AD AD822ANZ Single-supply, rail-to-rail low power fet-input op amp Datasheet

Single-Supply, Rail-to-Rail
Low Power FET-Input Op Amp
AD822
True single-supply operation
Output swings rail-to-rail
Input voltage range extends below ground
Single-supply capability from 5 V to 30 V
Dual-supply capability from ±2.5 V to ±15 V
High load drive
Capacitive load drive of 350 pF, G = +1
Minimum output current of 15 mA
Excellent ac performance for low power
800 μA maximum quiescent current per amplifier
Unity-gain bandwidth: 1.8 MHz
Slew rate of 3 V/μs
Good dc performance
800 μV maximum input offset voltage
2 μV/°C typical offset voltage drift
25 pA maximum input bias current
Low noise
13 nV/√Hz @ 10 kHz
No phase inversion
CONNECTION DIAGRAM
8 V+
OUT1 1
–IN1 2
7 OUT2
+IN1 3
6 –IN2
V– 4
AD822
5 +IN2
00874-001
FEATURES
Figure 1. 8-Lead PDIP (N Suffix);
8-Lead MSOP (RM Suffix);
and 8-Lead SOIC_N (R Suffix)
GENERAL DESCRIPTION
The AD822 is a dual precision, low power FET input op amp
that can operate from a single supply of 5 V to 30 V or dual
supplies of ±2.5 V to ±15 V. It has true single-supply capability
with an input voltage range extending below the negative rail,
allowing the AD822 to accommodate input signals below
ground in the single-supply mode. Output voltage swing
extends to within 10 mV of each rail, providing the maximum
output dynamic range.
100
10
1
10
100
1k
FREQUENCY (Hz)
10k
00874-002
Battery-powered precision instrumentation
Photodiode preamps
Active filters
12-bit to 14-bit data acquisition systems
Medical instrumentation
Low power references and regulators
INPUT VOLTAGE NOISE (nV/√Hz)
APPLICATIONS
Figure 2. Input Voltage Noise vs. Frequency
Offset voltage of 800 μV maximum, offset voltage drift of 2 μV/°C,
input bias currents below 25 pA, and low input voltage noise
provide dc precision with source impedances up to a gigaohm.
The 1.8 MHz unity-gain bandwidth, –93 dB THD at 10 kHz,
and 3 V/μs slew rate are provided with a low supply current of
800 μA per amplifier.
Rev. I
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113 ©1993–2010 Analog Devices, Inc. All rights reserved.
AD822
TABLE OF CONTENTS
Features .............................................................................................. 1
Typical Performance Characteristics ........................................... 11
Applications ....................................................................................... 1
Applications Information .............................................................. 18
Connection Diagram ....................................................................... 1
Input Characteristics .................................................................. 18
General Description ......................................................................... 1
Output Characteristics............................................................... 18
Revision History ............................................................................... 2
Single-Supply Voltage-to-Frequency Converter .................... 19
Specifications..................................................................................... 4
Absolute Maximum Ratings.......................................................... 10
Single-Supply Programmable Gain Instrumentation
Amplifier ..................................................................................... 20
Thermal Resistance .................................................................... 10
Low Dropout Bipolar Bridge Driver ........................................ 20
Maximum Power Dissipation ................................................... 10
Outline Dimensions ....................................................................... 21
ESD Caution ................................................................................ 10
Ordering Guide .......................................................................... 22
REVISION HISTORY
1/10—Rev. H to Rev. I
Changes to Features Section and General Description Section . 1
Changes to Endnote 1, Table 1 ........................................................ 5
Changes to Endnote 1, Table 2 ........................................................ 7
Changes to Endnote 1, Table 3 ........................................................ 9
Deleted Table 4; Renumbered Sequentially ................................ 10
Changes to Table 5 .......................................................................... 12
Updated Outline Dimensions ....................................................... 21
Changes to Ordering Guide .......................................................... 22
Deleted 3 V, Single-Supply Stereo Headphone Driver Section. 22
Deleted Figure 50; Renumbered Sequentially ............................ 22
8/08—Rev. G to Rev H.
Changes to Features Section and General Description Section . 1
Changed VO to VOUT Throughout ................................................... 4
Changes to Table 1 ............................................................................ 4
Changes to Table 2 ............................................................................ 6
Changes to Table 3 ............................................................................ 8
Changes to Table 5 .......................................................................... 12
Added Table 6; Renumbered Sequentially .................................. 12
Changes to Figure 13 Caption....................................................... 14
Changes to Figure 29, Figure 31, and Figure 35 ......................... 17
Changes to Figure 36 ...................................................................... 18
Changed Application Notes Section to Applications
Information Section ....................................................................... 20
Changes to Figure 46 and Figure 47 ............................................. 21
Changes to Figure 49 ...................................................................... 22
Changes to Figure 51 ...................................................................... 23
6/06—Rev. F to Rev. G
Changes to Features ..........................................................................1
Changes to Table 4.......................................................................... 10
Changes to Table 5.......................................................................... 12
Changes to Table 6.......................................................................... 22
10/05—Rev. E to Rev. F
Updated Format .................................................................. Universal
Changes to Outline Dimensions .................................................. 24
Updated Ordering Guide .............................................................. 24
1/03—Data sheet changed from Rev. D to Rev. E
Edits to Specifications .......................................................................2
Edits to Figure 10 ............................................................................ 16
Updated Outline Dimensions ....................................................... 17
10/02—Data sheet changed from Rev. C to Rev. D
Edits to Features.................................................................................1
Edits to Ordering Guide ...................................................................6
Updated SOIC Package Outline ................................................... 17
8/02—Data sheet changed from Rev. B to Rev. C
All Figures Updated ................................................................ Global
Edits to Features.................................................................................1
Updated All Package Outlines ...................................................... 17
7/01—Data sheet changed from Rev. A to Rev. B
All Figures Updated ................................................................ Global
CERDIP References Removed .......................................1, 6, and 18
Additions to Product Description ...................................................1
8-Lead SOIC and 8-Lead MSOP Diagrams Added ......................1
Deletion of AD822S Column ...........................................................2
Edits to Absolute Maximum Ratings and Ordering Guide .........6
Removed Metallization Photograph ...............................................6
Rev. I | Page 2 of 24
AD822
The AD822 drives up to 350 pF of direct capacitive load as a
follower and provides a minimum output current of 15 mA.
This allows the amplifier to handle a wide range of load conditions.
Its combination of ac and dc performance, plus the outstanding
load drive capability, results in an exceptionally versatile amplifier
for the single-supply user.
1V
100
5V
1V
20µs
.... .... .... .... .... .... .... .... .... ....
90
.
VOUT
The AD822 is available in two performance grades. The A grade
and B grade are rated over the industrial temperature range of
−40°C to +85°C.
10
The AD822 is offered in three varieties of 8-lead packages:
PDIP, MSOP, and SOIC_N.
0V
(GND)
.... .... .... .... .... .... .... .... .... ....
1V
Figure 3. Gain-of-2 Amplifier; VS = 5 V, 0 V,
VIN = 2.5 V Sine Centered at 1.25 V, RL = 100 Ω
Rev. I | Page 3 of 24
00874-003
0%
AD822
SPECIFICATIONS
VS = 0 V, 5 V @ TA = 25°C, VCM = 0 V, VOUT = 0.2 V, unless otherwise noted.
Table 1.
Parameter
DC PERFORMANCE
Initial Offset
Maximum Offset Over Temperature
Offset Drift
Input Bias Current
At TMAX
Input Offset Current
At TMAX
Open-Loop Gain
Conditions
Min
0.1
0.5
2
2
0.5
2
0.5
VCM = 0 V to 4 V
VOUT = 0.2 V to 4 V
RL = 100 kΩ
TMIN to TMAX
RL = 10 kΩ
TMIN to TMAX
RL = 1 kΩ
TMIN to TMAX
NOISE/HARMONIC PERFORMANCE
Input Voltage Noise
f = 0.1 Hz to 10 Hz
f = 10 Hz
f = 100 Hz
f = 1 kHz
f = 10 kHz
Input Current Noise
f = 0.1 Hz to 10 Hz
f = 1 kHz
Harmonic Distortion
f = 10 kHz
DYNAMIC PERFORMANCE
Unity-Gain Frequency
Full Power Response
Slew Rate
Settling Time
To 0.1%
To 0.01%
MATCHING CHARACTERISTICS
Initial Offset
Maximum Offset Over Temperature
Offset Drift
Input Bias Current
Crosstalk @ f = 1 kHz
Crosstalk @ f = 100 kHz
INPUT CHARACTERISTICS
Input Voltage Range1, TMIN to TMAX
Common-Mode Rejection Ratio (CMRR)
TMIN to TMAX
A Grade
Typ
500
400
80
80
15
10
Max
Min
0.8
1.2
0.1
0.5
2
2
0.5
2
0.5
25
5
20
1000
500
400
80
80
15
10
150
30
B Grade
Typ
Max
Unit
0.4
0.9
mV
mV
μV/°C
pA
nA
pA
nA
10
2.5
10
1000
V/mV
V/mV
V/mV
V/mV
V/mV
V/mV
150
30
2
25
21
16
13
2
25
21
16
13
μV p-p
nV/√Hz
nV/√Hz
nV/√Hz
nV/√Hz
18
0.8
18
0.8
fA p-p
fA/√Hz
−93
−93
dB
VOUT p-p = 4.5 V
1.8
210
3
1.8
210
3
MHz
kHz
V/μs
VOUT = 0.2 V to 4.5 V
VOUT = 0.2 V to 4.5 V
1.4
1.8
1.4
1.8
μs
μs
RL = 10 kΩ to 2.5 V
VOUT = 0.25 V to 4.75 V
1.0
1.6
0.5
1.3
3
3
20
RL = 5 kΩ
RL = 5 kΩ
VCM = 0 V to 2 V
VCM = 0 V to 2 V
10
−130
−93
−0.2
66
66
Rev. I | Page 4 of 24
–130
–93
+4
80
−0.2
69
66
+4
80
mV
mV
μV/°C
pA
dB
dB
V
dB
dB
AD822
Parameter
Input Impedance
Differential
Common Mode
OUTPUT CHARACTERISTICS
Output Saturation Voltage2
VOL − VEE
TMIN to TMAX
VCC − VOH
TMIN to TMAX
VOL − VEE
TMIN to TMAX
VCC − VOH
TMIN to TMAX
VOL – VEE
TMIN to TMAX
VCC − VOH
TMIN to TMAX
Operating Output Current
TMIN to TMAX
Capacitive Load Drive
POWER SUPPLY
Quiescent Current, TMIN to TMAX
Power Supply Rejection
TMIN to TMAX
1
2
Conditions
Min
A Grade
Typ
Max
Min
1013||0.5
1013||2.8
ISINK = 20 μA
5
ISOURCE = 20 μA
10
ISINK = 2 mA
40
ISOURCE = 2 mA
80
ISINK = 15 mA
300
ISOURCE = 15 mA
800
7
10
14
20
55
80
110
160
500
1000
1500
1900
5
10
40
80
300
800
1.24
80
7
10
14
20
55
80
110
160
500
1000
1500
1900
mV
mV
mV
mV
mV
mV
mV
mV
mV
mV
mV
mV
mA
mA
pF
1.6
mA
dB
dB
350
1.6
70
70
1.24
80
Unit
Ω||pF
Ω||pF
15
12
350
66
66
Max
1013||0.5
1013||2.8
15
12
V+ = 5 V to 15 V
B Grade
Typ
This is a functional specification. Amplifier bandwidth decreases when the input common-mode voltage is driven in the range (V+ − 1 V) to V+. Common-mode error
voltage is typically less than 5 mV with the common-mode voltage set at 1 V below the positive supply.
VOL − VEE is defined as the difference between the lowest possible output voltage (VOL) and the negative voltage supply rail (VEE). VCC − VOH is defined as the difference
between the highest possible output voltage (VOH) and the positive supply voltage (VCC).
Rev. I | Page 5 of 24
AD822
VS = ±5 V @ TA = 25°C, VCM = 0 V, VOUT = 0 V, unless otherwise noted.
Table 2.
Parameter
DC PERFORMANCE
Initial Offset
Maximum Offset Over Temperature
Offset Drift
Input Bias Current
At TMAX
Input Offset Current
At TMAX
Open-Loop Gain
Conditions
Min
TMIN to TMAX
RL = 10 kΩ
TMIN to TMAX
RL = 1 kΩ
TMIN to TMAX
NOISE/HARMONIC PERFORMANCE
Input Voltage Noise
f = 0.1 Hz to 10 Hz
f = 10 Hz
f = 100 Hz
f = 1 kHz
f = 10 kHz
Input Current Noise
f = 0.1 Hz to 10 Hz
f = 1 kHz
Harmonic Distortion
f = 10 kHz
DYNAMIC PERFORMANCE
Unity-Gain Frequency
Full Power Response
Slew Rate
Settling Time
to 0.1%
to 0.01%
MATCHING CHARACTERISTICS
Initial Offset
Maximum Offset Over Temperature
Offset Drift
Input Bias Current
Crosstalk @ f = 1 kHz
Crosstalk @ f = 100 kHz
INPUT CHARACTERISTICS
Input Voltage Range1, TMIN to TMAX
Common-Mode Rejection Ratio (CMRR)
TMIN to TMAX
Input Impedance
Differential
Common Mode
0.1
0.5
2
2
0.5
2
0.5
VCM = −5 V to +4 V
VOUT = −4 V to +4 V
RL = 100 kΩ
A Grade
Typ
400
400
80
80
20
10
Max
Min
0.8
1.5
0.1
0.5
2
2
0.5
2
0.5
25
5
20
1000
400
400
80
80
20
10
150
30
B Grade
Typ
Max
Unit
0.4
1
mV
mV
μV/°C
pA
nA
pA
nA
10
2.5
10
1000
V/mV
V/mV
V/mV
V/mV
V/mV
V/mV
150
30
2
25
21
16
13
2
25
21
16
13
μV p-p
nV/√Hz
nV/√Hz
nV/√Hz
nV/√Hz
18
0.8
18
0.8
fA p-p
fA/√Hz
−93
−93
dB
VOUT p-p = 9 V
1.9
105
3
1.9
105
3
MHz
kHz
V/μs
VOUT = 0 V to ±4.5 V
VOUT = 0 V to ±4.5 V
1.4
1.8
1.4
1.8
μs
μs
RL = 10 kΩ
VOUT = ±4.5 V
1.0
3
0.5
2
3
3
25
RL = 5 kΩ
RL = 5 kΩ
10
−130
−93
VCM = −5 V to +2 V
VCM = −5 V to +2 V
−5.2
66
66
+4
80
1013||0.5
1013||2.8
Rev. I | Page 6 of 24
−130
−93
−5.2
69
66
+4
mV
mV
μV/°C
pA
dB
dB
80
V
dB
dB
1013||0.5
1013||2.8
Ω||pF
Ω||pF
AD822
Parameter
OUTPUT CHARACTERISTICS
Output Saturation Voltage2
VOL − VEE
TMIN to TMAX
VCC − VOH
TMIN to TMAX
VOL − VEE
TMIN to TMAX
VCC − VOH
TMIN to TMAX
VOL − VEE
TMIN to TMAX
VCC − VOH
TMIN to TMAX
Operating Output Current
TMIN to TMAX
Capacitive Load Drive
POWER SUPPLY
Quiescent Current, TMIN to TMAX
Power Supply Rejection
TMIN to TMAX
1
2
Conditions
Min
A Grade
Typ
ISINK = 20 μA
5
ISOURCE = 20 μA
10
ISINK = 2 mA
40
ISOURCE = 2 mA
80
ISINK = 15 mA
300
ISOURCE = 15 mA
800
Max
Min
7
10
14
20
55
80
110
160
500
1000
1500
1900
15
12
5
10
40
80
300
800
66
66
Max
Unit
7
10
14
20
55
80
110
160
500
1000
1500
1900
mV
mV
mV
mV
mV
mV
mV
mV
mV
mV
mV
mV
mA
mA
pF
1.6
mA
dB
dB
15
12
350
VSY = ±5 V to ±15 V
B Grade
Typ
1.3
80
350
1.6
70
70
1.3
80
This is a functional specification. Amplifier bandwidth decreases when the input common-mode voltage is driven in the range (V+ − 1 V) to V+. Common-mode error
voltage is typically less than 5 mV with the common-mode voltage set at 1 V below the positive supply.
VOL − VEE is defined as the difference between the lowest possible output voltage (VOL) and the negative voltage supply rail (VEE). VCC − VOH is defined as the difference
between the highest possible output voltage (VOH) and the positive supply voltage (VCC).
Rev. I | Page 7 of 24
AD822
VS = ±15 V @ TA = 25°C, VCM = 0 V, VOUT = 0 V, unless otherwise noted.
Table 3.
Parameter
DC PERFORMANCE
Initial Offset
Maximum Offset Over Temperature
Offset Drift
Input Bias Current
At TMAX
Input Offset Current
At TMAX
Open-Loop Gain
Conditions
Min
0.4
0.5
2
2
40
0.5
2
0.5
VCM = 0 V
VCM = −10 V
VCM = 0 V
VOUT = −10 V to +10 V
RL = 100 kΩ
TMIN to TMAX
RL = 10 kΩ
TMIN to TMAX
RL = 1 kΩ
TMIN to TMAX
NOISE/HARMONIC PERFORMANCE
Input Voltage Noise
f = 0.1 Hz to 10 Hz
f = 10 Hz
f = 100 Hz
f = 1 kHz
f = 10 kHz
Input Current Noise
f = 0.1 Hz to 10 Hz
f = 1 kHz
Harmonic Distortion
f = 10 kHz
DYNAMIC PERFORMANCE
Unity-Gain Frequency
Full Power Response
Slew Rate
Settling Time
to 0.1%
to 0.01%
MATCHING CHARACTERISTICS
Initial Offset
Maximum Offset Over Temperature
Offset Drift
Input Bias Current
Crosstalk @ f = 1 kHz
Crosstalk @ f = 100 kHz
INPUT CHARACTERISTICS
Input Voltage Range1, TMIN to TMAX
Common-Mode Rejection Ratio (CMRR)
TMIN to TMAX
Input Impedance
Differential
Common Mode
A Grade
Typ
500
500
100
100
30
20
Max
Min
2
3
0.3
0.5
2
2
40
0.5
2
0.5
25
5
20
2000
500
500
100
100
30
20
500
45
B Grade
Typ
Max
Unit
1.5
2.5
mV
mV
μV/°C
pA
pA
nA
pA
nA
12
2.5
12
2000
V/mV
V/mV
V/mV
V/mV
V/mV
V/mV
500
45
2
25
21
16
13
2
25
21
16
13
μV p-p
nV/√Hz
nV/√Hz
nV/√Hz
nV/√Hz
18
0.8
18
0.8
fA p-p
fA/√Hz
−85
−85
dB
VOUT p-p = 20 V
1.9
45
3
1.9
45
3
MHz
kHz
V/μs
VOUT = 0 V to ±10 V
VOUT = 0 V to ±10 V
4.1
4.5
4.1
4.5
μs
μs
RL = 10 kΩ
VOUT = ±10 V
3
4
2
2.5
3
3
25
RL = 5 kΩ
RL = 5 kΩ
12
−130
−93
VCM = −15 V to +12 V
VCM = −15 V to +12 V
−15.2
70
70
+14
80
1013||0.5
1013||2.8
Rev. I | Page 8 of 24
−130
−93
−15.2
74
74
+14
mV
mV
μV/°C
pA
dB
dB
90
V
dB
dB
1013||0.5
1013||2.8
Ω||pF
Ω||pF
AD822
Parameter
OUTPUT CHARACTERISTICS
Output Saturation Voltage2
VOL − VEE
TMIN to TMAX
VCC − VOH
TMIN to TMAX
VOL − VEE
TMIN to TMAX
VCC − VOH
TMIN to TMAX
VOL − VEE
TMIN to TMAX
VCC − VOH
TMIN to TMAX
Operating Output Current
TMIN to TMAX
Capacitive Load Drive
POWER SUPPLY
Quiescent Current, TMIN to TMAX
Power Supply Rejection
TMIN to TMAX
1
2
Conditions
Min
A Grade
Typ
ISINK = 20 μA
5
ISOURCE = 20 μA
10
ISINK = 2 mA
40
ISOURCE = 2 mA
80
ISINK = 15 mA
300
ISOURCE = 15 mA
800
Max
Min
7
10
14
20
55
80
110
160
500
1000
1500
1900
20
15
5
10
40
80
300
800
70
70
Max
Unit
7
10
14
20
55
80
110
160
500
1000
1500
1900
mV
mV
mV
mV
mV
mV
mV
mV
mV
mV
mV
mV
mA
mA
pF
1.8
mA
dB
dB
20
15
350
VSY = ±5 V to ±15 V
B Grade
Typ
1.4
80
350
1.8
70
70
1.4
80
This is a functional specification. Amplifier bandwidth decreases when the input common-mode voltage is driven in the range (V+ − 1 V) to V+. Common-mode error
voltage is typically less than 5 mV with the common-mode voltage set at 1 V below the positive supply.
VOL − VEE is defined as the difference between the lowest possible output voltage (VOL) and the negative voltage supply rail (VEE). VCC − VOH is defined as the difference
between the highest possible output voltage (VOH) and the positive supply voltage (VCC).
Rev. I | Page 9 of 24
AD822
ABSOLUTE MAXIMUM RATINGS
THERMAL RESISTANCE
Table 4.
Parameter
Supply Voltage
Internal Power Dissipation
8-Lead PDIP (N)
8-Lead SOIC_N (R)
8-Lead MSOP (RM)
Input Voltage1
Output Short-Circuit Duration
Differential Input Voltage
Storage Temperature Range (N)
Storage Temperature Range (R, RM)
Operating Temperature Range
A Grade and B Grade
Lead Temperature
(Soldering, 60 sec)
1
θJA is specified for the worst-case conditions, that is, a device
soldered in a circuit board for surface-mount packages.
Rating
±18 V
Table 5. Thermal Resistance
Observe derating curves
Observe derating curves
Observe derating curves
((V+) + 0.2 V) to
((V−) − 20 V)
Indefinite
±30 V
–65°C to +125°C
–65°C to +150°C
–40°C to +85°C
260°C
See the Input Characteristics section.
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
Package Type
8-lead PDIP (N)
8-lead SOIC_N (R)
8-lead MSOP (RM)
θJA
90
160
190
Unit
°C/W
°C/W
°C/W
MAXIMUM POWER DISSIPATION
The maximum power that can be safely dissipated by the
AD822 is limited by the associated rise in junction temperature.
For plastic packages, the maximum safe junction temperature is
145°C. If these maximums are exceeded momentarily, proper
circuit operation is restored as soon as the die temperature is
reduced. Leaving the device in the overheated condition for an
extended period can result in device burnout. To ensure proper
operation, it is important to observe the derating curves shown
in Figure 27.
While the AD822 is internally short-circuit protected, this may
not be sufficient to guarantee that the maximum junction
temperature is not exceeded under all conditions. With power
supplies ±12 V (or less) at an ambient temperature of 25°C or
less, if the output node is shorted to a supply rail, then the
amplifier is not destroyed, even if this condition persists for an
extended period.
ESD CAUTION
Rev. I | Page 10 of 24
AD822
TYPICAL PERFORMANCE CHARACTERISTICS
70
5
VS = 0V, 5V
INPUT BIAS CURRENT (pA)
NUMBER OF UNITS
60
50
40
30
20
0
VS = 0V, +5V AND ±5V
VS = ±5V
–0.4
–0.3
–0.2
–0.1
0
0.1
0.2
OFFSET VOLTAGE (mV)
0.3
0.4
0.5
–5
–5
00874-004
0
–0.5
Figure 4. Typical Distribution of Offset Voltage (390 Units)
–3
–2
–1
0
1
2
COMMON-MODE VOLTAGE (V)
4
3
5
Figure 7. Input Bias Current vs. Common-Mode Voltage; VS = 5 V, 0 V, and
VS = ±5 V
16
1k
VS = ±5V
VS = ±15V
INPUT BIAS CURRENT (pA)
14
12
10
% IN BIN
–4
00874-007
10
8
6
4
100
10
1
–8
–6
–4
–2
0
2
4
6
OFFSET VOLTAGE DRIFT (µV/°C)
8
10
0.1
–16
Figure 5. Typical Distribution of Offset Voltage Drift (100 Units)
–8
–4
0
4
8
COMMON-MODE VOLTAGE (V)
–12
12
16
00874-008
0
–12 –10
00874-005
2
Figure 8. Input Bias Current vs. Common-Mode Voltage; VS = ±15 V
50
100k
45
10k
INPUT BIAS CURRENT (pA)
35
30
25
20
15
1k
100
10
10
1
0
0
1
2
3
4
5
6
7
INPUT BIAS CURRENT (pA)
8
9
10
0.1
20
Figure 6. Typical Distribution of Input Bias Current (213 Units)
40
60
80
100
TEMPERATURE (°C)
120
140
Figure 9. Input Bias Current vs. Temperature; VS = 5 V, VCM = 0 V
Rev. I | Page 11 of 24
00874-009
5
00874-006
NUMBER OF UNITS
40
AD822
40
INPUT ERROR VOLTAGE (µV)
OPEN-LOOP GAIN (V/V)
10M
VS = ±15V
1M
VS = 0V, +5V
VS = 0V, +3V
100k
RL = 20kΩ
20
POS RAIL
RL = 2kΩ
NEG RAIL
POS RAIL
0
POS
RAIL
–20
NEG RAIL
RL = 100kΩ
NEG RAIL
–40
60
120
180
240
OUTPUT VOLTAGE FROM SUPPLY RAILS (mV)
300
Figure 13. Input Error Voltage with Output Voltage Within 300 mV of Either
Supply Rail for Various Resistive Loads; VS = ±5 V
Figure 10. Open-Loop Gain vs. Load Resistance
1k
RL = 100kΩ
INPUT VOLTAGE NOISE (nV/√Hz)
10M
OPEN-LOOP GAIN (V/V)
0
00874-013
100k
1k
10k
LOAD RESISTANCE (Ω)
00874-010
10k
100
VS = ±15V
1M
VS = 0V, +5V
VS = ±15V
RL = 10kΩ
VS = 0V, +5V
100k
VS = ±15V
RL = 600Ω
100
10
–40
–20
0
20
40
60
80
TEMPERATURE (°C)
100
120
140
1
00874-011
10k
–60
1
1k
10k
Figure 14. Input Voltage Noise vs. Frequency
300
–40
200
–50
RL = 10kΩ
ACL = –1
–60
100
RL = 10kΩ
RL = 100kΩ
THD (dB)
INPUT ERROR VOLTAGE (V)
Figure 11. Open-Loop Gain vs. Temperature
100
FREQUENCY (Hz)
10
00874-014
VS = 0V, +5V
0
–70
VS = 0V, +3V; VOUT = 2.5V p-p
–80
VS = ±15V; VOUT = 20V p-p
–100
–90
RL = 600Ω
–200
VS = ±5V; VOUT = 9V p-p
–100
–8
–4
0
4
OUTPUT VOLTAGE (V)
8
12
16
Figure 12. Input Error Voltage vs. Output Voltage for Resistive Loads
–110
100
1k
10k
FREQUENCY (Hz)
100k
Figure 15. Total Harmonic Distortion (THD) vs. Frequency
Rev. I | Page 12 of 24
00874-015
–12
00874-012
VS = 0V, +5V; VOUT = 4.5V p-p
–300
–16
AD822
100
100
80
80
90
GAIN
40
40
20
20
0
0
VS = ±15V
70
60
50
40
30
20
1M
–20
10M
0
10
100
1k
10k
100k
FREQUENCY (Hz)
1M
10M
00874-019
10k
100k
FREQUENCY (Hz)
00874-016
1k
100
Figure 16. Open-Loop Gain and Phase Margin vs. Frequency
Figure 19. Common-Mode Rejection vs. Frequency
1k
5
COMMON-MODE ERROR VOLTAGE (mV)
ACL = +1
VS = ±15V
100
OUTPUT IMPEDANCE (Ω)
VS = 0V, +5V
VS = 0V, +3V
10
RL = 2kΩ
CL = 100pF
–20
10
COMMON-MODE REJECTION (dB)
60
60
PHASE MARGIN (Degrees)
PHASE
10
1
0.1
NEGATIVE
RAIL
4
POSITIVE
RAIL
3
+25°C
2
+125°C
–55°C
1
–55°C
10k
100k
FREQUENCY (Hz)
1k
1M
10M
0
–1
0
1
2
COMMON-MODE VOLTAGE FROM SUPP LY RAILS (V)
3
00874-020
0.01
100
00874-017
+125°C
Figure 20. Absolute Common-Mode Error vs. Common-Mode Voltage from
Supply Rails (VS − VCM)
Figure 17. Output Impedance vs. Frequency
1000
8
OUTPUT SATURATION VOLTAGE (mV)
12
1%
4
0.01%
ERROR
0.1%
0
0.01%
–4
1%
–8
–16
0
1
2
3
SETTLING TIME (µs)
4
5
VS – VOH
VOL – VS
10
0
0.001
00874-018
–12
100
Figure 18. Output Swing and Error vs. Settling Time
0.01
0.1
1
LOAD CURRENT (mA)
10
Figure 21. Output Saturation Voltage vs. Load Current
Rev. I | Page 13 of 24
100
00874-021
16
OUTPUT SWING FROM 0 TO ±VOLTS
OPEN-LOOP GAIN (dB)
80
AD822
100
90
POWER SUPPLY REJECTION (dB)
I SOURCE = 10mA
I SINK = 10mA
100
I SOURCE = 1mA
I SINK = 1mA
10
I SOURCE = 10µA
I SINK = 10µA
80
70
+PSRR
60
50
40
–PSRR
30
20
–40
–20
0
60
20
40
80
TEMPERATURE (°C)
100
120
140
0
10
100
Figure 22. Output Saturation Voltage vs. Temperature
10k
100k
FREQUENCY (Hz)
1M
10M
Figure 25. Power Supply Rejection vs. Frequency
30
80
70
VS = ±15V
RL = 2kΩ
25
VS = ±15V
60
50
OUTPUT VOLTAGE (V)
SHORT-CIRCUIT CURRENT LIMIT (mA)
1k
00874-025
10
1
–60
00874-022
OUTPUT SATURATION VOLTAGE (mV)
1000
–OUT
VS = ±15V
40
VS = 0V, +5V
30
+
VS = 0V, +3V
–
–
20
VS = 0V, +5V
10
+
+
VS = 0V, +3V
20
15
10
5
VS = 0V, +5V
–20
0
20
40
60
80
TEMPERATURE (°C)
100
120
140
00874-023
–40
0
10k
Figure 23. Short-Circuit Current Limit vs. Temperature
100k
1M
FREQUENCY (Hz)
10M
00874-026
VS = 0V, +3V
0
–60
Figure 26. Large Signal Frequency Response
2.4
1600
T = +125°C
2.2
1400
TOTAL POWER DISSIPATION (W)
1200
T = –55°C
1000
800
600
400
2.0
1.8
8-LEAD PDIP
8-LEAD SOIC
1.6
1.4
1.2
1.0
0.8
0.6
8-LEAD MSOP
0.4
200
0
4
8
12
16
20
24
28
TOTAL SUPPLY VOLTAGE (V)
32
36
Figure 24. Quiescent Current vs. Supply Voltage vs. Temperature
0
–60
–40
–20
0
20
40
AMBIENT TEMPERATURE (°C)
60
80
00874-027
0.2
0
00874-024
QUIESCENT CURRENT (µA)
T = +25°C
Figure 27. Maximum Power Dissipation vs. Temperature for Packages
Rev. I | Page 14 of 24
AD822
–70
5V
5µs
–80
100
90
CROSSTALK (dB)
–90
–100
–110
–120
10
0%
–140
300
1k
3k
10k
30k
FREQUENCY (Hz)
100k
300k
00874-028
00874-032
–130
1M
Figure 32. Large Signal Response Unity-Gain Follower; VS = ±15 V, RL = 10 kΩ
Figure 28. Crosstalk vs. Frequency
V+
10mV
500ns
0.01µF
100
8
+
VIN
90
1/2
AD822
VOUT
100pF
RL
–
0.01µF
00874-029
4
10
Figure 29. Unity-Gain Follower
00874-033
0%
5V
10µs
Figure 33. Small Signal Response Unity-Gain Follower; VS = ±15 V, RL = 10 kΩ
100
90
1V
2µs
100
90
10
00874-030
0%
10
Figure 30. 20 V p-p, 25 kHz Sine Wave Input; Unity-Gain Follower; VS = ±15 V,
RL = 600 Ω
Figure 34. VS = 5 V, 0 V; Unity-Gain Follower Response to 0 V to 4 V Step
V+
20kΩ
AD822
7
1
3 +
5kΩ
1/2
AD822
5kΩ
6
0.01µF
8
VIN
+
1/2
AD822
5
RL
–
100pF
4
CROSSTALK = 20 log
VOUT
10V IN
0.1µF
V–
1µF
00874-031
VIN
Figure 31. Crosstalk Test Circuit
Rev. I | Page 15 of 24
VOUT
00874-035
8
1/2
20V p-p
V+
1µF
+
2 –
2.2kΩ
–
0.1µF
0%
00874-034
VOUT
GND
Figure 35. Unity-Gain Follower
AD822
VIN
10kΩ
20kΩ
10mV
VOUT
V+
2µs
0.01µF
100
8
90
–
1/2
AD822
+
100pF
00874-036
RL
4
Figure 36. Gain-of-Two Inverter
10
1V
0%
00874-039
GND
2µs
Figure 39. VS = 5 V, 0 V; Gain-of-2 Inverter Response to 20 mV Step,
Centered 20 mV Below Ground, RL = 10 kΩ
100
90
1V
2µs
100
90
10
0%
00874-037
GND
10
Figure 37. VS = 5 V, 0 V; Unity-Gain Follower Response to 0 V to 5 V Step
0%
00874-040
GND
10mV
Figure 40. VS = 5 V, 0 V; Gain-of-2 Inverter Response to 2.5 V Step,
Centered −1.25 V Below Ground, RL = 10 kΩ
2µs
100
90
500mV
10µs
100
90
10
0%
00874-038
GND
10
Figure 38. VS = 5 V, 0 V; Unity-Gain Follower Response to 40 mV Step,
Centered 40 mV above Ground, RL = 10 kΩ
0%
00874-041
GND
Figure 41. VS = 3 V, 0 V; Gain-of-2 Inverter, VIN = 1.25 V, 25 kHz, Sine Wave
Centered at −0.75 V, RL = 600 Ω
Rev. I | Page 16 of 24
AD822
1V
100
10µs
.... .... .... .... .... .... .... .... .... ....
90
10
GND
0%
.... .... .... .... .... .... .... .... .... ....
1V
(a)
1V
+Vs
100
10µs
1V
.... .... .... .... ...
... .... .... .... ....
90
10
0%
.... .... .... .... .... .... .... .... .... ....
1V
(b)
5V
RP
VIN
VOUT
00874-042
GND
Figure 42. (a) Response with RP = 0; VIN from 0 V to +VS
(b) VIN = 0 V to +VS + 200 mV
VOUT = 0 V to +VS
RP = 49.9 kΩ
Rev. I | Page 17 of 24
AD822
APPLICATIONS INFORMATION
100k
INPUT CHARACTERISTICS
In the AD822, N-channel JFETs are used to provide a low offset,
low noise, high impedance input stage. Minimum input commonmode voltage extends from 0.2 V below −VS to 1 V less than +VS.
Driving the input voltage closer to the positive rail causes a loss
of amplifier bandwidth (as can be seen by comparing the large
signal responses shown in Figure 34 and Figure 37) and increased
common-mode voltage error as illustrated in Figure 20.
Because the input stage uses N-channel JFETs, input current
during normal operation is negative; the current flows out from
the input terminals. If the input voltage is driven more positive
than +VS − 0.4 V, then the input current reverses direction as
internal device junctions become forward biased. This is illustrated in Figure 7.
A current limiting resistor should be used in series with the input
of the AD822 if there is a possibility of the input voltage exceeding the positive supply by more than 300 mV, or if an input voltage
is applied to the AD822 when +VS or −VS = 0 V. The amplifier is
damaged if left in that condition for more than 10 seconds. A 1 kΩ
resistor allows the amplifier to withstand up to 10 V of continuous overvoltage and increases the input voltage noise by a
negligible amount.
Input voltages less than −VS are a completely different story. The
amplifier can safely withstand input voltages 20 V below the
negative supply voltage if the total voltage from the positive
supply to the input terminal is less than 36 V. In addition, the
input stage typically maintains picoampere (pA) level input
currents across that input voltage range.
The AD822 is designed for 13 nV/√Hz wideband input voltage
noise and maintains low noise performance to low frequencies
(refer to Figure 14). This noise performance, along with the
AD822 low input current and current noise, means that the
AD822 contributes negligible noise for applications with source
resistances greater than 10 kΩ and signal bandwidths greater
than 1 kHz. This is illustrated in Figure 43.
INPUT VOLTAGE NOISE (µV)
1kHz
1k
RESISTOR JOHNSON
NOISE
100
10
10Hz
1
AMPLIFIER-GENERATED
NOISE
0.1
10k
100k
10M
100M
1M
SOURCE IMPEDANCE (Ω)
1G
10G
00874-043
The AD822 does not exhibit phase reversal for input voltages
up to and including +VS. Figure 42 shows the response of an
AD822 voltage follower to a 0 V to 5 V (+VS) square wave input.
The input and output are superimposed. The output tracks the
input up to +VS without phase reversal. The reduced bandwidth
above a 4 V input causes the rounding of the output waveform.
For input voltages greater than +VS, a resistor in series with the
AD822 noninverting input prevents phase reversal, at the expense
of greater input voltage noise. This is illustrated in Figure 42.
10k
WHENEVER JOHNSON NOISE IS GREATER THAN
AMPLIFIER NOISE, AMPLIFIER NOISE CAN BE
CONSIDERED NEGLIGIBLE FOR APPLICATION.
Figure 43. Total Noise vs. Source Impedance
OUTPUT CHARACTERISTICS
The AD822 unique bipolar rail-to-rail output stage swings within
5 mV of the negative supply and 10 mV of the positive supply with
no external resistive load. The approximate output saturation
resistance of the AD822 is 40 Ω sourcing and 20 Ω sinking, which
can be used to estimate output saturation voltage when driving
heavier current loads. For instance, when sourcing 5 mA, the
saturation voltage to the positive supply rail is 200 mV; when
sinking 5 mA, the saturation voltage to the negative rail is 100 mV.
The open-loop gain characteristic of the amplifier changes as a
function of resistive load, as shown in Figure 10 to Figure 13.
For load resistances over 20 kΩ, the AD822 input error voltage
is virtually unchanged until the output voltage is driven to 180 mV
of either supply.
If the AD822 output is overdriven so that either of the output
devices are saturated, the amplifier recovers within 2 μs of its
input returning to the linear operating region of the amplifier.
Direct capacitive loads interact with the effective output impedance of the amplifier to form an additional pole in the amplifier
feedback loop, which can cause excessive peaking on the pulse
response or loss of stability. The worst case occurs when the
amplifier is used as a unity-gain follower. Figure 44 shows the
AD822 pulse response as a unity-gain follower driving 350 pF.
This amount of overshoot indicates approximately 20° of phase
margin—the system is stable, but nearing the edge. Configurations
with less loop gain, and as a result less loop bandwidth, are
much less sensitive to capacitance load effects.
Rev. I | Page 18 of 24
AD822
20mV
100
Figure 46 shows a method for extending capacitance load drive
capability for a unity-gain follower. With these component
values, the circuit drives 5000 pF with a 10% overshoot.
2µs
.... .... .... .... .... .... .... .... .... ....
90
V+
0.01µF
8
+
VIN
1/2
100Ω
AD822
–
VOUT
0.01µF
4
CL
10
.... .... .... .... .... .... .... .... .... ....
20pF
20kΩ
Figure 46. Extending Unity-Gain Follower Capacitive Load Capability
Beyond 350 pF
Figure 44. Small Signal Response of AD822 as
Unity-Gain Follower Driving 350 pF
Figure 45 is a plot of noise gain vs. capacitive load that results in
a 20° phase margin for the AD822. Noise gain is the inverse of
the feedback attenuation factor provided by the feedback
network in use.
5
R1
SINGLE-SUPPLY VOLTAGE-TO-FREQUENCY
CONVERTER
The circuit shown in Figure 47 uses the AD822 to drive a low
power timer that produces a stable pulse of width t1. The positive
going output pulse is integrated by R1 and C1 and used as one
input to the AD822 that is connected as a differential integrator.
The other input (nonloading) is the unknown voltage, VIN. The
AD822 output drives the timer trigger input, closing the overall
feedback loop.
10V
C5
0.1µF
2
5
3
2
6
U4
REF02
VREF = 5V
CMOS
74HCO4
U3B
3
4
RSCALE
10kΩ
4
1
300
1k
3k
10k
CAPACITIVE LOAD FOR 20° PHASE MARGIN (pF)
R2
499kΩ
1%
30k
VIN
RF
CL
R1
C2
0.01µF
2%
0V TO 2.5V
FULL SCALE
1
C1
+ 1/2
AD822B
–
R3
116kΩ
OUT1
U2
CMOS 555
0.01µF, 2%
U1
R1
499kΩ
1%
U3A
2
OUT2
C3
0.1µF
4
6
2
7
R
THR
8
V+
OUT
TR
DIS
GND
1
CV
3
5
C4
0.01µF
NOTES
1. fOUT = VIN/(VREF × t1), t1 = 1.1 × R3 × C6.
= 25kHz fS AS SHOWN.
2. R3 = 1% METAL FILM <50ppm/°C TC.
3. RSCALE = 10% 20T FILM <100ppm/°C TC.
4. t1 = 33µF FOR fOUT = 20kHz @ VIN = 2.0V.
Figure 45. Noise Gain vs. Capacitive Load Tolerance
Figure 47. Single-Supply Voltage-to-Frequency Converter
Typical AD822 bias currents of 2 pA allow MΩ range source
impedances with negligible dc errors. Linearity errors on the
order of 0.01% full scale can be achieved with this circuit. This
performance is obtained with a 5 V single supply that delivers
less than 1 mA to the entire circuit.
Rev. I | Page 19 of 24
00874-047
3
00874-045
RF
4
NOISE GAIN 1+
00874-046
V–
00874-044
0%
AD822
SINGLE-SUPPLY PROGRAMMABLE GAIN
INSTRUMENTATION AMPLIFIER
R1
90kΩ
+
An array of precision thin film resistors sets the in-amp gain to
be either 10 or 100. These resistors are laser trimmed to ratio
match to 0.01% and have a maximum differential TC of 5 ppm/°C.
VREF
G = 10
.... .... .... .... ...
R5
9kΩ
G = 100
G = 10
G = 100
0.1µF
2
6 –
–
1/2
RP
1kΩ
VIN1
1/2
1
AD822
VS = ±5 V
80 dB
−5.2 V to +4 V
180 kHz
18 kHz
180 kHz
18 kHz
5 +
–
4
VOUT
RP
1kΩ
VIN2
(
(
R6
R4 + R5
(G = 100) VOUT = (VIN1 – VIN2) 1+
)
)
+VREF
R5 + R6
R4
+VREF
Figure 49. A Single-Supply Programmable Instrumentation Amplifier
LOW DROPOUT BIPOLAR BRIDGE DRIVER
2 μs
5 μs
270 nV/√Hz
2.2 μV/√Hz
1.10 mA
+
7
AD822
3 +
(G = 10) VOUT = (VIN1 – VIN2) 1+
VS = 3 V, 0 V
74 dB
−0.2 V to +2 V
OHMTEK
PART # 1043
R6
90kΩ
V+
270 nV/√Hz
2.2 μV/√Hz
1.15 mA
The AD822 can be used for driving a 350 Ω Wheatstone bridge.
Figure 50 shows one-half of the AD822 being used to buffer the
AD589, a 1.235 V low power reference. The output of 4.5 V can
be used to drive an analog-to-digital converter (ADC) front end.
The other half of the AD822 is configured as a unity-gain inverter
and generates the other bridge input of −4.5 V. Resistor R1 and
Resistor R2 provide a constant current for bridge excitation. The
AD620 low power instrumentation amplifier is used to condition
the differential output voltage of the bridge. The gain of the AD620
is programmed using an external resistor RG and determined by
5µs
100
R4
1kΩ
–
Table 6. In-Amp Performance
Parameters
CMRR
Common-Mode Voltage Range
3 dB BW
G = 10
G = 100
tSETTLING
2 V Step
5 V Step
Noise @ f = 1 kHz
G = 10
G = 100
ISUPPLY (Total)
R3
1kΩ
00874-049
The AD822 can be configured as a single-supply instrumentation amplifier that is able to operate from single supplies down
to 3 V or dual supplies up to ±15 V. Using only one AD822 rather
than three separate op amps, this circuit is cost and power efficient.
The 2 pA bias currents of the AD822 FET inputs minimize
offset errors caused by high unbalanced source impedances.
R2
9kΩ
G
... .... .... .... ....
49.9 k
90
RG
1
V+
8
+1.235V 3
+
1/2
+
AD589 AD822
2
–
–
10
.... .... .... .... .... .... .... .... .... ....
1V
TO A/D CONVERTER
REFERENCE INPUT
+VS
25.4kΩ 1%
10kΩ 1%
00874-048
0%
R1
20Ω
1
350Ω
350Ω
350Ω
Figure 48. Pulse Response of In-Amp to a 500 mV p-p Input Signal;
VS = 5 V, 0 V; Gain = 0
350Ω
1/2
AD822
5 +
5
4
VREF
–VS
6 –
10kΩ 1%
6
AD620
+
RG
3
10kΩ 1%
7
2 –
4
7
–4.5V
R2
20Ω
V–
V+
+
0.1μF
+
GND
+
0.1μF
+
V–
Figure 50. Low Dropout Bipolar Bridge Driver
Rev. I | Page 20 of 24
+5V
1μF
1μF
–5V
00874-051
49.9kΩ
AD822
OUTLINE DIMENSIONS
0.400 (10.16)
0.365 (9.27)
0.355 (9.02)
8
5
1
4
0.280 (7.11)
0.250 (6.35)
0.240 (6.10)
0.100 (2.54)
BSC
0.060 (1.52)
MAX
0.210 (5.33)
MAX
0.015
(0.38)
MIN
0.150 (3.81)
0.130 (3.30)
0.115 (2.92)
SEATING
PLANE
0.022 (0.56)
0.018 (0.46)
0.014 (0.36)
0.325 (8.26)
0.310 (7.87)
0.300 (7.62)
0.195 (4.95)
0.130 (3.30)
0.115 (2.92)
0.015 (0.38)
GAUGE
PLANE
0.014 (0.36)
0.010 (0.25)
0.008 (0.20)
0.430 (10.92)
MAX
0.005 (0.13)
MIN
0.070 (1.78)
0.060 (1.52)
0.045 (1.14)
070606-A
COMPLIANT TO JEDEC STANDARDS MS-001
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
CORNER LEADS MAY BE CONFIGURED AS WHOLE OR HALF LEADS.
Figure 51. 8-Lead Plastic Dual In-Line Package [PDIP]
Narrow Body
(N-8)
Dimensions shown in inches and (millimeters)
3.20
3.00
2.80
5.00 (0.1968)
4.80 (0.1890)
5
4
1.27 (0.0500)
BSC
0.25 (0.0098)
0.10 (0.0040)
COPLANARITY
0.10
SEATING
PLANE
6.20 (0.2441)
5.80 (0.2284)
1.75 (0.0688)
1.35 (0.0532)
0.51 (0.0201)
0.31 (0.0122)
8
3.20
3.00
2.80
0.50 (0.0196)
0.25 (0.0099)
45°
5.15
4.90
4.65
4
PIN 1
IDENTIFIER
8°
0°
0.25 (0.0098)
0.17 (0.0067)
1
5
0.65 BSC
1.27 (0.0500)
0.40 (0.0157)
COMPLIANT TO JEDEC STANDARDS MS-012-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
0.95
0.85
0.75
15° MAX
1.10 MAX
0.15
0.05
COPLANARITY
0.10
Figure 52. 8-Lead Standard Small Outline Package [SOIC_N]
Narrow Body
(R-8)
Dimensions shown in millimeters and (inches)
0.40
0.25
6°
0°
0.23
0.09
COMPLIANT TO JEDEC STANDARDS MO-187-AA
Figure 53. 8-Lead Mini Small Outline Package [MSOP]
(RM-8)
Dimensions shown in millimeters
Rev. I | Page 21 of 24
0.80
0.55
0.40
100709-B
1
012407-A
8
4.00 (0.1574)
3.80 (0.1497)
AD822
ORDERING GUIDE
Model1
AD822AN
AD822ANZ
AD822AR
AD822AR-REEL
AD822AR-REEL7
AD822ARZ
AD822ARZ-REEL
AD822ARZ-REEL7
AD822ARMZ
AD822ARMZ-REEL
AD822BR
AD822BR-REEL
AD822BR-REEL7
AD822BRZ
AD822BRZ-REEL
AD822BRZ-REEL7
1
Temperature Range
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
Package Description
8-Lead PDIP
8-Lead PDIP
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead MSOP
8-Lead MSOP
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
8-Lead SOIC_N
Z = RoHS Compliant Part, # denotes RoHS-compliant product may be top or bottom marked.
SPICE model is available at www.analog.com.
Rev. I | Page 22 of 24
Package Option
N-8
N-8
R-8
R-8
R-8
R-8
R-8
R-8
RM-8
RM-8
R-8
R-8
R-8
R-8
R-8
R-8
Branding
#B4A
#B4A
AD822
NOTES
Rev. I | Page 23 of 24
AD822
NOTES
©1993–2010 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D00874-0-1/10(I)
Rev. I | Page 24 of 24
Similar pages