AD ADG3304BRUZ-REEL7 Low voltage, 1.15 v to 5.5 v, 4-channel, bidirectional logic level translator Datasheet

Data Sheet
Low Voltage, 1.15 V to 5.5 V, 4-Channel,
Bidirectional Logic Level Translator
ADG3304
FEATURES
FUNCTIONAL BLOCK DIAGRAM
Bidirectional level translation
Operates from 1.15 V to 5.5 V
Low quiescent current < 5 µA
No direction pin
Qualified for automotive applications
VCCA
VCCY
A1
Y1
A2
Y2
A3
Y3
A4
Y4
APPLICATIONS
SPI®, MICROWIRE™ level translation
Low voltage ASIC level translation
Smart card readers
Cell phones and cell phone cradles
Portable communications devices
Telecommunications equipment
Network switches and routers
Storage systems (SAN/NAS)
Computing/server applications
GPS
Portable POS systems
Low cost serial interfaces
GND
04860-001
EN
Figure 1.
GENERAL DESCRIPTION
The ADG3304 is a bidirectional logic level translator that contains four bidirectional channels. It can be used in multivoltage
digital system applications, such as data transfer, between a low
voltage digital signal processing controller and a higher voltage
device using SPI and MICROWIRE interfaces. The internal
architecture allows the device to perform bidirectional logic
level translation without an additional signal to set the direction
in which the translation takes place.
The enable pin (EN) provides three-state operation on both the
A side and the Y side pins. When the EN pin is pulled low, the
terminals on both sides of the device are in the high impedance
state. The EN pin is referred to the VCCA supply voltage and
driven high for normal operation.
The voltage applied to VCCA sets the logic levels on the A side of
the device, while VCCY sets the levels on the Y side. For proper
operation, VCCA must always be less than VCCY. The VCCA-compatible logic signals applied to the A side of the device appear as
VCCY-compatible levels on the Y side. Similarly, VCCY-compatible
logic levels applied to the Y side of the device appear as VCCAcompatible logic levels on the A side.
PRODUCT HIGHLIGHTS
Rev. D
The ADG3304 is available in compact 14-lead TSSOP, 12-ball
WLCSP, and 20-lead LFCSP. It is guaranteed to operate over
the 1.15 V to 5.5 V supply voltage range.
1. Bidirectional level translation.
2. Fully guaranteed over the 1.15 V to 5.5 V supply range.
3. No direction pin.
4. Available in 14-lead TSSOP, 12-ball WLCSP, and 20-lead
LFCSP.
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2005–2013 Analog Devices, Inc. All rights reserved.
Technical Support
www.analog.com
ADG3304
Data Sheet
TABLE OF CONTENTS
Features .............................................................................................. 1
Theory of Operation ...................................................................... 16
Applications ....................................................................................... 1
Level Translator Architecture ................................................... 16
Functional Block Diagram .............................................................. 1
Input Driving Requirements ..................................................... 16
General Description ......................................................................... 1
Output Load Requirements ...................................................... 16
Product Highlights ........................................................................... 1
Enable Operation ....................................................................... 16
Revision History ............................................................................... 2
Power Supplies ............................................................................ 16
Specifications..................................................................................... 3
Data Rate ..................................................................................... 17
Absolute Maximum Ratings ............................................................ 6
Applications..................................................................................... 18
ESD Caution .................................................................................. 6
Layout Guidelines....................................................................... 18
Pin Configurations and Function Descriptions ........................... 7
Outline Dimensions ....................................................................... 19
Typical Performance Characteristics ............................................. 8
Ordering Guide .......................................................................... 20
Test Circuits ..................................................................................... 12
Automotive Products ................................................................. 20
Terminology .................................................................................... 15
REVISION HISTORY
4/13—Rev. C to Rev. D
Changes to Figure 3 and Table 4 ..................................................... 7
12/12—Rev. B to Rev. C
Changes to Table 1 ............................................................................ 3
Changes to Table 2 ............................................................................ 6
Changes to VCCY Description, Table 3 and Table 4 ....................... 7
Changes to Ordering Guide .......................................................... 20
Added Automotive Products Section........................................... 20
12/05—Rev. A to Rev. B
Changes to Table 1.............................................................................3
Changes to Table 2.............................................................................6
Changes to Figure 3 and Table 4......................................................7
Updated Outline Dimensions ....................................................... 19
Changes to Ordering Guide .......................................................... 21
6/05—Rev. 0 to Rev. A
Added LFCSP Package ....................................................... Universal
1/05—Revision 0: Initial Version
Rev. D | Page 2 of 20
Data Sheet
ADG3304
SPECIFICATIONS
VCCY = 1.65 V to 5.5 V, VCCA = 1.15 V to VCCY, GND = 0 V, TA = 25°C. All specifications TMIN to TMAX, unless otherwise noted.
Table 1.
B Version 1
Typ Max
Parameter
LOGIC INPUTS/OUTPUTS
A Side
Input High Voltage 2
Symbol
Test Conditions/Comments
Min
VIHA
VCCA × 0.88
VCCA × 0.72
1.7
2.2
VCCA × 0.7
Input Low Voltage2
VILA
VCCA = 1.2 V + 0.1 V/−0.05 V
VCCA = 1.8 V ± 0.15 V
VCCA = 2.5 V ± 0.2 V
VCCA = 3.3 V ± 0.3 V
VCCA = 5 V ± 0.5 V
VCCA = 1.2 V + 0.1 V/−0.05 V
VCCA = 1.8 V ± 0.15 V
VCCA = 2.5 V ± 0.2 V
VCCA = 3.3 V ± 0.3 V
VCCA = 5 V ± 0.5 V
VY = VCCY, IOH = 20 µA, see Figure 29
VY = 0 V, IOL = 20 µA, see Figure 29
f = 1 MHz, EN = 0, see Figure 34
VA = 0 V/VCCA, EN = 0, see Figure 31
Output High Voltage
Output Low Voltage
Capacitance2
Leakage Current
Y Side
Input High Voltage2
Input Low Voltage2
VOHA
VOLA
CA
ILA, Hi-Z
VIHY
VILY
Output High Voltage
Output Low Voltage
Capacitance2
Leakage Current
Enable (EN)
Input High Voltage2
VOHY
VOLY
CY
ILY, Hi-Z
Input Low Voltage2
VILEN
Leakage Current
Capacitance2
Enable Time2
ILEN
CEN
tEN
VIHEN
VCCA × 0.35
VCCA × 0.35
0.7
0.8
VCCA × 0.3
VCCA − 0.4
0.4
9
±1
VCCY = 1.8 V ± 0.15 V
VCCY = 2.5 V ± 0.2 V
VCCY = 3.3 V ± 0.3 V
VCCY = 5 V ± 0.5 V
VCCY = 1.8 V ± 0.15 V
VCCY = 2.5 V ± 0.2 V
VCCY = 3.3 V ± 0.3 V
VCCY = 5 V ± 0.5 V
VA = VCCA, IOH = 20 µA, see Figure 30
VA = 0 V, IOL = 20 µA, see Figure 30
f = 1 MHz, EN = 0, see Figure 35
VY = 0 V/VCCY, EN = 0, see Figure 32
VCCY × 0.67
1.7
2
VCCY × 0.7
VCCA = 1.2 V + 0.1 V/−0.05 V
VCCA = 1.8 V ± 0.15 V
VCCA = 2.5 V ± 0.2 V
VCCA = 3.3 V ± 0.3 V
VCCA = 5 V ± 0.5 V
VCCA = 1.2 V + 0.1 V/−0.05 V
VCCA = 1.8 V ± 0.15 V
VCCA = 2.5 V ± 0.2 V
VCCA = 3.3 V ± 0.3 V
VCCA = 5 V ± 0.5 V
VEN = 0 V/VCCA, VA = 0 V, see Figure 33
VCCA × 0.88
VCCA × 0.72
1.7
2.2
VCCA × 0.7
RS = RT = 50 Ω, VA = 0 V/VCCA (A→Y),
VY = 0 V/VCCY (Y→A), see Figure 36
Rev. D | Page 3 of 20
VCCY × 0.35
0.7
0.8
VCCY × 0.25
VCCY − 0.4
0.4
6
±1
VCCA × 0.35
VCCA × 0.35
0.7
0.8
VCCA × 0.3
±1
3
1
1.8
Unit
V
V
V
V
V
V
V
V
V
V
V
V
pF
µA
V
V
V
V
V
V
V
V
V
V
pF
µA
V
V
V
V
V
V
V
V
V
V
µA
pF
µs
ADG3304
Parameter
SWITCHING CHARACTERISTICS2
3.3 V ± 0.3 V ≤ VCCA ≤ VCCY, VCCY = 5 V ± 0.5 V
A→Y Level Translation
Propagation Delay
Data Sheet
Symbol
Test Conditions/Comments
Min
B Version 1
Typ Max
Unit
RS = RT = 50 Ω, CL = 50 pF, see Figure 37
tP, A→Y
6
10
Rise Time
tR, A→Y
2
3.5
ns
Fall Time
tF, A→Y
2
3.5
ns
Maximum Data Rate
DMAX, A→Y
2
4
ns
3
ns
Channel-to-Channel Skew
tSKEW, A→Y
Part-to-Part Skew
tPPSKEW, A→Y
Y→A Level Translation
Propagation Delay
50
ns
Mbps
RS = RT = 50 Ω, CL = 15 pF, see Figure 38
tP, Y→A
4
7
ns
Rise Time
tR, Y→A
1
3
ns
Fall Time
tF, Y→A
3
7
Maximum Data Rate
DMAX, Y→A
Channel-to-Channel Skew
tSKEW, Y→A
Part-to-Part Skew
1.8 V ± 0.15 V ≤ VCCA ≤ VCCY, VCCY = 3.3 V ± 0.3 V
A→Y Translation
Propagation Delay
50
ns
Mbps
2
tPPSKEW, Y→A
3.5
ns
2
ns
RS = RT = 50 Ω, CL = 50 pF, see Figure 37
tP, A→Y
8
11
ns
Rise Time
tR, A→Y
2
5
ns
Fall Time
tF, A→Y
2
5
Maximum Data Rate
DMAX, A→Y
Channel-to-Channel Skew
tSKEW, A→Y
Part-to-Part Skew
tPPSKEW, A→Y
Y→A Translation
Propagation Delay
50
ns
Mbps
2
4
ns
4
ns
RS = RT = 50 Ω, CL = 15 pF, see Figure 38
tP, Y→A
5
8
ns
Rise Time
tR, Y→A
2
3.5
ns
Fall Time
tF, Y→A
2
3.5
Maximum Data Rate
DMAX, Y→A
Channel-to-Channel Skew
tSKEW, Y→A
Part-to-Part Skew
tPPSKEW, Y→A
1.15 V to 1.3 V ≤ VCCA ≤ VCCY, VCCY = 3.3 V ± 0.3 V
A→Y Translation
Propagation Delay
50
ns
Mbps
2
3
ns
3
ns
RS = RT = 50 Ω, CL = 50 pF, see Figure 37
tP, A→Y
9
18
ns
Rise Time
tR, A→Y
3
5
ns
Fall Time
tF, A→Y
2
5
Maximum Data Rate
DMAX, A→Y
Channel-to-Channel Skew
tSKEW, A→Y
Part-to-Part Skew
tPPSKEW, A→Y
Y→A Translation
Propagation Delay
40
ns
Mbps
2
5
ns
10
ns
RS = RT = 50 Ω, CL = 15 pF, see Figure 38
tP, Y→A
5
9
ns
Rise Time
tR, Y→A
2
4
ns
Fall Time
tF, Y→A
2
4
Maximum Data Rate
DMAX, Y→A
Channel-to-Channel Skew
tSKEW, Y→A
Part-to-Part Skew
tPPSKEW, Y→A
40
2
Rev. D | Page 4 of 20
ns
Mbps
4
ns
4
ns
Data Sheet
Parameter
1.15 V to 1.3 V ≤ VCCA ≤ VCCY, VCCY = 1.8 V ± 0.3 V
A→Y Translation
Propagation Delay
ADG3304
Symbol
B Version 1
Typ Max
Unit
RS = RT = 50 Ω, CL = 50 pF, see Figure 37
tP, A→Y
12
25
ns
tR, A→Y
7
12
ns
Fall Time
tF, A→Y
3
5
Maximum Data Rate
DMAX, A→Y
Channel-to-Channel Skew
tSKEW, A→Y
Part-to-Part Skew
tPPSKEW, A→Y
25
ns
Mbps
2
5
ns
15
ns
RS = RT = 50 Ω, CL = 15 pF, see Figure 38
tP, Y→A
14
35
ns
Rise Time
tR, Y→A
5
16
ns
Fall Time
tF, Y→A
2.5
6.5
Maximum Data Rate
DMAX, Y→A
Channel-to-Channel Skew
tSKEW, Y→A
Part-to-Part Skew
tPPSKEW, Y→A
2.5 V ± 0.2 V ≤ VCCA ≤ VCCY, VCCY = 3.3 V ± 0.3 V
A→Y Translation
Propagation Delay
25
ns
Mbps
3
6.5
ns
23.5
ns
RS = RT = 50 Ω, CL = 50 pF, see Figure 37
tP, A→Y
7
10
ns
Rise Time
tR, A→Y
2.5
4
ns
Fall Time
tF, A→Y
2
5
ns
Maximum Data Rate
DMAX, A→Y
Channel-to-Channel Skew
tSKEW, A→Y
1.5
2
ns
4
ns
Part-to-Part Skew
Y→A Translation
Propagation Delay
60
Mbps
tPPSKEW, A→Y
RS = RT = 50 Ω, CL = 15 pF, see Figure 38
tP, Y→A
5
8
ns
Rise Time
tR, Y→A
1
4
ns
Fall Time
tF, Y→A
3
5
Maximum Data Rate
tSKEW, Y→A
Part-to-Part Skew
tPPSKEW, Y→A
Quiescent Power Supply Current
VCCA
VCCY
ICCA
ICCY
Three-State Mode Power Supply Current
60
DMAX, Y→A
Channel-to-Channel Skew
POWER REQUIREMENTS
Power Supply Voltages
2
Min
Rise Time
Y→A Translation
Propagation Delay
1
Test Conditions/Comments
IHi-Z, A
IHi-Z, Y
2
VCCA ≤ VCCY
VA = 0 V/VCCA, VY = 0 V/VCCY,
VCCA = VCCY = 5.5 V, EN = 1
VA = 0 V/VCCA, VY = 0 V/VCCY,
VCCA = VCCY = 5.5 V, EN = 1
VCCA = VCCY = 5.5 V, EN = 0
VCCA = VCCY = 5.5 V, EN = 0
TA for typical specifications is 25°C.
Guaranteed by design, not production tested.
Rev. D | Page 5 of 20
ns
Mbps
3
ns
3
ns
0.17
5.5
5.5
5
V
V
µA
0.27
5
µA
0.1
0.1
5
5
µA
µA
1.15
1.65
ADG3304
Data Sheet
ABSOLUTE MAXIMUM RATINGS
TA = 25°C, unless otherwise noted.
Table 2.
Parameter
VCCA to GND
VCCY to GND
Digital Inputs (A)
Digital Inputs (Y)
EN to GND
Operating Temperature Range
Storage Temperature Range
Junction Temperature
θJA Thermal Impedance (4-Layer Board)
14-Lead TSSOP
12-Ball WLCSP
20-Lead LFCSP
Lead Temperature, Soldering
Rating
−0.3 V to +7 V
VCCA to +7 V
−0.3 V to (VCCA + 0.3 V)
−0.3 V to (VCCY + 0.3 V)
−0.3 V to +7 V
−40°C to +85°C
−65°C to +150°C
150°C
89.21°C/W
120°C/W
30.4°C/W
As per JEDEC J-STD-020
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those listed in the operational sections
of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
Only one absolute maximum rating can be applied at any one
time.
ESD CAUTION
Rev. D | Page 6 of 20
Data Sheet
ADG3304
A1
VCCA
VCCY
Y1
NC
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS
13 Y1
A3
4
TOP VIEW
(Not to Scale)
A4
5
NC
6
9
NC
GND
7
8
EN
12 Y2
11 Y3
A1
Y2
VCCA
A2
Y3
EN
A3
Y4
GND
A4
A
PIN 1
INDICATOR
1
2
3
4
5
ADG3304
TOP VIEW
(Not to Scale)
15 NC
14 Y2
13 Y3
12 Y4
11 NC
B
10 Y4
NC = NO CONNECT
Y1
NC
A2
A3
A4
NC
C
D
TOP VIEW
(BALLS AT THE BOTTOM)
Not to Scale
Figure 2. 14-Lead TSSOP
Pin Configuration
Figure 3. 12-Ball WLCSP
Pin Configuration
NC = NO CONNECT
NOTES
1. THE EXPOSED PADDLE CAN BE TIED TO GND
OR LEFT FLOATING. DO NOT TIE IT TO VCCA or VCCY.
Figure 4. 20-Lead LFCSP_VQ
Pin Configuration
Table 3. 14-Lead TSSOP and 20-lead LFCSP Pin Function Descriptions
TSSOP
1
2
3
4
5
6, 9
7
8
10
11
12
13
14
Pin No.
LFCSP
19
20
2
3
4
1, 5, 6, 7, 10, 11, 15, 16
8
9
12
13
14
17
18
Mnemonic
VCCA
A1
A2
A3
A4
NC
GND
EN
Y4
Y3
Y2
Y1
VCCY
Description
Power Supply Voltage Input for the A1 to A4 I/O Pins (1.15 V ≤ VCCA ≤ VCCY).
Input/Output A1. Referenced to VCCA.
Input/Output A2. Referenced to VCCA.
Input/Output A3. Referenced to VCCA.
Input/Output A4. Referenced to VCCA.
No Connect.
Ground.
Active High Enable Input.
Input/Output Y4. Referenced to VCCY.
Input/Output Y3. Referenced to VCCY.
Input/Output Y2. Referenced to VCCY.
Input/Output Y1. Referenced to VCCY.
Power Supply Voltage Input for the Y1 to Y4 I/O Pins (1.65 V ≤ VCCY ≤ 5.5 V).
Table 4. 12-Ball WLCSP Pin Function Descriptions
Bump No.
A1
B1
C1
D1
A2
B2
C2
D2
A3
B3
C3
D3
Mnemonic
Y1
Y2
Y3
Y4
VCCY
VCCA
EN
GND
A1
A2
A3
A4
Description
Input/Output Y1. Referenced to VCCY.
Input/Output Y2. Referenced to VCCY.
Input/Output Y3. Referenced to VCCY.
Input/Output Y4. Referenced to VCCY.
Power Supply Voltage Input for the Y1 to Y4 I/O Pins (1.65 V ≤ VCCY ≤ 5.5 V).
Power Supply Voltage Input for the A1 to A4 I/O Pins (1.15 V ≤ VCCA ≤ VCCY).
Active High Enable Input.
Ground.
Input/Output A1. Referenced to VCCA.
Input/Output A2. Referenced to VCCA.
Input/Output A3. Referenced to VCCA.
Input/Output A4. Referenced to VCCA.
Rev. D | Page 7 of 20
04860-057
3
3
6
7
8
9
10
A2
ADG3304
2
VCCY
NC
NC
GND
EN
NC
2
1
04860-003
A1
14 VCCY
1
04860-002
VCCA
20
19
18
17
16
BALL A1
INDICATOR
ADG3304
Data Sheet
TYPICAL PERFORMANCE CHARACTERISTICS
1.0
3.0
TA = 25°C
1 CHANNEL
CL = 50pF
0.9
2.5
0.8
VCCA = 3.3V, VCCY = 5V
0.7
2.0
0.6
ICCY (mA)
ICCA (mA)
TA = 25°C
1 CHANNEL
CL = 15pF
0.5
0.4
VCCA = 1.8V, VCCY = 3.3V
0.3
VCCA = 3.3V, VCCY = 5V
1.5
1.0
VCCA = 1.8V, VCCY = 3.3V
0.2
0.5
0.1
15
20
25
30
35
DATA RATE (Mbps)
40
45
50
VCCA = 1.2V, VCCY = 1.8V
0
0
15
20
25
30
35
40
45
50
Figure 8. ICCY vs. Data Rate (Y→A Level Translation)
1.6
TA = 25°C
1 CHANNEL
CL = 50pF
9
10
DATA RATE (Mbps)
Figure 5. ICCA vs. Data Rate (A→Y Level Translation)
10
5
04860-007
10
5
0
04860-004
VCCA = 1.2V, VCCY = 1.8V
0
TA = 25°C
1 CHANNEL
VCCA = 1.2V
VCCY = 1.8V
1.4
8
20Mbps
1.2
7
ICCY (mA)
5
4
0.8
10Mbps
0.6
VCCA = 1.8V, VCCY = 3.3V
3
1.0
0.4
5Mbps
2
VCCA = 1.2V, VCCY = 1.8V
1
5
0
10
15
25
30
35
20
DATA RATE (Mbps)
40
45
50
0
53
63
73
TA = 25°C
1 CHANNEL
VCCA = 1.2V
VCCY =1.8V
0.9
0.8
0.7
ICCA (mA)
2.0
1.5
1.0
0.6
20Mbps
0.5
0.4
0.3
VCCA = 1.8V, VCCY = 3.3V
10Mbps
5Mbps
0.2
0.5
VCCA = 1.2V, VCCY = 1.8V
0
5
10
15
20
25
30
35
40
0.1
45
DATA RATE (Mbps)
50
1Mbps
0
04860-006
0
43
1.0
VCCA = 3.3V, VCCY = 5V
ICCA (mA)
33
Figure 9. ICCY vs. Capacitive Load at Pin Y for A→Y (1.2 V→1.8 V)
Level Translation
TA = 25°C
1 CHANNEL
CL = 15pF
2.5
23
CAPACITIVE LOAD (pF)
Figure 6. ICCY vs. Data Rate (A→Y Level Translation)
3.0
13
04860-012
1Mbps
04860-005
0
0.2
13
23
33
43
CAPACITIVE LOAD (pF)
53
Figure 10. ICCA vs. Capacitive Load at Pin A for Y→A (1.8 V→1.2 V)
Level Translation
Figure 7. ICCA vs. Data Rate (Y→A Level Translation)
Rev. D | Page 8 of 20
04860-013
ICCY (mA)
VCCA = 3.3V, VCCY = 5V
6
Data Sheet
9
ADG3304
7
TA = 25°C
1 CHANNEL
VCCA = 1.8V
VCCY = 3.3V
8
7
TA = 25°C
1 CHANNEL
V
6
CCA = 3.3V
VCCY = 5V
50Mbps
50Mbps
5
ICCA (mA)
ICCY (mA)
6
5
30Mbps
4
4
30Mbps
3
20Mbps
3
20Mbps
2
2
10Mbps
10Mbps
1
1
33
43
53
CAPACITIVE LOAD (pF)
63
0
04865-016
23
73
13
5.0
4.0
53
10
TA = 25°C
9 1 CHANNEL
DATA RATE = 50kbps
8
TA = 25°C
1 CHANNEL
VCCA = 1.8V
VCCY = 3.3V
3.5
VCCA = 1.2V, VCCY = 1.8V
7
50Mbps
3.0
RISE TIME (ns)
ICCA (mA)
33
43
CAPACITIVE LOAD (pF)
Figure 14. ICCA vs. Capacitive Load at Pin A for Y→A (5 V→3.3 V)
Level Translation
Figure 11. ICCY vs. Capacitive Load at Pin Y for A→Y (1.8 V→3.3 V)
Level Translation
4.5
23
04860-021
5Mbps
5Mbps
0
13
2.5
2.0
30Mbps
1.5
6
5
4
VCCA = 1.8V, VCCY = 3.3V
3
20Mbps
1.0
2
VCCA = 3.3V, VCCY = 5V
10Mbps
0.5
5Mbps
23
53
33
43
CAPACITIVE LOAD (pF)
0
13
04860-017
0
13
Figure 12. ICCA vs. Capacitive Load at Pin A for Y→A (3.3 V→1.8 V)
Level Translation
33
43
53
CAPACITIVE LOAD (pF)
63
73
Figure 15. Rise Time vs. Capacitive Load at Pin Y (A→Y Level Translation)
4.0
12
TA = 25°C
1 CHANNEL
VCCA = 3.3V
10 V
CCY = 5V
23
04860-023
1
50Mbps
3.5
TA = 25°C
1 CHANNEL
DATA RATE = 50kbps
VCCA = 1.2V, VCCY = 1.8V
3.0
FALL TIME (ns)
30Mbps
6
20Mbps
4
2.5
VCCA = 1.8V, VCCY = 3.3V
2.0
1.5
VCCA = 3.3V, VCCY = 5V
1.0
10Mbps
2
0.5
0
13
23
33
43
53
CAPACITIVE LOAD (pF)
63
73
Figure 13. ICCY vs. Capacitive Load at Pin Y for A→Y (3.3 V→5 V)
Level Translation
0
13
23
33
43
53
CAPACITIVE LOAD (pF)
63
73
04860-024
5Mbps
04860-020
ICCY (mA)
8
Figure 16. Fall Time vs. Capacitive Load at Pin Y (A→Y Level Translation)
Rev. D | Page 9 of 20
ADG3304
Data Sheet
12
10
TA = 25°C
9 1 CHANNEL
DATA RATE = 50kbps
8
VCCA = 1.2V, VCCY = 1.8V
6
5
4
VCCA = 1.8V, VCCY = 3.3V
3
2
8
6
VCCA = 1.8V, VCCY = 3.3V
4
2
1
VCCA = 3.3V, VCCY = 5V
23
28
33
38
43
48
53
CAPACITIVE LOAD (pF)
0
13
04860-025
18
23
33
43
53
63
73
CAPACITIVE LOAD (pF)
04860-028
VCCA = 3.3V, VCCY = 5V
0
13
Figure 20. Propagation Delay (tPHL) vs.
Capacitive Load at Pin Y (A→Y Level Translation)
Figure 17. Rise Time vs. Capacitive Load at Pin A (Y→A Level Translation)
9
TA = 25°C
1 CHANNEL
DATA RATE = 50kbps
8
PROPAGATION DELAY (ns)
3.5
3.0
2.5
VCCA = 1.2V, VCCY = 1.8V
2.0
VCCA = 1.8V, VCCY = 3.3V
1.5
VCCA = 3.3V, VCCY = 5V
1.0
0.5
TA = 25°C
1 CHANNEL
DATA RATE = 50kbps
7
VCCA = 1.2V, VCCY = 1.8V
6
5
4
3
VCCA = 1.8V, VCCY = 3.3V
2
VCCA = 3.3V, VCCY = 5V
1
13
18
23
28
33
38
43
CAPACITIVE LOAD (pF)
48
53
0
13
04860-026
0
18
23
28
33
38
43
48
53
CAPACITIVE LOAD (pF)
04860-029
4.0
FALL TIME (ns)
VCCA = 1.2V, VCCY = 1.8V
10
PROPAGATION DELAY (ns)
RISE TIME (ns)
7
DATA RATE = 50kbps
TA = 25°C
1 CHANNEL
Figure 21. Propagation Delay (tPLH) vs.
Capacitive Load at Pin A (Y→A Level Translation)
Figure 18. Fall Time vs. Capacitive Load at Pin A (Y→A Level Translation)
9
TA = 25°C
1 CHANNEL
8 DATA RATE = 50kbps
14
PROPAGATION DELAY (ns)
VCCA = 1.2V, VCCY = 1.8V
10
8
VCCA = 1.8V, VCCY = 3.3V
4
VCCA = 3.3V, VCCY = 5V
VCCA = 1.2V, VCCY = 1.8V
7
6
5
4
VCCA = 1.8V, VCCY = 3.3V
3
VCCA = 3.3V, VCCY = 5V
2
1
2
0
0
13
23
33
43
53
CAPACITIVE LOAD (pF)
63
73
13
18
23
28
33
38
43
CAPACITIVE LOAD (pF)
48
Figure 22. Propagation Delay (tPHL) vs.
Capacitive Load at Pin A (Y→A Level Translation)
Figure 19. Propagation Delay (tPLH) vs.
Capacitive Load at Pin Y (A→Y Level Translation)
Rev. D | Page 10 of 20
53
04860-030
6
04860-027
PROPAGATION DELAY (ns)
TA = 25°C
1 CHANNEL
12 DATA RATE = 50kbps
Data Sheet
ADG3304
TA = 25°C
DATA RATE = 25Mbps
CL = 50pF
1 CHANNEL
400mV/DIV
Figure 26. Eye Diagram at A Output
(3.3 V to 1.8 V Level Translation, 50 Mbps)
Figure 23. Eye Diagram at Y Output
(1.2 V to 1.8 V Level Translation, 25 Mbps)
5ns/DIV
TA = 25°C
DATA RATE = 50Mbps
CL = 50pF
1 CHANNEL
1V/DIV
Figure 27. Eye Diagram at Y Output
(3.3 V to 5 V Level Translation, 50 Mbps)
Figure 24. Eye Diagram at A Output
(1.8 V to 1.2 V Level Translation, 25 Mbps)
500mV/DIV
TA = 25°C
DATA RATE = 50Mbps
CL = 15pF
1 CHANNEL
CL = 50pF
1 CHANNEL
3ns/DIV
04860-039
TA = 25°C
DATA RATE = 50Mbps
3ns/DIV
04860-041
200mV/DIV
CL = 50pF
1 CHANNEL
04860-038
TA = 25°C
DATA RATE = 25Mbps
3ns/DIV
800mV/DIV
3ns/DIV
Figure 28. Eye Diagram at A Output
(5 V to 3.3 V Level Translation, 50 Mbps)
Figure 25. Eye Diagram at Y Output
(1.8 V to 3.3 V Level Translation, 50 Mbps)
Rev. D | Page 11 of 20
04860-042
5ns/DIV
04860-040
04860-037
400mV/DIV
TA = 25°C
DATA RATE = 50Mbps
CL = 15pF
1 CHANNEL
ADG3304
Data Sheet
TEST CIRCUITS
EN
VCCA
ADG3304
VCCY
0.1µF
0.1µF
EN
A
ADG3304
VCCA
Y
VCCY
0.1µF
0.1µF
K2
K1
GND
IOH
A
K
Y
A
IOL
Figure 29. VOH/VOL Voltages at Pin A
EN
ADG3304
VCCA
Figure 32. Three-State Leakage Current at Pin Y
VCCY
0.1µF
0.1µF
VCCA
K2
ADG3304
VCCY
0.1µF
Y
A
04860-046
04860-043
GND
0.1µF
K1
Y
A
GND
A
IOL
04860-044
EN
ADG3304
GND
Figure 33. EN Pin Leakage Current
Figure 30. VOH/VOL Voltages at Pin Y
VCCA
EN
K
04860-047
IOH
EN
VCCA
VCCY
ADG3304
VCCY
0.1µF
0.1µF
A
A
Y
A
Y
K
GND
04860-045
04860-048
CAPACITANCE
METER
GND
Figure 34. Capacitance at Pin A
Figure 31. Three-State Leakage Current at Pin A
Rev. D | Page 12 of 20
Data Sheet
ADG3304
EN
VCCA
ADG3304
VCCY
A
Y
CAPACITANCE
METER
04860-049
GND
Figure 35. Capacitance at Pin Y
AY DIRECTION
VCCA
0.1F
VCCY
ADG3304
+
10F
+
10F
0.1F
1M
A
VA
K1
Y
VY
K2
50pF
1M
SIGNAL SOURCE
EN
Z0 = 50
RS
GND
VEN
50
RT
50
YA DIRECTION
VCCA
0.1F
VCCY
ADG3304
+
10F
+
10F
0.1F
1M
K1
A
VA
Y
VY
K2
15pF
1M
SIGNAL SOURCE
EN
Z0 = 50
RS
50
GND
VEN
RT
50
VEN
tEN1
VCCA
0V
VCCA/VCCY
VA/VY
0V
VCCY/VCCA
90%
VY/VA
tEN2
VCCA
0V
VA/VY
VCCA/VCCY
0V
VCCY/VCCA
VY/VA
10%
0V
NOTES
1. tEN IS WHICHEVER IS LARGER BETWEEN tEN1 AND tEN2
IN BOTH AY AND YA DIRECTIONS.
Figure 36. Enable Time
Rev. D | Page 13 of 20
04860-050
VEN
0V
ADG3304
Data Sheet
EN
VCCY
ADG3304
VCCA
SIGNAL
SOURCE
RS
50Ω
0.1µF
Z0 = 50Ω V
A
EN
+
10µF
0.1µF
+
10µF
Y
RT
50Ω
VA
VY
+
10µF
0.1µF
SIGNAL
SOURCE
A
Y
VY
Z0 = 50Ω
RS
50Ω
RT
50Ω
15pF
50pF
VCCY
+
10µF
0.1µF
A
ADG3304
VCCA
GND
GND
VY
VA
50%
tP,A→Y
tP,A→Y
VA
VY
tP,Y→A
tP,Y→A
90%
50%
10%
tF,A→Y
tR,A→Y
04860-051
90%
50%
10%
Figure 37. Switching Characteristics (A→Y Level Translation)
Rev. D | Page 14 of 20
tF,Y→A
tR,Y→A
Figure 38. Switching Characteristics (Y→A Level Translation)
04860-052
50%
Data Sheet
ADG3304
TERMINOLOGY
VIHA
Logic input high voltage at Pin A1 to Pin A4.
TF, A→Y
Fall time when translating logic levels in the A→Y direction.
VILA
Logic input low voltage at Pin A1 to Pin A4.
DMAX, A→Y
Guaranteed data rate when translating logic levels in the A→Y
direction under the driving and loading conditions specified in
Table 1.
VOHA
Logic output high voltage at Pin A1 to Pin A4.
TSKEW, A→Y
Difference between propagation delays on any two channels
when translating logic levels in the A→Y direction.
VOLA
Logic output low voltage at Pin A1 to Pin A4.
CA
Capacitance measured at Pin A1 to Pin A4 (EN = 0).
tPPSKEW, A→Y
Difference in propagation delay between any one channel and
the same channel on a different part (under same driving/
loading conditions) when translating in the A→Y direction.
ILA, Hi-Z
Leakage current at Pin A1 to Pin A4 when EN = 0 (high
impedance state at Pin A1 to Pin A4).
VIHY
Logic input high voltage at Pin Y1 to Pin Y4.
tP, Y→A
Propagation delay when translating logic levels in the Y→A
direction.
VILY
Logic input low voltage at Pin Y1 to Pin Y4.
tR, Y→A
Rise time when translating logic levels in the Y→A direction.
VOHY
Logic output high voltage at Pin Y1 to Pin Y4.
tF, Y→A
Fall time when translating logic levels in the Y→A direction.
VOLY
Logic output low voltage at Pin Y1 to Pin Y4.
CY
Capacitance measured at Pin Y1 to Pin Y4 (EN = 0).
DMAX, Y→A
Guaranteed data rate when translating logic levels in the Y→A
direction under the driving and loading conditions specified in
Table 1.
ILY, Hi-Z
Leakage current at Pin Y1 to Pin Y4 when EN = 0 (high
impedance state at Pin Y1 to Pin Y4).
tSKEW, Y→A
Difference between propagation delays on any two channels
when translating logic levels in the Y→A direction.
VIHEN
Logic input high voltage at the EN pin.
VILEN
Logic input low voltage at the EN pin.
tPPSKEW, Y→A
Difference in propagation delay between any one channel and
the same channel on a different part (under the same driving/
loading conditions) when translating in the Y→A direction.
CEN
Capacitance measured at EN pin.
VCCA
VCCA supply voltage.
ILEN
Enable (EN) pin leakage current.
VCCY
VCCY supply voltage.
tEN
Three-state enable time for Pin A1 to Pin A4 and Pin Y1 to
Pin Y4.
ICCA
VCCA supply current.
ICCY
VCCY supply current.
tP, A→Y
Propagation delay when translating logic levels in the A→Y
direction.
IHi-Z, A
VCCA supply current during three-state mode (EN = 0).
tR, A→Y
Rise time when translating logic levels in the A→Y direction.
IHi-Z, Y
VCCY supply current during three-state mode (EN = 0).
Rev. D | Page 15 of 20
ADG3304
Data Sheet
THEORY OF OPERATION
The ADG3304 level translator allows the level shifting
necessary for data transfer in a system where multiple supply
voltages are used. The device requires two supplies, VCCA and
VCCY (VCCA ≤ VCCY). These supplies set the logic levels on each
side of the device. When driving the A pins, the device translates
the VCCA-compatible logic levels to VCCY-compatible logic levels
available at the Y pins. Similarly, because the device is capable of
bidirectional translation, when driving the Y pins, the VCCYcompatible logic levels are translated to VCCA-compatible logic
levels available at the A pins. When EN = 0, Pin A1 to Pin A4
and Pin Y1 to Pin Y4 are three-stated. When EN is driven high,
the ADG3304 goes into normal operation mode and performs
level translation.
LEVEL TRANSLATOR ARCHITECTURE
The ADG3304 consists of four bidirectional channels. Each
channel can translate logic levels in either the A→Y or the Y→A
direction. It uses a one-shot accelerator architecture, which
ensures excellent switching characteristics. Figure 39 shows a
simplified block diagram of a bidirectional channel.
INPUT DRIVING REQUIREMENTS
To ensure correct operation of the ADG3304, the circuit that
drives the input of the ADG3304 channels should have an
output impedance of less than or equal to 150 Ω and a
minimum peak current driving capability of 36 mA.
OUTPUT LOAD REQUIREMENTS
The ADG3304 level translator is designed to drive CMOScompatible loads. If current-driving capability is required, it is
recommended to use buffers between the ADG3304 outputs
and the load.
ENABLE OPERATION
The ADG3304 provides three-state operation at the A and Y
I/O pins by using the enable pin (EN), as shown in Table 5.
Table 5. Truth Table
EN
0
1
1
VCCY
VCCA
T1
2
6kΩ
P
A
U2
ONE-SHOT GENERATOR
Y
N
A I/O Pins
Hi-Z1
Normal operation2
High impedance state.
In normal operation, the ADG3304 performs level translation.
While EN = 0, the ADG3304 enters into three-state mode. In this
mode, the current consumption from both the VCCA and VCCY
supplies is reduced, allowing the user to save power, which is
critical, especially on battery-operated systems. The EN input pin
can be driven with either VCCA-compatible or VCCY-compatible
logic levels.
T2
U1
Y I/O Pins
Hi-Z1
Normal operation2
POWER SUPPLIES
T4
U3
T3
04860-053
6kΩ
U4
Figure 39. Simplified Block Diagram of an ADG3304 Channel
The logic level translation in the A→Y direction is performed
using a level translator (U1) and an inverter (U2), while the
translation in the Y→A direction is performed using Inverter U3
and Inverter U4. The one-shot generator detects a rising or
falling edge present on either the A side or the Y side of the
channel. It sends a short pulse that turns on the PMOS
transistors (T1 to T2) for a rising edge, or the NMOS transistors
(T3 to T4) for a falling edge. This charges/discharges the
capacitive load faster, which results in faster rise and fall times.
For proper operation of the ADG3304, the voltage applied to
the VCCA must be less than or equal to the voltage applied to VCCY.
To meet this condition, the recommended power-up sequence
is VCCY first and then VCCA. The ADG3304 operates properly
only after both supply voltages reach their nominal values. It is
not recommended to use the part in a system where, during
power-up, VCCA can be greater than VCCY due to a significant
increase in the current taken from the VCCA supply. For
optimum performance, the VCCA pin and VCCY pin should be
decoupled to GND as close as possible to the device.
The inputs of the unused channels (A or Y) should be tied to
their corresponding VCC rail (VCCA or VCCY) or to GND.
Rev. D | Page 16 of 20
Data Sheet
ADG3304
DATA RATE
The maximum data rate at which the device is guaranteed to
operate is a function of the VCCA and VCCY supply voltage
combination and the load capacitance. It is given by the
maximum frequency of a square wave that can be applied to the
device, which meets the VOH and VOL levels at the output and
does not exceed the maximum junction temperature (see the
Absolute Maximum Ratings section). Table 6 shows the
guaranteed data rates at which the ADG3304 can operate in
both directions (A→Y or Y→A level translation) for various VCCA
and VCCY supply combinations.
Table 6. Guaranteed Data Rate (Mbps) 1
VCCY
VCCA
1.2 V (1.15 V to 1.3 V)
1.8 V (1.65 V to 1.95 V)
2.5 V (2.3 V to 2.7 V)
3.3 V (3.0 V to 3.6 V)
5 V (4.5 V to 5.5 V)
1
1.8 V
(1.65 V to 1.95 V)
25
-
2.5 V
(2.3 V to 2.7 V)
30
45
-
3.3 V
(3.0 V to 3.6 V)
40
50
60
-
The load capacitance used is 50 pF when translating in the A→Y direction and 15 pF when translating in the Y→A direction.
Rev. D | Page 17 of 20
5V
(4.5 V to 5.5 V)
40
50
50
50
-
ADG3304
Data Sheet
APPLICATIONS
The ADG3304 is designed for digital circuits that operate at
different supply voltages; therefore, logic level translation is
required. The lower voltage logic signals are connected to the
A pins, and the higher voltage logic signals are connected to the
Y pins. The ADG3304 can provide level translation in both
directions from A→Y or Y→A on all four channels, eliminating
the need for a level translator IC for each direction. The internal
architecture allows the ADG3304 to perform bidirectional level
translation without an additional signal to set the direction in
which the translation is made. It also allows simultaneous data
flow in both directions on the same part, for example, when two
channels translate in A→Y direction while the other two translate
in Y→A direction. This simplifies the design by eliminating the
timing requirements for the direction signal and reducing the
number of ICs used for level translation.
100nF
VCCA
1.8V
A1
I/OL1
VCCY
3.3V
I/OH1
Y1
ADG3304
MICROPROCESSOR/
MICROCONTROLLER/
DSP
I/OL2
A2
Y2
I/OH2
I/OL3
A3
Y3
I/OH3
A4
Y4
I/OH4
EN
GND
GND
I/OL4
GND
CS
100nF
PERIPHERAL
DEVICE 1
100nF
VCCA
A1
VCCY
Y1
3.3V
I/OH1
ADG3304
A2
Y2
I/OH2
A3
Y3
I/OH3
A4
Y4
I/OH4
EN
GND
GND
PERIPHERAL
DEVICE 2
04860-055
Figure 40 shows an application where two microprocessors
operating at 1.8 V and 3.3 V, respectively, can transfer data
simultaneously using two full-duplex serial links, TX1/RX1
and TX2/RX2.
100nF
100nF
Figure 41. 1.8 V to 3.3 V Level Translation Circuit
Using the Three-State Feature
100nF
LAYOUT GUIDELINES
VCCA
1.8V
TX1
A1
VCCY
Y1
3.3V
RX1
ADG3304
GND
RX1
A2
Y2
TX1
TX2
A3
Y3
RX2
RX2
A4
Y4
TX2
EN
GND
GND
MICROPROCESSOR/
MICROCONTROLLER/
DSP
04860-056
MICROPROCESSOR/
MICROCONTROLLER/
DSP
Figure 40. 1.8 V to 3.3 V Level Translation Circuit on
Two Full-Duplex Serial Links
When the application requires level translation between a microprocessor and multiple peripheral devices, the ADG3304 I/O
pins can be three-stated by setting EN = 0. This feature allows
the ADG3304 to share the data buses with other devices without
causing contention issues. Figure 41 shows an application where
a 1.8 V microprocessor is connected to a 3.3 V peripheral
device using the three-state feature.
As with any high speed digital IC, the printed circuit board
layout is important for the overall performance of the circuit.
Care should be taken to ensure proper power supply bypass and
return paths for the high speed signals. Each VCC pin (VCCA and
VCCY) should be bypassed using low effective series resistance
(ESR) and effective series inductance (ESI) capacitors placed as
close as possible to the VCCA pin and the VCCY pin. The parasitic
inductance of the high speed signal track may cause significant
overshoot. This effect can be reduced by keeping the length of
the tracks as short as possible. A solid copper plane for the
return path (GND) is also recommended.
Rev. D | Page 18 of 20
Data Sheet
ADG3304
OUTLINE DIMENSIONS
5.10
5.00
4.90
14
8
4.50
4.40
4.30
6.40
BSC
1
7
PIN 1
0.65 BSC
1.20
MAX
0.15
0.05
COPLANARITY
0.10
0.20
0.09
0.30
0.19
0.75
0.60
0.45
8°
0°
SEATING
PLANE
061908-A
1.05
1.00
0.80
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1
Figure 42. 14-Lead Thin Shrink Small Outline Package [TSSOP]
(RU-14)
Dimensions shown in millimeters
1.670
1.610
1.550
BOTTOM VIEW
(BALL SIDE UP)
3
2
1
A
BALL A1
IDENTIFIER
2.070
2.010
1.950
1.50
REF
B
C
D
0.50
BSC
TOP VIEW
(BALL SIDE DOWN)
SEATING
PLANE
END VIEW
0.17
0.15
0.13
1.00
REF
COPLANARITY
0.10
0.360
0.320
0.280
0.280
0.240
0.220
Figure 43. 12-Ball Wafer Level Chip Scale Package [WLCSP]
(CB-12-1)
Dimensions shown in millimeters
Rev. D | Page 19 of 20
09-06-2012-A
0.650
0.590
0.530
0.370
0.350
0.330
ADG3304
Data Sheet
4.10
4.00 SQ
3.90
0.60 MAX
0.60 MAX
15
PIN 1
INDICATOR
20
16
1
PIN 1
INDICATOR
3.75
BCS SQ
0.50
BSC
2.25
2.10 SQ
1.95
EXPOSED
PAD
5
10
1.00
0.85
0.80
SEATING
PLANE
12° MAX
0.80 MAX
0.65 TYP
0.30
0.23
0.18
0.05 MAX
0.02 NOM
COPLANARITY
0.08
0.20 REF
BOTTOM VIEW
0.25 MIN
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
COMPLIANT TO JEDEC STANDARDS MO-220-VGGD-1
04-09-2012-B
0.75
0.60
0.50
TOP VIEW
6
11
Figure 44. 20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
4 mm × 4 mm Body, Very Thin Quad
(CP-20-1)
Dimensions shown in millimeters
ORDERING GUIDE
Model 1, 2
ADG3304BRUZ
ADG3304BRUZ-REEL
ADG3304BRUZ-REEL7
ADG3304BCPZ-REEL
ADG3304BCPZ-REEL7
ADG3304BCBZ-REEL
ADG3304BCBZ-REEL7
ADG3304WBRUZ-REEL
Temperature Range
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
−40°C to +85°C
Package Description
14-Lead Thin Shrink Small Outline Package [TSSOP]
14-Lead Thin Shrink Small Outline Package [TSSOP]
14-Lead Thin Shrink Small Outline Package [TSSOP]
20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
20-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
12-Ball Wafer Level Chip Scale Package [WLCSP]
12-Ball Wafer Level Chip Scale Package [WLCSP]
14-Lead Thin Shrink Small Outline Package [TSSOP]
Branding 3
SDC
SDC
Package
Option
RU-14
RU-14
RU-14
CP-20-1
CP-20-1
CB-12-1
CB-12-1
RU-14
Z = RoHS Compliant Part.
W = Qualified for Automotive Applications.
3
Branding on these packages is limited to three characters due to space constraints.
1
2
AUTOMOTIVE PRODUCTS
The ADG3304W model is available with controlled manufacturing to support the quality and reliability requirements of automotive
applications. Note that this automotive model may have specifications that differ from the commercial models; therefore, designers
should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in
automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to
obtain the specific Automotive Reliability reports for these models.
© 2005–2013 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D04860-0-4/13(D)
Rev. D | Page 20 of 20
Similar pages