AD AD8684 Dual/quad low power, high speed Datasheet

Dual/Quad Low Power, High Speed
JFET Operational Amplifiers
AD8682/AD8684
APPLICATIONS
Portable telecommunications
Low power industrial and instrumentation
Loop filters
Active and precision filters
Integrators
Strain gauge amplifiers
Portable medical instrumentation
Supply current monitoring
PIN CONFIGURATIONS
OUT A 1
8
V+
–IN A 2
AD8682
7
OUT B
+IN A 3
TOP VIEW
(Not to Scale)
6
–IN B
5
+IN B
V– 4
06278-001
Low supply current: 250 μA/amp maximum
High slew rate: 9 V/μs
Bandwidth: 3.5 MHz typical
Low offset voltage: 1 mV maximum @ 25°C
Low input bias current: 20 pA maximum @ 25°C
CMRR: 90 dB typical
Fast settling time
Unity-gain stable
Figure 1. 8-Lead SOIC_N and 8-Lead MSOP
OUT A 1
14
OUT D
–IN A 2
13
–IN D
+IN A 3
12
+IN D
11
V–
+IN B 5
10
+IN C
–IN B 6
9
–IN C
OUT B 7
8
OUT C
V+ 4
AD8684
TOP VIEW
(Not to Scale)
06278-002
FEATURES
Figure 2. 14-Lead SOIC_N and 14-Lead TSSOP
GENERAL DESCRIPTION
The AD8682 and AD8684 are dual and quad low power, precision
(1 mV) JFET amplifiers featuring excellent speed at low supply
currents. The slew rate is typically 9 V/μs with a supply current
under 250 μA per amplifier. These unity-gain stable amplifiers
have a typical gain bandwidth of 3.5 MHz. The JFET input stage
ensures bias current is typically a few picoamps and below
125 pA maximum over the full temperature operating range.
The devices are ideal for portable, low power applications,
especially with high source impedance. The devices are unity-gain
stable and can drive higher capacity loads (G = 1, noninverting),
as an example of their excellent dynamic response over a wide
range of conditions, delivering dc precision performance at low
quiescent currents.
Rev. B
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113 ©2006–2008 Analog Devices, Inc. All rights reserved.
AD8682/AD8684
TABLE OF CONTENTS
Features .............................................................................................. 1
ESD Caution...................................................................................4
Applications ....................................................................................... 1
Typical Performance Characteristics ..............................................5
Pin Configurations ........................................................................... 1
Applications Information .............................................................. 10
General Description ......................................................................... 1
High-Side Signal Conditioning ................................................ 10
Revision History ............................................................................... 2
Phase Inversion ........................................................................... 10
Specifications..................................................................................... 3
Active Filters ............................................................................... 10
Electrical Characteristics ............................................................. 3
Programmable State Variable Filter ......................................... 11
Absolute Maximum Ratings............................................................ 4
Outline Dimensions ....................................................................... 12
Thermal Resistance ...................................................................... 4
Ordering Guide .......................................................................... 14
REVISION HISTORY
7/08—Rev. A to Rev. B
Changes to Phase Inversion Section ............................................ 10
Deleted Figure 33 ............................................................................ 10
Added Figure 33 and Figure 34..................................................... 10
Updated Outline Dimensions ....................................................... 12
7/07—Rev. 0 to Rev. A
Change to Figure 21 ......................................................................... 8
Change to Figure 31 ......................................................................... 9
10/06—Revision 0: Initial Version
Rev. B | Page 2 of 16
AD8682/AD8684
SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
VS = ±15.0 V, TA = 25°C, VCM = 0 V, unless otherwise noted.
Table 1.
Parameter
INPUT CHARACTERISTICS
Offset Voltage
AD8682
Symbol
Min
VOS
Typ
Max
Unit
0.35
1
2.5
3
3.5
4
20
125
20
100
+15
mV
mV
mV
mV
mV
pA
pA
pA
pA
V
dB
V/mV
V/mV
μV/°C
pA/°C
+25°C ≤ TA ≤ +85°C
−40°C ≤ TA ≤ +25°C
+25°C ≤ TA ≤ +85°C
−40°C ≤ TA ≤ +25°C
AD8684
Input Bias Current
Conditions
IB
6
−40°C ≤ TA ≤ +85°C
Input Offset Current
IOS
−40°C ≤ TA ≤ +85°C
Input Voltage Range
Common-Mode Rejection Ratio
Large Signal Voltage Gain
Offset Voltage Drift
Bias Current Drift
OUTPUT CHARACTERISTICS
Output Voltage High
Output Voltage Low
Short-Circuit Limit
Open-Loop Output Impedance
POWER SUPPLY
Power Supply Rejection Ratio
Supply Current/Amplifier
Supply Voltage Range
DYNAMIC PERFORMANCE
Slew Rate
Full-Power Bandwidth
Settling Time
Gain Bandwidth Product
Phase Margin
NOISE PERFORMANCE
Voltage Noise
Voltage Noise Density
Current Noise Density
CMRR
AVO
−11 V ≤ VCM ≤ +15 V, −40°C ≤ TA ≤ +85°C
RL = 10 kΩ
RL = 10 kΩ, −40°C ≤ TA ≤ +85°C
−11
70
20
15
ΔVOS/ΔT
ΔIB/ΔT
VOH
VOL
ISC
ZOUT
90
10
8
RL = 10 kΩ
RL = 10 kΩ
Source
Sink
f = 1 MHz
PSRR
ISY
VS
VS = ±4.5 V to ±18 V, −40°C ≤ TA ≤ +85°C
VO = 0 V, −40°C ≤ TA ≤ +85°C
SR
BWP
tS
GBP
ØM
RL = 10 kΩ
1% distortion
To 0.01%
en p-p
en
in
0.1 Hz to 10 Hz
f = 1 kHz
13.5
3
92
13.9
−13.9
10
−12
200
114
210
±4.5
Rev. B | Page 3 of 16
7
−13.5
−8
250
±18
V
V
mA
mA
Ω
dB
μA
V
9
125
1.6
3.5
55
V/μs
kHz
μs
MHz
Degrees
1.3
36
0.01
μV p-p
nV/√Hz
pA/√Hz
AD8682/AD8684
ABSOLUTE MAXIMUM RATINGS
THERMAL RESISTANCE
Table 2.
Parameter
Supply Voltage
Input Voltage
Differential Input Voltage1
Output Short-Circuit Duration
Storage Temperature Range
Operating Temperature Range
Junction Temperature Range
Lead Temperature (Soldering, 60 sec)
1
Rating
±18 V
±18 V
36 V
Indefinite
−65°C to +150°C
−40°C to +85°C
−65°C to +150°C
300°C
Table 3.
Package Type
8-Lead MSOP [RM-8]
8-Lead SOIC_N [R-8]
14-Lead TSSOP [RU-14]
14-Lead SOIC_N [R-14]
ESD CAUTION
For supply voltages less than ±18 V, the absolute maximum input voltage is
equal to the supply voltage.
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
Rev. B | Page 4 of 16
θJA
210
158
180
120
θJC
45
43
35
36
Unit
°C/W
°C/W
°C/W
°C/W
AD8682/AD8684
TYPICAL PERFORMANCE CHARACTERISTICS
180
70
60
135
40
90
20
45
0
0
50
–45
–20
VS = ±15V
TA = 25°C
60
CLOSED-LOOP GAIN (dB)
VS = ±15V
TA = 25°C
PHASE (Degree)
OPEN-LOOP GAIN (dB)
80
40
30
AVCL = 100
AVCL = 10
20
10
0
AVCL = 1
–10
10k
100k
FREQUENCY (Hz)
–90
10M
1M
–30
1k
06278-003
–40
1k
Figure 3. AD8682 Open-Loop Gain and Phase vs. Frequency
10k
100k
FREQUENCY (Hz)
30
VS = ±15V
RL = 10kΩ
40
10M
Figure 6. AD8682 Closed-Loop Gain vs. Frequency
45
VS = ±15V
RL = 10kΩ
CL = 50pF
25
–SR
35
30
SLEW RATE (V/µs)
OPEN-LOOP GAIN (V/mV)
1M
06278-006
–20
25
20
15
20
15
10
+SR
10
5
–50
–25
0
25
50
75
100
125
TEMPERATURE (°C)
0
–75
06278-004
0
–75
–50
25
50
75
100
125
100
125
Figure 7. Slew Rate vs. Temperature
80
1000
INPUT BIAS CURRENT (pA)
VS = ±15V
RL = 2kΩ
70 V = 100mV p-p
IN
AVCL = 1
T
60
A = 25°C
+OS
50
–OS
30
20
VS = ±15V
VCM = 0V
100
10
1
0
0
100
200
300
400
LOAD CAPACITANCE (pF)
500
0.1
–75
–50
–25
0
25
50
75
TEMPERATURE (°C)
Figure 5. Small Signal Overshoot vs. Load Capacitance
Figure 8. AD8682 Input Bias Current vs. Temperature
Rev. B | Page 5 of 16
06278-008
10
06278-005
OVERSHOOT (%)
0
TEMPERATURE (°C)
Figure 4. AD8682 Open-Loop Gain vs. Temperature
40
–25
06278-007
5
AD8682/AD8684
20
VS = ±15V
TA = 25°C
TA = 25°C
RL = 10kΩ
15
OUTPUT VOLTAGE SWING (V)
VOLTAGE NOISE DENSITY (nV/√Hz)
1000
100
10
VOH
10
5
0
–5
–10
VOL
100
1k
FREQUENCY (Hz)
10k
–20
06278-009
1
10
0
±15
±20
Figure 12. Output Voltage Swing vs. Supply Voltage
1000
VS = ±15V
TA = 25°C
100
VS = ±15V
TA = 25°C
100
OUTPUT IMPEDANCE (Ω)
INPUT BIAS CURRENT (pA)
±10
SUPPLY VOLTAGE (V)
Figure 9. Voltage Noise Density vs. Frequency
1000
±5
06278-012
–15
10
1
AVCL = 100
10
AVCL = 10
1
–10
–5
0
5
10
15
COMMON-MODE VOLTAGE (V)
0.1
100
06278-010
0.1
–15
Figure 10. Input Bias Current vs. Common-Mode Voltage
480
100k
1M
480
TA = 25°C
SUPPLY CURRENT (µA)
475
470
465
460
455
470
465
460
0
±5
±10
±15
SUPPLY VOLTAGE (V)
±20
450
–50
–25
0
25
50
75
100
TEMPERATURE (°C)
Figure 11. AD8682 Supply Current vs. Supply Voltage
Figure 14. AD8682 Supply Current vs. Temperature
Rev. B | Page 6 of 16
125
06278-014
455
06278-011
SUPPLY CURRENT (µA)
10k
FREQUENCY (Hz)
Figure 13. Closed-Loop Output Impedance vs. Frequency
475
450
1k
06278-013
AVCL = 1
AD8682/AD8684
10
VOH
8
6
4
2
0
100
1k
LOAD RESISTANCE (Ω)
10k
25
20
15
10
5
0
100
140
10k
FREQUENCY (Hz)
100k
1M
140
VS = ±15V
120 TA = 25°C
VS = ±15V
TA = 25°C
120
100
100
+PSRR
80
80
CMRR (dB)
60
40
20
–PSRR
60
40
20
0
0
–20
–20
–40
–40
–60
100
–60
100
1k
10k
100k
FREQUENCY (Hz)
06278-016
1M
Figure 16. AD8682 PSRR vs. Frequency
14
10k
100k
FREQUENCY (Hz)
20
VS = ±15V
TA = 25°C
100 × AD8682
(200 OP AMPS)
18
16
SINK
10
1M
Figure 19. AD8682 CMRR vs. Frequency
VS = ±15V
TA = 25°C
12
1k
14
12
UNITS
8
SOURCE
6
10
8
6
4
4
2
–25
0
25
50
75
100
TEMPERATURE (°C)
125
06278-017
0
–50
2
0
–1.0 –0.8 –0.6
–0.4 –0.2
0
0.2
VOS (µV)
0.4
0.6
Figure 20. AD8682 VOS Distribution
Figure 17. AD8682 Short-Circuit Current vs. Temperature
Rev. B | Page 7 of 16
0.8
1.0
06278-020
PSRR (dB)
1k
Figure 18. Maximum Output Swing vs. Frequency
Figure 15. Absolute Output Voltage vs. Load Resistance
SHORT-CIRCUIT CURRENT (mA)
VS = ±15V
TA = 25°C
RL = 10kΩ
AVCL = 1
06278-018
MAXIMUM OUTPUT SWING (V p-p)
VOL
12
06278-015
ABSOLUTE OUTPUT VOLTAGE (V)
14
30
VS = ±15V
TA = 25°C
06278-019
16
AD8682/AD8684
1000
400
VS = ±15V
300 × AD8682
(600 OP AMPS)
360
INPUT BIAS CURRENT (pA)
320
280
UNITS
240
200
160
120
80
100
10
1
0
4
8
12
16
20
24
28
32
0.1
–75
06278-021
0
36
TCVOS (µV/°C)
–50
–25
0
25
50
75
100
125
TEMPERATURE (°C)
06278-024
40
Figure 24. AD8684 Input Bias Current vs. Temperature
Figure 21. AD8682 TCVOS Distribution SOIC_N Package
950
50
45
945
SUPPLY CURRENT (µA)
35
30
25
20
15
10
940
935
930
925
920
915
5
–25
0
25
50
75
100
125
TEMPERATURE (°C)
910
06278-022
0
–50
20
30
40
Figure 25. AD8684 Relative Supply Current vs. Supply Voltage
950
VS = ±15V
TA = 25°C
50
10
SUPPLY VOLTAGE (V)
Figure 22. AD8684 Open-Loop Gain vs. Temperature
60
0
06278-025
OPEN-LOOP GAIN (V/mV)
40
945
SUPPLY CURRENT (µA)
40
30
AVCL = 10
20
10
AVCL = 1
0
935
930
925
920
1k
10k
100k
1M
10M
FREQUENCY (Hz)
100M
910
–50
–25
0
25
50
75
100
TEMPERATURE (°C)
Figure 26. AD8684 Supply Current vs. Temperature
Figure 23. AD8684 Closed-Loop Gain vs. Frequency
Rev. B | Page 8 of 16
125
06278-026
–20
940
915
–10
06278-023
CLOSED-LOOP GAIN (dB)
AVCL = 100
AD8682/AD8684
140
40
VS = ±15V
TA = 25°C
100 × AD8684
(400 OP AMPS)
VS = ±15V
35
120
30
100
25
UNITS
PSRR–
60
20
40
10
20
5
10k
100k
1M
10M
FREQUENCY (Hz)
0
–1.0
06278-027
0
1k
0.2
0.4
0.6
0.8
1.0
Figure 30. AD8684 VOS Distribution Package
14
800
12
700
VS = ±15V
300 × AD8684
(1200 OP AMPS)
SINK
600
10
500
SOURCE
8
UNITS
SHORT-CIRCUIT CURRENT (mA)
0
VOS (µV)
Figure 27. AD8684 PSRR vs. Frequency
6
400
300
4
200
2
100
–25
0
25
50
75
100
125
TEMPERATURE (°C)
0
06278-028
0
–50
VS = ±15V
120
100
80
60
40
100k
1M
FREQUENCY (Hz)
10M
06278-029
20
10k
4
8
12 16 20 24 28 32 36 40 44 48 52 56 60
Figure 31. AD8684 TCVOS Distribution Package
140
0
1k
0
TCVOS (µV/°C)
Figure 28. AD8684 Short-Circuit Current vs. Temperature
CMRR (dB)
–0.8 –0.6 –0.4 –0.2
06278-030
15
Figure 29. AD8684 CMRR vs. Frequency
Rev. B | Page 9 of 16
06278-031
PSRR (dB)
PSRR+
80
AD8682/AD8684
APPLICATIONS INFORMATION
The AD8682 and AD8684 are dual and quad JFET op amps that
are optimized for high speed at low power. This combination
makes these amplifiers excellent choices for battery-powered or
low power applications that require above average performance.
Applications benefiting from this performance combination
include telecommunications, geophysical exploration, portable
medical equipment, and navigational instrumentation.
current when the input exceeds the supply rail. The resistor
should be selected to limit the amount of input current below
the absolute maximum rating.
V+
VIN
D2
IN5711
R1
10kΩ
D1
IN5711
HIGH-SIDE SIGNAL CONDITIONING
VOLTAGE (5V/DIV)
VS = ±15V
0.1Ω
RL
100kΩ
06278-033
V–
Figure 33. Phase Reversal Solution Circuit
The AD8682/AD8684 are commonly used in the sensing of
power supply currents and in current sensing applications, such
as the partial circuit shown in Figure 32. In this circuit, the voltage
drop across a low value resistor, such as the 0.1 Ω shown here, is
amplified and compared to 7.5 V. The output can then be used
for current limiting.
500kΩ
VOUT
D3
IN5711
There are many applications requiring the sensing of signals near
the positive rail. The AD8682 and the AD8684 were tested and
are guaranteed over a common-mode range (−11 V ≤ VCM ≤
+15 V) that includes the positive supply.
100kΩ
2
VOUT
1/2
AD8682
VIN
06278-032
500kΩ
06278-034
15V
V+
V–
AD8682/
AD8684
TIME (200µs/DIV)
Figure 34. No Phase Reversal
Figure 32. High-Side Signal Conditioning
PHASE INVERSION
ACTIVE FILTERS
Most JFET input amplifiers invert the phase of the input signal
if either input exceeds the input common-mode range. For the
AD8682/AD8684, a negative signal in excess of 11 V causes
phase inversion. This is caused by saturation of the input stage
leading to the forward-biasing of a gate-drain diode. Phase
reversal in AD8682/AD8684 can be prevented by using Schottky
diodes to clamp the input terminals to each other and to the
supplies. In the simple buffer circuit below, D1 protects the op
amp against phase reversal. R1, D2, and D3 limit the input
The wide bandwidth and high slew rates of the AD8682/AD8684
make either one an excellent choice for many filter applications.
There are many active filter configurations, but the four most
popular configurations are: Butterworth, elliptic, Bessel, and
Chebyshev. Each type has a response that is optimized for a
given characteristic, as shown in Table 4.
Table 4.
Type
Butterworth
Chebyshev
Elliptic
Bessel (Thompson)
Selectivity
Moderate
Good
Best
Poor
Overshoot
Good
Moderate
Poor
Best
Phase
Nonlinear
Amplitude (Pass Band)
Maximum flat
Equal ripple
Equal ripple
Linear
Rev. B | Page 10 of 16
Amplitude (Stop Band)
Equal ripple
AD8682/AD8684
PROGRAMMABLE STATE VARIABLE FILTER
The circuit shown in Figure 35 can be used to accurately program
the Q factor; the cutoff frequency (fC); and the gain of a twopole state variable filter. The AD8684 has been used in this
design because of its high bandwidth, low power, and low noise.
This circuit takes only three packages to build because of the
quad configuration of the op amps and DACs.
The DACs shown are used in voltage mode; therefore, many
values are dependent on the accuracy of the DAC only and not
on the absolute values of the DAC resistive ladders. As a result, this
makes the circuit unusually accurate for a programmable filter.
Adjusting DAC 1 changes the signal amplitude across R1; therefore,
the DAC attenuation × R1 determines the amount of signal current
that charges the integrating capacitor, C1.
This cutoff frequency can be expressed as
fC =
1 ⎛ D1 ⎞
⎜
⎟
2πR1C1 ⎝ 256 ⎠
where D1 is the digital code for the DAC.
DAC 3 is used to set the gain. The gain equation is
Gain =
R4 ⎛ D3 ⎞
⎜
⎟
R5 ⎝ 256 ⎠
DAC 2 is used to set the Q of the circuit. Adjusting this DAC
controls the amount of feedback from the band-pass node to
the input summing node. Note that the digital value of the
DAC is in the numerator; therefore, zero code is not a valid
operating point.
Q=
R2 ⎛ 256 ⎞
⎜
⎟
R3 ⎝ D2 ⎠
R7
2kΩ
R4
2kΩ
DAC 3
1/4
DAC8408
1/4
AD8684
R5
2kΩ
C1
1000pF
DAC 1
1/4
AD8684
1/4
DAC8408
1/4
AD8684
R1
2kΩ
1/4
AD8684
1/4
DAC8408
HIGH PASS
R6
2kΩ
C1
1000pF
DAC 4
1/4
AD8684
R1
2kΩ
1/4
AD8684
LOW
PASS
BAND PASS
R3
2kΩ
DAC 2
R2
2kΩ
1/4
AD8684
1/4
AD8684
1/4
DAC8408
06278-035
VIN
Figure 35. Programmable State Variable Filter
Rev. B | Page 11 of 16
AD8682/AD8684
OUTLINE DIMENSIONS
5.00 (0.1968)
4.80 (0.1890)
5
1
4
1.27 (0.0500)
BSC
0.25 (0.0098)
0.10 (0.0040)
6.20 (0.2441)
5.80 (0.2284)
1.75 (0.0688)
1.35 (0.0532)
0.51 (0.0201)
0.31 (0.0122)
COPLANARITY
0.10
SEATING
PLANE
0.50 (0.0196)
0.25 (0.0099)
8°
0°
0.25 (0.0098)
0.17 (0.0067)
1.27 (0.0500)
0.40 (0.0157)
COMPLIANT TO JEDEC STANDARDS MS-012-A A
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 36. 8-Lead Standard Small Outline Package [SOIC_N]
Narrow Body
(R-8)
Dimensions shown in millimeters and (inches)
3.20
3.00
2.80
8
3.20
3.00
2.80
1
5
5.15
4.90
4.65
4
PIN 1
0.65 BSC
0.95
0.85
0.75
1.10 MAX
0.15
0.00
0.38
0.22
COPLANARITY
0.10
45°
0.23
0.08
8°
0°
SEATING
PLANE
COMPLIANT TO JEDEC STANDARDS MO-187-AA
Figure 37. 8-Lead Mini Small Outline Package [MSOP]
(RM-8)
Dimensions shown in millimeters
Rev. B | Page 12 of 16
0.80
0.60
0.40
012407-A
8
4.00 (0.1574)
3.80 (0.1497)
AD8682/AD8684
8.75 (0.3445)
8.55 (0.3366)
4.00 (0.1575)
3.80 (0.1496)
8
14
1
7
6.20 (0.2441)
5.80 (0.2283)
1.27 (0.0500)
BSC
0.25 (0.0098)
0.10 (0.0039)
COPLANARITY
0.10
0.50 (0.0197)
0.25 (0.0098)
1.75 (0.0689)
1.35 (0.0531)
SEATING
PLANE
0.51 (0.0201)
0.31 (0.0122)
45°
8°
0°
0.25 (0.0098)
0.17 (0.0067)
1.27 (0.0500)
0.40 (0.0157)
060606-A
COMPLIANT TO JEDEC STANDARDS MS-012-AB
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
Figure 38. 14-Lead Standard Small Outline Package [SOIC_N]
Narrow Body
(R-14)
Dimensions shown in millimeters and (inches)
5.10
5.00
4.90
14
8
4.50
4.40
4.30
6.40
BSC
1
7
PIN 1
0.65 BSC
1.20
MAX
0.15
0.05
COPLANARITY
0.10
0.30
0.19
0.20
0.09
SEATING
PLANE
8°
0°
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1
Figure 39. 14-Lead Thin Shrink Small Outline Package [TSSOP]
(RU-14)
Dimensions shown in millimeters
Rev. B | Page 13 of 16
0.75
0.60
0.45
061908-A
1.05
1.00
0.80
AD8682/AD8684
ORDERING GUIDE
Model
AD8682ARZ 1
AD8682ARZ-REEL1
AD8682ARZ-REEL71
AD8682ARMZ-R21
AD8682ARMZ-REEL1
AD8684ARZ1
AD8684ARZ-REEL1
AD8684ARZ-REEL71
AD8684ARUZ1
AD8684ARUZ-REEL1
1
Temperature Range
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
Package Description
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead MSOP
8-Lead MSOP
14-Lead SOIC_N
14-Lead SOIC_N
14-Lead SOIC_N
14-Lead TSSOP
14-Lead TSSOP
Z = RoHS Compliant Part.
Rev. B | Page 14 of 16
Package Option
R-8
R-8
R-8
RM-8
RM-8
R-14
R-14
R-14
RU-14
RU-14
Branding
A1K
A1K
AD8682/AD8684
NOTES
Rev. B | Page 15 of 16
AD8682/AD8684
NOTES
©2006–2008 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D06278-0-7/08(B)
Rev. B | Page 16 of 16
Similar pages