Micrel MIC860BC5-TR Teeny ultra low power op amp Datasheet

MIC860
Micrel, Inc.
MIC860
Teeny™ Ultra Low Power Op Amp
General Description
Features
The MIC860 is a rail-to-rail output, operational amplifier
in Teeny™ SC70 packaging. The MIC860 provides 4MHz
gain-bandwidth product while consuming an incredibly low
30µA supply current.
The SC70 packaging achieves significant board space savings
over devices packaged in SOT-23 or MSOP-8 packaging.
The SC70 occupies approximately half the board area of a
SOT-23 package.
•
•
•
•
•
•
•
Teeny™ SC70 packaging
4MHz gain-bandwidth product
30µA supply current
Rail-to-Rail output
Ground sensing at input common mode to GND
Common mode to GND
Drive large capactive loads
Applications
•
•
•
•
•
Portable equipment
PDAs
Pagers
Cordless Phones
Consumer Electronics
Ordering Information
Part Number
Standard
Marking
MIC860BC5
A32
Pb-Free
Marking*
Ambient
Temp. Range
Package
A32
–40ºC to +85ºC
SC-70-5
MIC860YC5
* Underbar marking may not be to scale.
Pin Configuration
Functional Pinout
IN−
V−
IN+
3
2
1
A32
4
5
OUT
V+
IN− V−
Part
Identification
3
2
IN+
1
4
5
OUT
V+
SC-70
Teeny is a trademark of Micrel, Inc.
Micrel, Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com
February 2006
1
M9999-022706
MIC860
Micrel, Inc.
Absolute Maximum Ratings (Note 1)
Operating Ratings (Note 2)
Supply Voltage (VV+ – V–) .......................................... +6.0V
Differentail Input Voltage (VIN+ – VIN–), Note 4 ...... +6.0V
Input Voltage (VIN+ – VIN–) ...................V+ + 0.3V, V– –0.3V
Lead Temperature (soldering, 5 sec.) ........................ 260°C
Output Short Circuit Current Duration ...................Indefinite
Storage Temperature (TS) ......................................... 150°C
ESD Rating, Note 3
Supply Voltage (V+ – V–) ........................ +2.43V to +5.25V
Ambient Temperature Range...................... –40°C to +85°C
Package Thermal Resistance................................ 450°C/W
Electrical Characteristics
V+ = +2.7V, V– = 0V, VCM = V+/2; RL= 500kΩ to V+/2; TA= 25°C, unless otherwise noted. Bold values indicate –40°C≤ TA≤ +85°C.
Symbol
Parameter
Condition
Min
Typ
Max
Units
VOS
Input Offset Voltage
–20
–25
Input Offset Voltage Temp Coefficient
IB
–5
15
20
20
mV
mV
µV/°C
Input Bias Current
20
pA
IOS
Input Offset Current
10
pA
Input Voltage Range
CMRR > 60dB
1
1.8
V
CMRR
Common-Mode Rejection Ratio
0 < VCM < 1.35V
38
76
dB
VCM
PSRR
Power Supply Rejection Ratio
Supply voltage change of 3V
40
78
dB
AVOL
Large-Signal Voltage Gain
RL = 5k, VOUT 2V peak to peak
50
66
dB
66
81
dB
RL = 500k, VOUT 2V peak to peak
76
91
dB
RL = 100k, VOUT 2V peak to peak
VOUT
Maximum Output Voltage Swing
VOUT
Minimum Output Voltage Swing
GBW
Gain-Bandwidth Product
SR
Slew Rate
ISC
Short-Circuit Output Current
IS
Supply Current
RL = 5k
RL = 500k
V+–70mV V+–34mV
V
V+–2mV V+–0.7mV
V
RL = 5k
RL = 500k
V–+11mV V–+ 50mV
mV
V–+0.2mV V–+ 2mV
mV
4
MHz
3
V/µs
Source
4.5
6
mA
Sink
10
16
mA
No Load
30
50
V+= +5V, V–= 0V, VCM= V+/2; RL= 500kΩ to V+/2; TA= 25°C, unless otherwise noted. Bold values indicate –40°C≤ TA≤ +85°C.
VOS
Input Offset Voltage
Input Offset Voltage Temp Coefficient
20
µV/°C
IB
Input Bias Current
20
pA
10
pA
4.2
V
IOS
VCM
Input Offset Current
Input Voltage Range
CMRR
Common-Mode Rejection Ratio
PSRR
Power Supply Rejection Ratio
AVOL
Large-Signal Voltage Gain
M9999-022706
–20
CMRR > 60dB
3.5
–5
20
µA
mV
0 < VCM < 3.5V
44
77
dB
Supply voltage change of 1V
40
79
dB
RL = 5k, VOUT 4.8V peak to peak
52
66
dB
67
80
dB
RL = 500k, VOUT 4.8V peak to peak
75
90
dB
RL = 100k, VOUT 4.8V peak to peak
2
February 2006
MIC860
Micrel, Inc.
Symbol
Parameter
VOUT
Maximum Output Voltage Swing
VOUT
Minimum Output Voltage Swing
GBW
Gain-Bandwidth Product
SR
Slew Rate
ISC
Short-Circuit Output Current
IS
Supply Current
Condition
Min
RL = 5k
RL = 500k
Typ
Max
Units
V+–75mV V+–37mV
V
V+–35mV
V
RL = 5k
RL = 500k
V+–4mV
V–+14mV V–+ 40mV
mV
V–+0.4mV V–+ 5mV
mV
4
MHz
3
V/µs
Source
15
23
mA
Sink
30
47
mA
No Load
33
55
µA
Note 1.
Exceeding the absolute maximum rating may damage the device.
Note 2.
The device is not guaranteed to function outside its operating rating.
Note 3.
Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF. Pin 4 is ESD sensetive
Note 4.
Exceeding the maximum differential input voltage will damage the input stage and degrade performance (in particular, input bias current is
likely to increase.
February 2006
3
M9999-022706
MIC860
Micrel, Inc.
Test Circuits
Test Circuit 1. AV = 10
Test Circuit 2. AV = 2
Test Circuit 3. AV = 1
Test Circuit 4. AV = –1
V+
10µF
100µF
Input
0.1µF
50Ω
BNC
10µF
48k
10k
10k
170k
4
3
2
MIC860
1
BNC
Output
5
50Ω
0.1µF
All resistors:
1% metal film
100µF
10µF
V—
Test Circuit 5. Positive Power Supply Rejection Ratio Measurement
M9999-022706
4
February 2006
MIC860
Micrel, Inc.
Typical Characteristics
Supply Current
vs. Temperature
39
-3
37
5V
33
-4
29
2.7V
27
25
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
Short Circuit Current (sink)
vs. Temperature
0
2.7V
-10
5V
5
-6
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
Supply Current vs.
Supply Voltage
41
39
-40°C
33
27 +85°C
-60
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
Output Voltage vs.
Output Current (Sinking)
+85°C
-40°C
5
25
0.5
V+ = 5V
1
1.5
2
2.5
3
SUPPLY VOLTAGE (±V)
Short Circuit Current vs.
Supply Voltage (Sourcing)
30
-40°C
25
+25°C
4
20
3
15
2
10
1
Offset Voltage vs.
Common-Mode Voltage
V+ = 5V
2
-40°C
1.5
1
0.5
+25°C
+85°C
0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
COMMON-MODE VOLTAGE (V)
February 2006
0
0
2.7V
0
-40 -20 0 20 40 60 80 100
TEMPERATURE (°C)
Output Voltage vs.
Output Current (Sourcing)
5
4.5
4
-40°C
3.5
3
2.5
2
+25°C
1.5
1
0.5 V+ = 5V
+85°C
0
0
5
10 15 20 25 30
OUTPUT CURRENT (mA)
Short Circuit Current vs.
Supply Voltage (Sinking)
60
-40°C
50
40
+25°C
+85°C
30
+25°C
+85°C
20
5
V+ = 5V
10 20 30 40 50 60
OUTPUT CURRENT (mA)
5V
15
-5.5
29
-50
25
10
31 +25°C
-40
2.5
2.7V
35
-30
30
-5
37
-20
Short Circuit Current (source)
vs. Temperature
20
-4.5
31
0
0
5V
-3.5
35
6
Offset Voltage
vs. Temperature
10
V+ = 5V
0.5 1 1.5 2 2.5 3
SUPPLY VOLTAGE (±V)
Offset Voltage vs.
Common-Mode Voltage
2.2
2.0
1.8
-40°C
1.6
1.4
1.2
+25°C
1.0
0.8
+85°C
0.6
0.4
0.2 Supply = 2.7V
0
0
0.54 1.08 1.62 2.16 2.7
COMMON-MODE VOLTAGE (V)
5
0
0
V+ = 5V
0.5 1 1.5 2 2.5 3
SUPPLY VOLTAGE (±V)
Output Voltage Swing vs.
Resistive Load (Sinking)
4.5
4
3.5
3
VCC = 5V
2.5
2
1.5
1
0.5
0
V = 2.7V
-0.5 CC
0.1
1
10 100 1000 10000
RESISTIVE LOAD (kΩ)
M9999-022706
MIC860
Micrel, Inc.
Output Voltage Swing vs.
Resistive Load (Sourcing)
5.5
4.5
100
Open Loop Gain vs.
Resistive Load
VCC = 5V
VCC = 5.0V
3.5
2.5
VCC = 2.7V
VCC = 2.7V
80
1.5
0.5
-0.5
0.1
M9999-022706
1
10 100 1000 10000
RESISTIVE LOAD (kΩ)
60
1
10
100
1000 10000
RESISTIVE LOAD (kΩ)
6
February 2006
MIC860
Micrel, Inc.
Functional Characteristics
Gain Bandwidth and
Phase Margin
Gain Frequency Response
Unity Gain Frequency
Response
225
25
225
25
40
180
20
180
20
180
30
135
15
135
15
135
20
90
10
90
10
90
10
45
5
45
5
45
0
0
0
0
0
0
3
5
45
2.5
0
0
-5
-90
-135
-225
2x107
1x107
-180
1x106
1x105
1x104
V CC = 2.7V
-10 R = 5k Ω
L
-15 C = 2pF
L
-20 A = 1
V
-25
-45
2x107
1x107
1x106
60
2 VCC = 2.7V
1.5 Note: To drive
capacitive load,
1 a 500Ω series
resistor would
0.5 help stablize
the circuit
0
1
10
100
1000
CAPACITIVE LOAD (pF)
90
1x105
70
50
40
30
20
10 VCC = 2.7V
0
FREQUENCY (Hz)
1x10
90
80
6
10
VCC = 5.0V
3.5
1x105
135
-225
PSRR vs. Frequency
1x10
180
15
90
-180
4
20
Gain Bandwidth vs.
Capacitve Load
-135
1x103
4
-225
-90
1x102
225
-180
-45
V CC = 5V
-10
R L = 5k Ω
-15 C = 2pF
L
-20 A = 1
V
-25
1x101
Unity Gain Frequency
Response
-135
225
-5
1x104
-225
2x107
1x107
1x106
-180
-90
2x107
-135
-45
V CC = 5V
-10 A = 2
V
-15 C = 2pF
L
-20 R = 5k Ω
L
-25
1x107
-90
-5
1x106
-45
1x100
25
1x105
1x104
V CC = 5V
-20
A V = 10
-30 R = 1M Ω
L
-40 C = 2pF
L
-50
1x105
-10
1x104
50
PSRR vs. Frequency
80
70
60
50
40
30
20
February 2006
7
1x10
FREQUENCY (Hz)
6
1x105
1x10
4
1x103
1x102
1x100
0
1x101
10 VCC = 5V
M9999-022706
MIC860
Micrel, Inc.
Small Signal Response
Test Circuit 3: AV = 1
Small Signal Response
Test Circuit 3: AV = 1
AV = 1
V+ = 5V
CL = 2 pF
RL = 5kΩ
AV = 1
V+ = 2.7V
CL = 2 pF
RL = 5kΩ
TIME 500ns/div
TIME 500ns/div
Small Signal Response
Test Circuit 3: AV = 1
Small Signal Response
Test Circuit 3: AV = 1
AV = 1
V+ = 2.7V
CL = 50pF
RL = 5kΩ
AV = 1
V+ = 5V
CL = 50pF
RL = 5kΩ
TIME 500ns/div
TIME 500ns/div
Smal Signal Response
Test Circuit 3: AV = 1
Smal Signal Response
Test Circuit 3: AV = 1
AV = 1
V+ = 2.7V
CL = 50pF
RL = 500Ω
AV = 1
V+ = 5V
CL = 50pF
RL = 500Ω
TIME 500ns/div
M9999-022706
TIME 500ns/div
8
February 2006
MIC860
Micrel, Inc.
Smal Signal Response
Test Circuit 3: AV = 1
AV = 1
V+ = 2.7V
CL = 2pF
RL = 1MΩ
V+
RL
V−
CL
TIME 500ns/div
Small Signal Response
Test Circuit 4: AV = −1
Small Signal Response
Test Circuit 4: AV = −1
AV = −1
V+= 5V
CL = 2pF
RL = 1MΩ
OUTPUT
50mV/div
AV = −1
V+= 2.7V
CL = 2pF
RL = 1MΩ
TIME 500ns/div
TIME 500ns/div
Small Signal Response
Test Circuit 4: AV = −1
Small Signal Response
Test Circuit 4: AV = −1
AV = −1
V+= 5V
CL = 2pF
RL = 5kΩ
AV = −1
V+= 2.7V
CL = 2pF
RL = 5kΩ
TIME 500ns/div
TIME 500ns/div
February 2006
9
M9999-022706
MIC860
Micrel, Inc.
Rail to Rail Output Operation
Test Circuit 2: AV = 2
Rail to Rail Output Operation
Test Circuit 2: AV = 2
∆VP-P = 2.7V
∆VP-P = 5V
AV = 2
V+ = 2.7V
CL = 2pF
RL = 1MΩ
AV = 2
V+ = 5V
CL = 2pF
RL = 1MΩ
TIME 250µs/div
TIME 250µs/div
Rail to Rail Output Operation
Test Circuit 2: AV = 2
Rail to Rail Output Operation
Test Circuit 2: AV = 2
∆VP-P = 2.7V
∆VP-P = 5V
AV = 2
V+ = 2.7V
CL = 2pF
RL = 5kΩ
AV = 2
V+ = 5V
CL = 2pF
RL = 5kΩ
TIME 250µs/div
TIME 250µs/div
Large Signal Pulse Response
Test Circuit 3: AV = 1
Large Signal Pulse Response
Test Circuit 3: AV = 1
AV = 1
CL = 2pF
RL = 5kΩ
V+ = 5V
AV = 1
CL = 50pF
RL = 5kΩ
V+ = 2.7V
∆V = 730mV
∆t = 300ns
OUTPUT
50mV/div
∆V = 2.84V
∆t = 700ns
Rise Slew Rate = 4.1V/µs
Fall Slew Rate = 2.9V/µs
Rise Slew Rate = 2.4V/µs
Fall Slew Rate = 4.7V/µs
TIME 5µs/div
M9999-022706
TIME 5µs/div
10
February 2006
MIC860
Micrel, Inc.
Applications Information
Power Supply Bypassing
Regular supply bypassing techniques are recommended.
A 10µF capacitor in parallel with a 0.1µF capacitor on both
the positive and negative supplies are ideal. For best performance all bypassing capacitors should be located as close
to the op amp as possible and all capacitors should be low
ESL (equivalent series inductance), ESR (equivalent series
resistance). Surface-mount ceramic capacitors are ideal.
Supply and Loading Considerations
The MIC860 is intended for single supply applications configured with a grounded load. It is not advisable to operate
the MIC860 with either:
1). A grounded load and split supplies (+/-V) or
2). A single supply where the load is terminated above
ground.
Under the above conditions, if the load is less than 20kOhm
and the output swing is greater than 1V(peak), there may be
some instability when the output is sinking current.
February 2006
11
M9999-022706
MIC860
Micrel, Inc.
Package Information
SC70-5
MICREL INC.
2180 FORTUNE DRIVE
SAN JOSE, CA 95131
USA
TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com
This information furnished by Micrel in this data sheet is believed to be accurate and reliable. However no responsibility is assumed by Micrel for its use.
Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can
reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into
the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's
use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify
Micrel for any damages resulting from such use or sale.
© 2002 Micrel, Inc.
M9999-022706
12
February 2006
Similar pages