resistance
Parameter
RthJC
RthJPCB
Junction-to-Case
Junction-to-PC Board
Min Typ Max Units
—
—
—
—
5.0
19
°C/W
Test Conditions
Solder to a copper clad PC Board
Note: Corresponding Spice and Saber models are available on International Rectifier web site.
For footnotes refer to the last page
2
www.irf.com
Radiation Characteristics
Pre-Irradiation
IRHE57Z30, JANSR2N94U5
International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability.
The hardness assurance program at International Rectifier is comprised of two radiation environments.
Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both
pre- and post-irradiation performance are tested and specified using the same drive circuitry and test
conditions in order to provide a direct comparison.
Table 1. Electrical Characteristics @ Tj = 25°C, Post Total Dose Irradiation ÄÅ
Parameter
BVDSS
VGS(th)
IGSS
IGSS
IDSS
RDS(on)
RDS(on)
VSD
Test Conditions
Up to 500K Rads(Si)1 1000K Rads (Si)2 Units
Min
Max
Min
Max
Drain-to-Source Breakdown Voltage
Gate Threshold Voltage
Gate-to-Source Leakage Forward
Gate-to-Source Leakage Reverse
Zero Gate Voltage Drain Current
Static Drain-to-Source Ã
On-State Resistance (TO-3)
Static Drain-to-Source Ã
On-State Resistance (LCC-18)
Diode Forward Voltage Ã
30
2.0
—
—
—
—
—
4.0
100
-100
10
0.024
30
1.5
—
—
—
—
—
4.0
100
-100
25
0.042
VGS = 0V, I D = 1.0mA
VGS = VDS , ID = 1.0mA
VGS = 20V
VGS = -20 V
VDS= 24V, VGS =0V
VGS =12V, ID =8.0A
—
0.07
—
0.088
Ω
VGS =12V, ID =8.0A
—
1.8
—
1.8
V
VGS = 0V, IS =12A
V
nA
µA
Ω
1. Part numbers IRHE57Z30 (JANSR2N7494U5), IRHE53Z30 (JANSF2N7494U5) and IRHE54Z30 (JANSG2N7494U5)
2. Part number IRHE58Z30 (JANSH2N7494U5)
International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for
Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.
Table 2. Single Event Effect Safe Operating Area
Ion
VDS (V)
Range
(µm) @V GS=0V @VGS=-5V @V GS=-10V @VGS=-15V @VGS=-20V
40
30
30
30
25
15
37
30
30
30
23
15
33
25
25
20
15
8
Energy
(MeV)
261
285
344
VDS
Cu
Br
I
LET
(MeV/(mg/cm2))
28
37
60
35
30
25
20
15
10
5
0
Cu
Br
I
0
-5
-10
-15
-20
VGS
Fig a. Single Event Effect, Safe Operating Area
For footnotes refer to the last page
www.irf.com
3
IRHE57Z30, JANSR2N7495U5
100
Pre-Irradiation
100
VGS
15V
12V
10V
9.0V
8.0V
7.0V
6.0V
BOTTOM 5.0V
10
5.0V
20µs PULSE WIDTH
TJ = 25 °C
1
0.1
1
10
10
5.0V
RDS(on) , Drain-to-Source On Resistance
(Normalized)
I D , Drain-to-Source Current (A)
2.0
TJ = 25 ° C
TJ = 150 ° C
10
V DS = 15V
15
20µs PULSE WIDTH
7
8
9
10
11
VGS , Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
4
10
100
Fig 2. Typical Output Characteristics
100
6
1
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
1
20µs PULSE WIDTH
TJ = 150 °C
1
0.1
100
VDS , Drain-to-Source Voltage (V)
5
VGS
15V
12V
10V
9.0V
8.0V
7.0V
6.0V
BOTTOM 5.0V
TOP
I D , Drain-to-Source Current (A)
I D , Drain-to-Source Current (A)
TOP
ID = 12A
1.5
1.0
0.5
0.0
-60 -40 -20
VGS = 12V
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C)
Fig 4. Normalized On-Resistance
Vs. Temperature
www.irf.com
Pre-Irradiation
4000
20
2400
VGS , Gate-to-Source Voltage (V)
VGS = 0V,
f = 1MHz
Ciss = Cgs + Cgd , Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
3200
C, Capacitance (pF)
IRHE57Z30, JANSR2N94U5
Ciss
Coss
1600
800
ID = 12A
VDS = 24V
VDS = 15V
16
12
8
4
Crss
0
1
10
0
100
FOR TEST CIRCUIT
SEE FIGURE 13
0
VDS , Drain-to-Source Voltage (V)
10
20
30
40
50
60
QG , Total Gate Charge (nC)
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
100
100
ID, Drain-to-Source Current (A)
ISD , Reverse Drain Current (A)
OPERATION IN THIS AREA LIMITED
TJ = 150 ° C
10
TJ = 25 ° C
1
V GS = 0 V
0.1
0.0
1.5
3.0
4.5
6.0
VSD ,Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
www.irf.com
BY R DS(on)
100µs
10
1ms
10ms
Tc = 25°C
Tj = 150°C
Single Pulse
1
7.5
1
10
100
VDS , Drain-toSource Voltage (V)
Fig 8. Maximum Safe Operating Area
5
IRHE57Z30, JANSR2N7495U5
Pre-Irradiation
14
LIMITED BY PACKAGE
VGS
12
ID , Drain Current (A)
RD
VDS
D.U.T.
RG
10
+
-V DD
V GS
8
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
6
Fig 10a. Switching Time Test Circuit
4
VDS
2
0
90%
25
50
75
100
125
150
TC , Case Temperature ( °C)
10%
VGS
Fig 9. Maximum Drain Current Vs.
Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
Thermal Response (Z thJC )
10
D = 0.50
0.20
1
0.10
0.05
0.02
0.01
0.1
PDM
SINGLE PULSE
(THERMAL RESPONSE)
t1
t2
0.01
0.00001
Notes:
1. Duty factor D = t 1 / t 2
2. Peak T J = P DM x Z thJC + TC
0.0001
0.001
0.01
0.1
1
10
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
6
www.irf.com
IRHE57Z30, JANSR2N94U5
15V
L
VDS
D.U.T.
RG
IAS
VGS
20V
DRIVER
+
- VDD
0.01Ω
tp
Fig 12a. Unclamped Inductive Test Circuit
A
EAS , Single Pulse Avalanche Energy (mJ)
Pre-Irradiation
400
TOP
BOTTOM
300
200
100
0
25
V(BR)DSS
ID
5.4A
7.6A
12A
50
75
100
125
150
°
Starting TJ, Junction Temperature (°C)
tp
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
I AS
Current Regulator
Same Type as D.U.T.
Fig 12b. Unclamped Inductive Waveforms
50KΩ
QG
12V
.2µF
.3µF
12 V
QGS
QGD
+
V
- DS
VGS
VG
3mA
Charge
Fig 13a. Basic Gate Charge Waveform
www.irf.com
D.U.T.
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
7
IRHE57Z30, JANSR2N7495U5
Pre-Irradiation
Footnotes:
À Repetitive Rating; Pulse width limited by
maximum junction temperature.
Á VDD = 20V, starting TJ = 25°C, L= 2.17mH
Peak IL = 12A, VGS = 12V
 I SD ≤ 12A, di/dt ≤ 110A/µs,
VDD ≤ 30V, TJ ≤ 150°C
à Pulse width ≤ 300 µs; Duty Cycle ≤ 2%
Ä Total Dose Irradiation with VGS Bias.
12 volt VGS applied and V DS = 0 during
irradiation per MIL-STD-750, method 1019, condition A.
Å Total Dose Irradiation with VDS Bias.
24 volt VDS applied and V GS = 0 during
irradiation per MlL-STD-750, method 1019, condition A.
Case Outline and Dimensions — LCC-18
PAD ASSIGNMENTS
D = DRAIN
G = GATE
S = SOURCE
NC = NO CONNECTION
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
IR LEOMINSTER : 205 Crawford St., Leominster, Massachusetts 01453, USA Tel: (978) 534-5776
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.
Data and specifications subject to change without notice. 04/2006
8
www.irf.com
Similar pages