Vincotech FZ06NRA045FH01 Neutral point clamped inverter Datasheet

FZ06NRA045FH01
preliminary datasheet
flowNPC 0
600V/30A
Features
flow0 12mm housing
● neutral point clamped inverter
● reactive power capability
● clip-in pcb mounting
● low inductance layout
Target Applications
Schematic
● solar inverter
● UPS
Types
● FZ06NRA045FH01
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
25
34
A
120
A
36
54
W
Tjmax
150
°C
VDS
600
V
36
44
A
230
A
125
189
W
Buck Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
Tj=25°C
IF
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Buck MOSFET
Drain to source breakdown voltage
DC drain current
Pulsed drain current
ID
IDpulse
Tj=Tjmax
Th=80°C
Tc=80°C
tp limited by Tjmax
Ptot
Gate-source peak voltage
Vgs
±20
V
Tjmax
150
°C
Maximum Junction Temperature
copyright Vincotech
Tj=Tjmax
Th=80°C
Tc=80°C
Power dissipation
1
Revision: 2
FZ06NRA045FH01
preliminary datasheet
Maximum Ratings
Tj=25°C, unless otherwise specified
Parameter
Condition
Symbol
Value
Unit
600
V
47
50
A
225
A
85
129
W
±20
V
Tj≤150°C
6
μs
VGE=15V
360
V
175
°C
600
V
Boost IGBT
Collector-emitter break down voltage
DC collector current
VCE
IC
Th=80°C
Tc=80°C
Tj=Tjmax
Repetitive peak collector current
ICpuls
tp limited by Tjmax
Power dissipation per IGBT
Ptot
Tj=Tjmax
Gate-emitter peak voltage
VGE
Short circuit ratings
tSC
VCC
Maximum Junction Temperature
Th=80°C
Tc=80°C
Tjmax
Boost Inverse Diode
VRRM
Tc=25°C
DC forward current
IF
Tj=Tjmax
Boost Inverse Diode
Ptot
Tj=Tjmax
Peak Repetitive Reverse Voltage
Th=80°C
Tc=80°C
Th=80°C
Tc=80°C
Tjmax
2
21
A
W
150
°C
1200
V
16
21
A
36
A
30
46
W
Tjmax
150
°C
Storage temperature
Tstg
-40…+125
°C
Operation temperature under switching condition
Top
-40…+(Tjmax - 25)
°C
4000
V
Creepage distance
min 12,7
mm
Clearance
min 12,7
mm
Maximum Junction Temperature
Boost Diode
Peak Repetitive Reverse Voltage
DC forward current
VRRM
IF
Tj=25°C
Th=80°C
Tc=80°C
Tj=Tjmax
Repetitive peak forward current
IFRM
tp limited by Tjmax
Power dissipation per Diode
Ptot
Tj=Tjmax
Maximum Junction Temperature
Th=80°C
Tc=80°C
Thermal Properties
Insulation Properties
Insulation voltage
copyright Vincotech
Vis
t=2s
DC voltage
2
Revision: 2
FZ06NRA045FH01
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
1
2,25
1,66
57
82
14
22
0,43
0,99
16743
15517
0,070
0,137
2,7
Buck Diode
Diode forward voltage
Peak reverse recovery current
Reverse recovery time
Reverse recovered charge
Peak rate of fall of recovery current
VF
30
IRRM
trr
Qrr
Rgon=8 Ω
350
30
di(rec)max
/dt
Reverse recovered energy
Erec
Thermal resistance chip to heatsink per chip
RthJH
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Thermal grease
thickness≤50um
λ = 1 W/mK
V
A
ns
μC
A/μs
mWs
1,95
K/W
Buck MOSFET
Static drain to source ON resistance
Gate threshold voltage
Gate to Source Leakage Current
Zero Gate Voltage Drain Current
Turn On Delay Time
Rise Time
Turn off delay time
Fall time
Rds(on)
10
44
VDS=VGS VDS=VGS
V(GS)th
Igss
20
Idss
0,003
0
0
600
td(ON)
tr
td(OFF)
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Total gate charge
Qg
Rgon=8 Ω
Rgoff=8 Ω
350
15
30
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
2,1
42
83
3
200
25
30
31
8
8
269
295
7
140
0,161
0,265
0,085
0,104
150
Gate to source charge
Qgs
Gate to drain charge
Qgd
51
Input capacitance
Ciss
6800
Output capacitance
Coss
Thermal resistance chip to heatsink per chip
RthJH
15
f=1MHz
copyright Vincotech
350
100
0
30
Tj=25°C
mΩ
3,9
34
Tj=25°C
V
nA
μA
ns
mWs
190
nC
pF
320
Thermal grease
thickness≤50um
λ = 1 W/mK
0,56
3
K/W
Revision: 2
FZ06NRA045FH01
preliminary datasheet
Characteristic Values
Parameter
Conditions
Symbol
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
Value
IC [A] or
IF [A] or
ID [A]
Tj
Unit
Min
Typ
Max
5
5,8
6,5
1
1,14
1,19
1,8
Boost IGBT
Gate emitter threshold voltage
VGE(th)
VCE=VGE
0,0012
Collector-emitter saturation voltage
VCE(sat)
15
Collector-emitter cut-off incl diode
ICES
0
600
Gate-emitter leakage current
IGES
20
0
Integrated Gate resistor
Rgint
Turn-on delay time
td(on)
Rise time
Turn-off delay time
Fall time
30
tf
Turn-on energy loss per pulse
Eon
Turn-off energy loss per pulse
Eoff
Input capacitance
Cies
Output capacitance
Coss
Reverse transfer capacitance
Crss
Gate charge
QGate
Thermal resistance chip to heatsink per chip
RthJH
30
650
Rgon=8 Ω
Rgoff=8 Ω
350
15
30
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
V
V
μA
nA
Ω
none
tr
td(off)
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
40
37
10
13
454
502
64
87
0,719
0,959
0,854
1,163
ns
mWs
4620
f=1MHz
0
25
15
480
288
Tj=25°C
pF
137
75
Tj=25°C
Thermal grease
thickness≤50um
λ = 1 W/mK
470
nC
1,11
K/W
9,07
9,43
V
Boost Inverse Diode
Diode forward voltage
Thermal resistance chip to heatsink per chip
VF
RthJH
20
Tj=25°C
Tj=125°C
Thermal grease
thickness≤50um
λ = 1 W/mK
K/W
Boost Diode
Diode forward voltage
Reverse leakage current
Peak reverse recovery current
VF
Ir
trr
Reverse recovered charge
Qrr
Reverse recovery energy
Thermal resistance chip to heatsink per chip
1200
IRRM
Reverse recovery time
Peak rate of fall of recovery current
18
Rgon=8 Ω
350
di(rec)max
/dt
Erec
RthJH
30
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
Tj=25°C
Tj=125°C
1,5
3,14
2,71
3,5
100
92
112
37
52
2,8
5,7
20796
20514
0,538
1,387
Thermal grease
thickness≤50um
λ = 1 W/mK
V
μA
A
ns
μC
A/μs
mWs
2,32
K/W
Thermistor
Rated resistance*
Power dissipation
B-value
R25
Tol. ±13%
Tj=25°C
R100
Tol. ±5%
Tj=100°C
P
B(25/100)
Tol. ±3%
19,14
1411
22
1486
24,86
1560
kΩ
Ω
Tj=25°C
210
mW
Tj=25°C
4000
K
* see details on Thermistor charts on Figure 2.
copyright Vincotech
4
Revision: 2
FZ06NRA045FH01
preliminary datasheet
Buck
MOSFET
MOSFET
100
100
IC (A)
Figure 2
Typical output characteristics
IC = f(VCE)
IC (A)
Figure 1
Typical output characteristics
IC = f(VCE)
80
80
60
60
40
40
●20FZ06NRA045FH01-P965F10
20
0
0
0
1
At
tp =
Tj =
VGE from
2
3
V CE (V)
4
5
0
At
tp =
Tj =
VGE from
250
μs
25
°C
4 V to 14 V i Condition
MOSFET
Figure 3
Typical transfer characteristics
IC = f(VGE)
1
2
3
V CE (V)
4
5
250
μs
125
°C
4 V to 14 V in steps of 1 V
FRED
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
100
IF (A)
IC (A)
30
Tj = Tjmax-25°C
Tj = Tjmax-25°C
25
80
20
60
Tj = 25°C
15
Tj = 25°C
40
10
20
5
0
0
0
At
tp =
VCE =
1
250
10
copyright Vincotech
2
3
4
5
V GE (V)
0
6
At
tp =
μs
V
5
0,5
250
1
1,5
2
2,5
3
V F (V)
3,5
μs
Revision: 2
FZ06NRA045FH01
preliminary datasheet
Buck
MOSFET
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
MOSFET
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
E (mWs)
E (mWs)
0,600
0,600
0,500
0,500
Eon High T
Eon High T
0,400
0,400
Eoff High T
0,300
Eon Low T
0,300
Eoff Low T
0,200
Eoff High T
Eoff Low T
0,200
Eon Low T
0,100
0,100
0,000
0,000
0
10
20
30
40
50
I C (A)
0
60
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
32
R G (W)
40
With an inductive load at
Tj =
°C
25/125
VCE =
350
V
VGE =
15
V
IC =
30
A
FRED
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
FRED
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
0,20
E (mWs)
E (mWs)
0,20
0,16
0,16
0,12
0,12
Erec High T
Erec High T
0,08
0,08
0,04
0,04
Erec Low T
0,00
0,00
0
10
20
30
40
50
I C (A)
0
60
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
15
V
Rgon =
8
Ω
copyright Vincotech
8
16
24
32
R G (W)
40
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
15
V
IC =
30
A
6
Revision: 2
FZ06NRA045FH01
preliminary datasheet
Buck
MOSFET
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
MOSFET
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
1,00
tdoff
tf
0,10
tdoff
t (ms)
t (ms)
1,00
tdon
0,10
tdon
tf
tr
0,01
0,01
tr
0,00
0,00
0
10
20
30
40
50
I C (A)
60
0
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
32
R G (W)
40
With an inductive load at
Tj =
125
°C
VCE =
350
V
VGE =
15
V
IC =
30
A
FRED
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FRED
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,040
t rr(ms)
t rr(ms)
0,040
0,032
trr High T
0,032
trr High T
0,024
0,024
0,016
0,016
trr Low T
trr Low T
0,008
0,008
0,000
0,000
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
15
8
copyright Vincotech
20
30
40
50
I C (A)
60
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
7
8
25/125
350
30
15
16
24
32
R gon (W)
40
°C
V
A
V
Revision: 2
FZ06NRA045FH01
preliminary datasheet
Buck
FRED
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
FRED
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
1,50
Qrr (mC)
1,5
Qrr (mC)
Qrr High T
1,20
1,2
0,90
0,9
Qrr High T
Qrr Low T
0,60
0,6
0,30
0,3
Qrr Low T
0,00
0
0
At
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
15
8
20
30
40
50
I C (A)
60
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
FRED
25/125
350
30
15
16
24
32
R g on ( Ω)
100
120
IrrM (A)
40
°C
V
A
V
FRED
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
IrrM (A)
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
8
100
80
IRRM High T
80
IRRM Low T
60
60
40
40
IRRM High T
20
20
IRRM Low T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
15
8
copyright Vincotech
20
30
40
50
I C (A)
60
°C
V
V
Ω
8
0
8
At
Tj =
VR =
IF =
VGE =
25/125
350
30
15
16
24
32
R gon (W)
40
°C
V
A
V
Revision: 2
FZ06NRA045FH01
preliminary datasheet
Buck
Figure 17
Typical rate of fall of forward and reverse recovery current
as a function of collector current
dI0/dt,dIrec/dt = f(Ic)
FRED
25000
30000
direc / dt (A/ms)
direc / dt (A/ms)
FRED
Figure 18
Typical rate of fall of forward and reverse recovery current
as a function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dIrec/dtLow T
20000
dIrec/dtLow T
25000
20000
15000
dIrec/dtHigh T
15000
dIrec/dtHigh T
10000
10000
dIo/dtLow T
di0/dtHigh T
5000
5000
dI0/dtHigh T
dI0/dtLow T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
15
8
20
30
40
50
I C (A)
60
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
MOSFET
Figure 19
8
25/125
350
30
15
16
24
R gon (W)
32
°C
V
A
V
FRED
Figure 20
IGBT transient thermal impedance as a function of pulse width
FRED transient thermal impedance as a function of pulse width
ZthJH = f(tp)
ZthJH = f(tp)
101
ZthJH (K/W)
ZthJH (K/W)
101
40
100
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
10-1
-2
10
10-2
10-5
At
D=
RthJH =
10-4
10-3
10-2
10-1
100
t p (s)
10-5
1011
At
D=
RthJH =
tp / T
0,56
K/W
IGBT thermal model values
R (C/W)
Tau (s)
0,04
8,6E+00
0,13
1,4E+00
0,23
2,2E-01
0,09
3,6E-02
0,03
5,0E-03
0,05
2,6E-04
copyright Vincotech
10-4
10-3
10-2
10-1
100
t p (s)
1011
tp / T
1,95
K/W
FRED thermal model values
R (C/W)
Tau (s)
0,06
7,9E+00
0,24
1,0E+00
0,90
1,4E-01
0,50
3,1E-02
0,17
3,7E-03
0,09
5,7E-04
9
Revision: 2
FZ06NRA045FH01
preliminary datasheet
Buck
MOSFET
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
MOSFET
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
50
IC (A)
Ptot (W)
300
250
40
200
30
150
20
100
10
50
0
0
0
At
Tj =
50
150
100
°C
150
T h ( o C)
0
200
At
Tj =
VGE =
single heating
overall heating
FRED
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
150
15
100
150
T h ( o C)
°C
V
FRED
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
50
Ptot (W)
IF (A)
80
200
40
60
30
40
20
20
10
0
0
0
At
Tj =
50
150
copyright Vincotech
100
°C
150
T h ( o C)
200
0
At
Tj =
single heating
overall heating
10
50
150
100
150
T h ( o C)
200
°C
Revision: 2
FZ06NRA045FH01
preliminary datasheet
Buck
MOSFET
Figure 25
Safe operating area as a function
of collector-emitter voltage
IC = f(VCE)
MOSFET
Figure 26
Gate voltage vs Gate charge
VGE = f(Qg)
103
VGE (V)
10
IC (A)
9
10uS
8
102
7
DC
120V
100uS
10mS
480V
6
1mS
100mS
5
101
4
3
2
100
1
0
0
15
30
45
60
75
90
105
120
135
150
Q g (nC)
10-1
10
At
D=
Th =
VGE =
Tj =
0
101
102
V CE (V)
103
At
IC =
single pulse
80
ºC
15
V
Tjmax
ºC
copyright Vincotech
11
30
A
Revision: 2
FZ06NRA045FH01
preliminary datasheet
Boost
IGBT
Figure 1
Typical output characteristics
IC = f(VCE)
IGBT
Figure 2
Typical output characteristics
IC = f(VCE)
80
IC (A)
IC (A)
80
60
60
40
40
20
20
0
0
0,0
1,0
At
tp =
Tj =
VGE from
2,0
3,0
4,0
V CE (V)
5,0
0,0
At
tp =
Tj =
VGE from
250
μs
25
°C
7 V to 17 V in steps of 1 V
IGBT
Figure 3
Typical transfer characteristics
IC = f(VGE)
1,0
2,0
3,0
4,0
5,0
250
μs
125
°C
7 V to 17 V in steps of 1 V
FRED
Figure 4
Typical diode forward current as
a function of forward voltage
IF = f(VF)
30
V CE (V)
IF (A)
IC (A)
60
25
Tj = 25°C
50
Tj = Tjmax-25°C
20
40
Tj = Tjmax-25°C
Tj = 25°C
15
30
10
20
5
10
0
0
0
At
tp =
VCE =
2
250
10
copyright Vincotech
4
6
8
V GE (V)
10
0
At
tp =
μs
V
12
1
250
2
3
4
V F (V)
5
μs
Revision: 2
FZ06NRA045FH01
preliminary datasheet
Boost
IGBT
Figure 5
Typical switching energy losses
as a function of collector current
E = f(IC)
IGBT
Figure 6
Typical switching energy losses
as a function of gate resistor
E = f(RG)
2,5
E (mWs)
E (mWs)
2,5
Eoff High T
2
Eon High T
1,5
Eon High T
Eoff High T
2
1,5
Eoff Low T
1
Eoff Low T
1
Eon Low T
0,5
0,5
Eon Low T
0
0
0
10
20
30
40
50
I C (A)
0
60
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
32
R G( Ω )
40
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
15
V
IC =
30
A
IGBT
Figure 7
Typical reverse recovery energy loss
as a function of collector current
Erec = f(Ic)
IGBT
Figure 8
Typical reverse recovery energy loss
as a function of gate resistor
Erec = f(RG)
2,5
E (mWs)
E (mWs)
2
Erec High T
2
1,6
1,5
1,2
Erec High T
1
0,8
Erec Low T
0,5
0,4
0
Erec Low T
0
0
10
20
30
40
50
I C (A)
60
0
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
15
V
Rgon =
8
Ω
copyright Vincotech
8
16
24
32
RG (Ω )
40
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
15
V
IC =
30
A
13
Revision: 2
FZ06NRA045FH01
preliminary datasheet
Boost
IGBT
Figure 9
Typical switching times as a
function of collector current
t = f(IC)
IGBT
Figure 10
Typical switching times as a
function of gate resistor
t = f(RG)
t ( μs)
10
t ( μs)
10
tdoff
1
1
tdoff
tf
0,1
tdon
0,1
tf
tdon
tr
tr
0,01
0,01
0,001
0,001
0
10
20
30
40
50
I C (A)
60
0
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
15
V
Rgon =
8
Ω
Rgoff =
8
Ω
8
16
24
32
R G( Ω )
40
With an inductive load at
Tj =
25/125
°C
VCE =
350
V
VGE =
15
V
IC =
30
A
FRED
Figure 11
Typical reverse recovery time as a
function of collector current
trr = f(Ic)
FRED
Figure 12
Typical reverse recovery time as a
function of IGBT turn on gate resistor
trr = f(Rgon)
0,080
trr High T
t rr(ms)
t rr(ms)
0,070
trr High T
0,070
0,060
0,060
0,050
trr Low T
trr Low T
0,050
0,040
0,040
0,030
0,030
0,020
0,020
0,010
0,010
0,000
0,000
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
15
8
copyright Vincotech
20
30
40
50
I C (A)
0
60
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
14
8
25/125
350
30
15
16
24
32
R gon (W)
40
°C
V
A
V
Revision: 2
FZ06NRA045FH01
preliminary datasheet
Boost
FRED
Figure 13
Typical reverse recovery charge as a
function of collector current
Qrr = f(IC)
Qrr (mC)
9,00
FRED
Figure 14
Typical reverse recovery charge as a
function of IGBT turn on gate resistor
Qrr = f(Rgon)
7
Qrr (mC)
Qrr High T
8,00
Qrr High T
6
7,00
5
6,00
4
5,00
4,00
3
Qrr Low T
Qrr Low T
3,00
2
2,00
1
1,00
0,00
0
At 0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
15
8
20
30
40
50
I C (A)
60
0
8
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
FRED
Figure 15
Typical reverse recovery current as a
function of collector current
IRRM = f(IC)
16
25/125
350
30
15
24
32
R g on ( Ω)
40
°C
V
A
V
FRED
Figure 16
Typical reverse recovery current as a
function of IGBT turn on gate resistor
IRRM = f(Rgon)
160
140
IrrM (A)
IrrM (A)
160
120
120
IRRM High T
140
IRRM High T
IRRM Low T
100
100
80
80
60
60
40
40
20
20
IRRM Low T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
15
8
copyright Vincotech
20
30
40
50
I C (A)
60
°C
V
V
Ω
15
0
8
At
Tj =
VR =
IF =
VGE =
25/125
350
30
15
16
24
32
R gon (W)
40
°C
V
A
V
Revision: 2
FZ06NRA045FH01
preliminary datasheet
Boost
FRED
Figure 17
Typical rate of fall of forward and reverse recovery current
as a function of collector current
dI0/dt,dIrec/dt = f(Ic)
25000
direc / dt (A/ms)
25000
direc / dt (A/ms)
FRED
Figure 18
Typical rate of fall of forward and reverse recovery current
as a function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Rgon)
dIrec/dtLow T
20000
dIrec/dtLow T
20000
dIrec/dtHigh T
dIrec/dtHigh T
15000
15000
10000
10000
dIo/dtLow T
5000
5000
dI0/dtLow T
di0/dtHigh T
dI0/dtHigh T
0
0
0
At
Tj =
VCE =
VGE =
Rgon =
10
25/125
350
15
8
20
30
40
50
I C (A)
60
0
At
Tj =
VR =
IF =
VGE =
°C
V
V
Ω
IGBT
Figure 19
25/125
350
30
15
16
24
R gon (W)
32
40
°C
V
A
V
FRED
Figure 20
FRED transient thermal impedance as a function of pulse width
ZthJH = f(tp)
IGBT transient thermal impedance as a function of pulse width
ZthJH = f(tp)
ZthJH (K/W)
101
ZthJH (K/W)
101
100
10
8
100
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
-1
10
10-2
10-2
10-5
At
D=
RthJH =
10-4
tp / T
1,11
10-3
10-2
10-1
100
t p (s)
101 1
K/W
IGBT thermal model values
R (C/W)
Tau (s)
0,06
9,9E+00
0,22
1,2E+00
0,59
1,4E-01
0,17
2,2E-02
0,03
2,7E-03
0,04
2,7E-04
copyright Vincotech
10-5
10-4
10-3
At
D=
RthJH =
tp / T
2,32
K/W
10-2
10-1
100
t p (s)
101 1
FRED thermal model values
R (C/W)
Tau (s)
0,04
9,8E+00
0,25
7,7E-01
1,24
1,2E-01
0,44
2,0E-02
0,25
2,6E-03
0,09
4,3E-04
16
Revision: 2
FZ06NRA045FH01
preliminary datasheet
Boost
IGBT
Figure 21
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
IGBT
Figure 22
Collector current as a
function of heatsink temperature
IC = f(Th)
50
IC (A)
Ptot (W)
160
140
40
120
100
30
80
20
60
40
10
20
0
0
0
At
Tj =
50
175
100
150
T h ( o C)
200
0
At
Tj =
VGE =
ºC
FRED
Figure 23
Power dissipation as a
function of heatsink temperature
Ptot = f(Th)
50
175
15
100
150
T h ( o C)
200
ºC
V
FRED
Figure 24
Forward current as a
function of heatsink temperature
IF = f(Th)
30
IF (A)
Ptot (W)
75
25
60
20
45
15
30
10
15
5
0
0
0
At
Tj =
50
150
copyright Vincotech
100
150
Th ( o C)
0
200
At
Tj =
ºC
17
50
150
100
150
Th ( o C)
200
ºC
Revision: 2
FZ06NRA045FH01
preliminary datasheet
Boost
Boost Inverse Diode
Figure 25
Typical diode forward current as
a function of forward voltage
IF = f(VF)
Boost Inverse Diode
Figure 26
Diode transient thermal impedance
as a function of pulse width
ZthJH = f(tp)
101
ZthJH (K/W)
IF (A)
12
Tj = 25°C
10
100
8
6
-1
10
4
2
Tj = Tjmax-25°C
0
0
At
tp =
2
250
copyright Vincotech
4
6
8
10
VF (V)
10-2
12
μs
18
10-5
10-4
10-3
At
D=
RthJH =
tp / T
4,36
K/W
10-2
10-1
100
t p (s)
101 1
Revision: 2
FZ06NRA045FH01
preliminary datasheet
Thermistor
Thermistor
Figure 1
Typical NTC characteristic
as a function of temperature
RT = f(T)



 B25/100⋅ 1 − 1  
 T T 

25  


NTC-typical temperature characteristic
25000
Thermistor
Figure 2
Typical NTC resistance values
R/Ω
R(T ) = R25 ⋅ e
[Ω]
20000
15000
10000
5000
0
25
copyright Vincotech
50
75
100
T (°C)
125
19
Revision: 2
FZ06NRA045FH01
preliminary datasheet
Switching Definitions BUCK MOSFET
General conditions
= 125 °C
Tj
= 8Ω
Rgon
Rgoff
= 8Ω
BUCK MOSFET
Figure 1
BUCK MOSFET
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
400
140
IC
350
tdoff
110
VCE
300
VCE 90%
VGE 90%
250
80
IC
%
200
%50
150
tEoff
● FZ06NRA045FH01-P965F10
VCE
20
100
VGE
IC 1%
tdon
VGE
Ic10%
50
-10
VGE10%
0
-40
-0,3
tEon
VCE3%
-50
-0,1
0,1
0,3
0,5
0,7
2,9
time (us)
VGS (0%) =
VGS (100%) =
VD (100%) =
ID (100%) =
tdoff =
tEoff =
0
15
350
30
0,30
0,31
2,95
VGS (0%) =
VGS (100%) =
VD (100%) =
ID (100%) =
tdon =
tEon =
V
V
V
A
μs
μs
BUCK MOSFET
Figure 3
3
3,05
time(us)
0
15
350
30
0,04
0,05
3,1
3,2
V
V
V
A
μs
μs
BUCK MOSFET
Figure 4
Turn-off Switching Waveforms & definition of tf
3,15
Turn-on Switching Waveforms & definition of tr
140
450
fitted
120
Ic
VCE
IC
350
100
IC 90%
80
250
IC 60%
%60
%
40
150
IC 40%
VCE
20
0
-20
0,26
IC90%
tr
50
IC10%
IC10%
tf
0,27
VD (100%) =
ID (100%) =
tf =
copyright Vincotech
0,28
350
30
0,01
0,29
0,3
time (us)
0,31
0,32
-50
2,95
0,33
VD (100%) =
ID (100%) =
tr =
V
A
μs
20
2,99
3,03
350
30
0,01
time(us)
3,07
3,11
3,15
V
A
μs
Revision: 2
FZ06NRA045FH01
preliminary datasheet
Switching Definitions BUCK MOSFET
BUCK MOSFET
Figure 5
BUCK MOSFET
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
180
%
Eoff
Poff
Pon
%
100
140
80
Eon
100
60
40
60
20
20
0
VGE90%
-20
-0,2
-0,1
Poff (100%) =
Eoff (100%) =
tEoff =
VGE10%
VCE3%
tEoff
tEon
IC 1%
0
0,1
0,2
time (us)
10,48
0,11
0,31
0,3
0,4
-20
2,95
0,5
2,99
3,07
3,11
3,15
time(us)
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
μs
BUCK MOSFET
Figure 7
Gate voltage vs Gate charge (measured)
3,03
10,48
0,27
0,05
kW
mJ
μs
BUCK FRED
Figure 8
Turn-off Switching Waveforms & definition of trr
150
20
fitted
100
trr
Id
15
50
0
Vd
10
IRRM10%
VGE (V)
-50
%
-100
5
-150
-200
0
IRRM90%
-250
IRRM100%
-300
3,01
-5
-50
0
VGSoff =
VGSon =
VC (100%) =
ID (100%) =
Qg =
copyright Vincotech
50
0
15
350
30
191,44
100
Qg (nC)
150
200
250
3,03
3,05
3,07
3,09
3,11
time(us)
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
21
350
30
-70
0,02
V
A
A
μs
Revision: 2
FZ06NRA045FH01
preliminary datasheet
Switching Definitions BUCK MOSFET
BUCK FRED
Figure 9
BUCK FRED
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
250
200
Qrr
Prec
Id
125
200
tQrr
50
150
Erec
-25
100
%
tErec
%
-100
50
-175
0
-250
-50
-325
-100
3
3,025
Id (100%) =
Qrr (100%) =
tQrr =
3,05
3,075
time(us)
30
0,98
0,05
A
μC
μs
3,1
3,125
3,15
3
3,025
Prec (100%) =
Erec (100%) =
tErec =
3,05
3,075
time(us)
10,48
0,31
0,05
kW
mJ
μs
3,1
3,125
3,15
Measurement circuits
Figure 11
BUCK stage switching measurement circuit
copyright Vincotech
Figure 12
BOOST stage switching measurement circuit
22
Revision: 2
FZ06NRA045FH01
preliminary datasheet
Switching Definitions Boost IGBT
General conditions
= 125 °C
Tj
= 8Ω
Rgon
Rgoff
= 8Ω
BOOST IGBT
Figure 1
BOOST IGBT
Figure 2
Turn-off Switching Waveforms & definition of tdoff, tEoff
(tEoff = integrating time for Eoff)
Turn-on Switching Waveforms & definition of tdon, tEon
(tEon = integrating time for Eon)
520
150
●solar inverter
●UPS
120
●UPS
IC
480
VCE
440
tdoff
400
360
90
VCE 90%
VGE 90%
320
%
280
%
60
240
IC
200
tEoff
● FZ06NRA045FH01-P965F10
160
VGE
30
IC 1%
VGE
VCE
120
tdon
80
0
Ic10%
40
-30
-0,2
tEon
VGE10%
0
VCE3%
-40
-0,05
0,1
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdoff =
tEoff =
0,25
time (us)
0
15
350
30
0,50
0,70
0,4
0,55
0,7
3,9
3,98
VGE (0%) =
VGE (100%) =
VC (100%) =
IC (100%) =
tdon =
tEon =
V
V
V
A
μs
μs
BOOST IGBT
Figure 3
4,06
time(us)
0
15
350
30
0,04
0,14
4,14
4,22
V
V
V
A
μs
μs
BOOST IGBT
Figure 4
Turn-off Switching Waveforms & definition of tf
4,3
Turn-on Switching Waveforms & definition of tr
120
490
VCE
fitted
IC
460
100
Ic
430
IC 90%
400
370
80
340
310
IC 60%
60
280
%
40
250
%
220
IC 40%
tr
190
160
20
VCE
130
IC10%
100
0
IC90%
70
40
tf
0,3
0,34 0,38 0,42 0,46
VC (100%) =
IC (100%) =
tf =
copyright Vincotech
350
30
0,09
0,5
IC10%
10
-20
0,54 0,58 0,62 0,66
time (us)
0,7
-20
0,74 0,78
3,9
3,94
VC (100%) =
IC (100%) =
tr =
V
A
μs
23
3,98
4,02
350
30
0,01
4,06 time(us)
4,1
4,14
4,18
4,22
4,26
4,3
V
A
μs
Revision: 2
FZ06NRA045FH01
preliminary datasheet
Switching Definitions Boost IGBT
BOOST IGBT
Figure 5
BOOST IGBT
Figure 6
Turn-off Switching Waveforms & definition of tEoff
Turn-on Switching Waveforms & definition of tEon
120
240
%
220
%
Eoff
100
Pon
200
Poff
180
80
160
140
60
120
Eon
100
40
80
60
20
40
20
0
tEoff
VGE90%
-20
-0,2
-0,1
IC 1%
0
Poff (100%) =
Eoff (100%) =
tEoff =
0,1
0,2
10,55
1,16
0,70
0,3
time (us)
0,4
0,5
0,6
0,7
-20
3,95 3,97 3,99 4,01 4,03 4,05 4,07 4,09 4,11 4,13 4,15 4,17 4,19
time(us)
0,8
Pon (100%) =
Eon (100%) =
tEon =
kW
mJ
μs
BOOST IGBT
Figure 7
Gate voltage vs Gate charge (measured)
VCE3%
tEon
VGE10%
0
10,55
0,96
0,14
kW
mJ
μs
BOOST FRED
Figure 8
Turn-off Switching Waveforms & definition of trr
160
25
120
Id
80
20
trr
40
Vd
0
15
-40
IRRM10%
-80
VGE (V)
10
%-120
-160
5
-200
fitted
-240
0
-280
IRRM90%
-320
-5
-360
IRRM100%
-400
-10
-50
0
50
VGEoff =
VGEon =
VC (100%) =
IC (100%) =
Qg =
copyright Vincotech
100
150
0
15
350
30
407,76
200
Qg (nC)
250
300
350
400
4
450
4,02
Vd (100%) =
Id (100%) =
IRRM (100%) =
trr =
V
V
V
A
nC
24
4,04
4,06
350
30
-112
0,05
4,08
4,1
4,12
time(us)
4,14
4,16
4,18
4,2
V
A
A
μs
Revision: 2
FZ06NRA045FH01
preliminary datasheet
Switching Definitions Boost IGBT
BOOST FRED
Figure 9
BOOST FRED
Figure 10
Turn-on Switching Waveforms & definition of tQrr
(tQrr = integrating time for Qrr)
Turn-on Switching Waveforms & definition of tErec
(tErec= integrating time for Erec)
150
240
Id
220
tQrr
50
200
Prec
180
Qrr
160
-50
140
Erec
120
%
100
-150
%
tErec
80
-250
60
40
-350
20
-450
-20
0
4
4,02 4,04 4,06 4,08
Id (100%) =
Qrr (100%) =
tQrr =
30
5,74
0,16
4,1
4,12
4,14 4,16 4,18
time(us)
4,2
4
4,22 4,24
4,02 4,04 4,06 4,08
Prec (100%) =
Erec (100%) =
tErec =
A
μC
μs
10,55
1,39
0,16
4,1
4,12
4,14 4,16 4,18
time(us)
4,2
4,22 4,24
kW
mJ
μs
Measurement circuits
Figure 11
BUCK stage switching measurement circuit
copyright Vincotech
Figure 12
BOOST stage switching measurement circuit
25
Revision: 2
FZ06NRA045FH01
preliminary datasheet
Ordering Code and Marking - Outline - Pinout
Ordering Code & Marking
Version
without thermal paste 12mm housing
Ordering Code
10-FZ06NRA045FH01-P965F10
in DataMatrix as
P965F10
in packaging barcode as
P965F10
Outline
Condition
Pinout
copyright Vincotech
26
Revision: 2
FZ06NRA045FH01
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Datasheet Status
Target
Preliminary
Final
Product Status
Definition
Formative or In Design
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
First Production
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Full Production
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
DISCLAIMER
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
LIFE SUPPORT POLICY
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
As used herein:
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
copyright Vincotech
27
Revision: 2
Similar pages