204pin DDR3L SDRAM ECC SODIMM DDR3L SDRAM ECC SO-DIMMs Based on 2Gb C-die HMT325A7CFR8A HMT351A7CFR8A *SK hynix reserves the right to change products or specifications without notice. Rev. 0.1 /Jul. 2012 1 Revision History Revision No. History Draft Date 0.1 Initial Release Jul. 2012 Rev. 0.1 / Jul. 2012 Remark 2 Description 204pin ECC-SO-UDIMMs (72bit-wide, Double Data Rate Synchronous DRAM Small Outline Dual In-Line Memory Modules) are low power, high-speed operation memory modules. These ECC-SD-UDIMMs are intended for use as computing memory when installed in systems such as embedded systems and servers, workstations. ECC-SO-DIMMs are running at 533/667/800 MHz clock speed and offering. 8500/10600/ 12800 MB/s bandwidth on the primary data bus. Features • Power Supply: VDD=1.35V (1.283V to 1.45V) • VDDQ = 1.35V (1.283V to 1.45V) • VDDSPD=3.0V to 3.6V • Functionality and operations comply with the DDR3 SDRAM datasheet • 8 internal banks • Data transfer rates: PC3-12800, PC3-10600, PC3-8500 • Bi-directional Differential Data Strobe • 8 bit pre-fetch • Burst Length (BL) switch on-the-fly: BL 8 or BC (Burst Chop) 4 • On Die Termination (ODT) supported • This product is in compliance with the RoHS directive. Ordering Information Part Number Density Organization Component Composition # of ranks HMT325A7CFR8A-G7/H9/PB 2GB 256Mx72 256Mx8(H5TC2G83CFR)*9 1 HMT351A7CFR8A-G7/H9/PB 4GB 512Mx72 256Mx8(H5TC2G83CFR)*18 2 Rev. 0.1 / Jul. 2012 3 Key Parameters MT/s Grade tCK (ns) CAS Latency (tCK) tRCD (ns) tRP (ns) tRAS (ns) tRC (ns) CL-tRCD-tRP DDR3L-1066 -G7 1.875 7 13.125 13.125 37.5 50.625 7-7-7 DDR3L-1333 -H9 1.5 9 13.5 13.5 (13.125)* (13.125)* 36 49.5 (49.125)* 9-9-9 DDR3L-1600 -PB 1.25 11 13.75 13.75 (13.125)* (13.125)* 35 48.75 (48.125)* 11-11-11 *SK hynix DRAM devices support optional downbinning to CL9 and CL7. SPD setting is programmed to match. Speed Grade Frequency [MHz] Grade Remark CL5 CL6 CL7 CL8 CL9 CL10 -G7 667 800 1066 1066 -H9 667 800 1066 1066 1333 1333 -PB 667 800 1066 1066 1333 1333 CL11 1600 Address Table 2GB(1Rx8) 4GB(2Rx8) Refresh Method 8K/64ms 8K/64ms Row Address A0-A14 A0-A14 Column Address A0-A9 A0-A9 Bank Address BA0-BA2 BA0-BA2 Page Size 1KB 1KB Rev. 0.1 / Jul. 2012 4 Pin Descriptions Pin Name Description Num ber Pin Name Num ber Description CK0 Clock Input, positive line 1 ODT[1:0] On Die Termination Inputs 2 CK0 Clock Input, negative line 1 DQ[63:0] Data Input/Output 64 CK1 Clock Input, positive line 1 CB[7:0] Data check bits Input/Output 8 CK1 Clock Input, negative line 1 DQS[8:0] Data strobes 9 Clock Enables 2 DQS[8:0] Data strobes, negative line 9 RAS Row Address Strobe 1 DM[8:0] Data Masks 9 CAS Column Address Strobe 1 WE Write Enable 1 S[3:0] Chip Selects 4 EVENT Reserved for optional hardware temperature event pin 1 Reset and SDRAM control pin 1 CKE[1:0] A[9:0],A11, Address Inputs A[15:13] 14 A10/AP Address Input/Autoprecharge 1 RESET A12/BC Address Input/Burst chop 1 VDD Power Supply xx BA[2:0] SDRAM Bank Addresses 3 VSS Ground xx SCL Serial Presence Detect (SPD) Clock Input 1 VREFDQ Reference Voltage for DQ 1 SDA SPD Data Input/Output 1 VREFCA Reference Voltage for CA 1 SA[1:0] SPD Address Inputs 2 VTT Par_In Parity bit for the Address and Control bus 1 VDDSPD Err_Out Parity error found on the Address and Control bus 1 Rev. 0.1 / Jul. 2012 Termination Voltage 2 SPD Power 1 Total : 204 5 Input/Output Functional Descriptions Symbol Type Polarity CK0 IN Positive Edge Positive line of the differential pair of system clock inputs that drives input to the onDIMM Clock Driver (72b-SO-RDIMM), on-DIMM PLL (72b-SO-CDIMM), or to DRAM on rank 0 (72b-SD-DIMM). CK0 IN Negative Edge Negative line of the differential pair of system clock inputs that drives input to the onDIMM Clock Driver (72b-SO-RDIMM), on-DIMM PLL (72b-SO-CDIMM), or to DRAM on rank 0 (72b-SD-DIMM). CK1 IN Positive Edge Positive line of a secondary differential pair of system clock inputs. Teminated but not used on 72b-SO-RDIMMs or 72b-SO-CDIMMs. Connected to DRAMs on rank 1 or 72bSD-DIMMs. CK0/CK0 CK1/CK1 IN Negative Edge Negative line of a secondary differential pair of system clock inputs. Teminated but not used on 72b-SO-RDIMMs or 72b-SO-CDIMMs. Connected to DRAMs on rank 1 or 72bSD-DIMMs. IN Active High CKE HIGH activates, and CKE LOW deactivates internal clock signals, and device input buffers and output drivers of the SDRAMs. Taking CKE LOW provieds PRECHARGE POWER-DOWN and SELF REFRESH operation (all banks idle), or ACTIVE POWER DOWN (row ACTIVE in any bank). Connected to the registering clock driver on 72b-SORDIMMs, connected to DRAMs on 72b-SO-CDIMMs and 72b-SO-DIMMs. CKE[1:0] Function Enables the command decoders for the associated rank of SDRAM when low and disables decoders when high. When decoders are disabled, new commands are ignored and previous operations continue. Connected to SDRAMs on 72b-SD-CDIMMs and 72bSO-DIMMs. For 72b-SO-RDIMMs, the combinations of these input signals perform unique functions, including disabling all outputs (except CKE and ODT) of the register(s) on the DIMM or accessing internal control words in the register device(s). For modules with two registers, S[3:2] operate similarly to S[1:0] for the second set of register outputs or register control words. S[1:0] IN Active Low ODT[1:0] IN Active High On-Die Termination control signals. Connected to SDRAMs on 72b-SO-CDIMMs and 72bSO-DIMMs, connected to the registering clock driver on 72b-SO-RDIMMs. RAS, CAS, WE IN Active Low When sampled at the positive rising edge of the clock. CAS, RAS, and WE define the operation to be executed by the SDRAM. Connected to SDRAMs on 72b-SO-CDIMMs and 72b-SO-DIMMs, connected to the registering clock driver on 72b-SO-RDIMMs. VREFDQ Supply Reference voltage for DQ0-DQ63 and CB0-CB7. VREFCA Supply Reference voltage for A0-A15, BA0-BA2, RAS, CAS, WE, S0, S1, CKE0, CKE1, Par_In, ODT0 and ODT1. BA[2:0] A[9:0], A10/AP, A11, A12/BC A[15:13] Rev. 0.1 / Jul. 2012 IN IN — Selects which SDRAM internal bank of eight is activated. BA0 - BA2 define to which bank an Active, Read, Write or Precharge commnad is being applied. Bank address also derermines mode register is to be accessed during an MRS cycle. Connected to SDRAMs on 72b-SO-CDIMMs and 72b-SO-DIMMs, connected to the registering clock driver on 72b-SO-RDIMMs. — Provided the row address for Active commnads and the column address and Auto Precharge bit for Read/Write commands to select one lacation out of the memory array in the respective bank. A10 is sampled during a Precharge command to detemine whether the Precharge applies to one bank (A10 LOW) or all banks (A10 HIGH). If only one bank is to be precharged, the bank is selected by BA. A12 is also utilized for BL 4/8 identification for “BL on the fly” during CAS command. The address inputs also provied the opcode during Mode Register Set commands. Connected to SDRAMs on 72b-SO-CDIMMs and 72b-SO-DIMMs, connected to the registering clock driver on 72b-SO-RDIMMs. 6 Symbol Type Polarity DQ[63:0] CB[7:0] I/O — DM[8:0] IN Active High VDD, VSS Supply Power and ground for the DDR3 SDRAM input buffers and core logic. VTT Supply Termination Voltage for Address/Command/Control/Clock nets. DQS1[7:0] I/O Positive Edge Positive line of the differential data strobe for input and output data DQS[7:0], DQS[7:0] I/O Negative Edge Negative line of the differential data strobe for input and output data SA[1:0] IN — These signals are tied at the system planar to either VSS or VDDSPD to configure the serial SPD EEPROM address range. SDA I/O — This bidirectional pin is used to transfer data into or out of the SPD EEPROM. A resistor must be connected from the SDA bus line to VDDSPD on the system planar to act as a pullup. SCL IN — This signal is used to clock data into and out of the SPD EEPROM. A resistor may be connected from the SCL bus time to VDDSPD on the system planar to act as a pullup. EVENT OUT (open drain) VDDSPD Supply Serial EEPROM positive power supply wired to a separate power pin at the connector which supports from 3.0 Volt to 3.6 Volt (nominal 3.3V) operation. RESET IN The RESET pin is connected to the RESET pin on the register (72b-SD-RDIMM) and to the RESET pin on the SDRAMs (all modules). When low, all register outputs will be driven low and the Clock Driver clocks to the DRAMs and register(s) will be set to low lever (the Clock Driver will remain synchronized with the input clock). Par_in IN Parity bit for the Address and Control bus. (“1”: Odd, “0”: Even). Not used on 72b-SODIMMs or 72b-SO-CDIMMs. Err_Out OUT (open drain) Parity error detected on the Address and Control bus. A resistor may be connected from Err_Out bus line to V on the system planner to act as a pull up. Not used on 72b-SODIMMs or 72b-SO-CDIMMs. Rev. 0.1 / Jul. 2012 Function Data and Check Input/Output pins. Mask write data when high, issued concurrently with input data. This signal indicates that a thermal event has been detected in the thermal sensing Active Low device.The system should guarantee the electrical level requirement is met for the EVENT pin on TS/SPD part. 7 Pin Assignments Pin # Front Side Pin # Back Side Pin # Front Side Pin # Back Side Pin # Front Side Pin # Back Side Pin # Front Side Pin # Back Side 1 VREFDQ 2 VSS 53 VSS 54 DQ28 103 A3 104 A4 155 VSS 156 DQS5 3 VSS 4 DQ4 55 DQ24 56 DQ29 105 A1 106 A2 157 DM5 158 VSS 5 DQ0 6 DQ5 57 DQ25 58 VSS 107 A0 108 BA1 159 DQ42 160 DQ46 7 DQ1 8 VSS 59 DM3 60 DQS3 109 VDD 110 VDD 161 DQ43 162 DQ47 9 VSS 10 DQS0 61 VSS 62 DQS3 111 CK0 112 Par_In, 163 NC, CK1 VSS 164 VSS 11 DM0 12 DQS0 63 VSS 64 VSS 113 CK0 114 Err_Out, 165 NC, CK1 DQ48 166 DQ52 13 DQ2 14 VSS 65 DQ26 66 DQ30 115 VDD 116 VDD 167 DQ49 168 DQ53 15 DQ3 16 DQ6 67 DQ27 68 DQ31 117 A10/AP 118 S3 169 VSS 170 VSS 17 VSS 18 DQ7 69 CB0 70 VSS 119 BA0 120 S2 171 DQS6 172 DM6 19 DQ8 20 VSS 71 CB1 72 CB4 121 WE 122 RAS 173 DQS6 174 DQ54 21 DQ9 22 DQ12 123 VDD 124 VDD 175 DQ50 176 DQ55 23 VSS 24 DQ13 73 VSS 74 CB5 125 CAS 126 ODT0 177 DQ51 178 VSS 25 DQS1 26 VSS 75 DQS8 76 DM8 127 S0 128 ODT1 179 VSS 180 DQ60 27 DQS1 28 DM1 77 DQS8 78 VSS 129 S1 130 A13 181 DQ56 182 DQ61 29 VSS 30 RESET 79 VSS 80 CB6 131 VDD 132 VDD 183 DQ57 184 VSS 31 DQ10 32 VSS 81 CB2 82 CB7 133 DQ32 134 DQ36 185 VSS 186 DQS7 33 DQ11 34 DQ14 83 CB3 84 VREFCA 135 DQ33 136 DQ37 187 DM7 188 DQS7 35 VSS 36 DQ15 85 VDD 86 VDD 137 VSS 138 VSS 189 VSS 190 VSS 37 DQ16 38 VSS 87 CKE0 88 A15 139 DQS4 140 DM4 191 DQ58 192 DQ62 39 DQ17 40 DQ20 89 CKE1 90 A14 141 DQS4 142 DQ38 193 DQ59 194 DQ63 41 VSS 42 DQ21 91 BA2 92 A9 143 VSS 144 DQ39 195 VSS 196 VSS 43 DQS2 44 DM2 93 VDD 94 VDD 145 DQ34 146 VSS 197 SA0 198 EVENT 45 DQS2 46 VSS 95 A12/BC 96 A11 147 DQ35 148 DQ44 199 VDDSPD 200 SDA 47 VSS 48 DQ22 97 A8 98 A7 149 VSS 150 DQ45 201 SA1 202 SCL 49 DQ18 50 DQ23 99 A5 100 A6 151 DQ40 152 VSS 203 VTT 204 VTT 51 DQ19 52 VSS 101 VDD 102 VDD 153 DQ41 154 DQS5 Key NC = No Connect Notes on following page for differences of 72b-SO-RDIMMs, 72b-SO-CDIMMs, 72b-SO-DIMMs Rev. 0.1 / Jul. 2012 8 Functional Block Diagram A[O:N]/BA[O:N] DQS DQS DM DQ SCL EVENT A0 A[O:N]/BA[O:N] ODT CK CKE WE CK Option 2 Serial SPD SCL WP A0 A[O:N]/BA[O:N] A[O:N]/BA[O:N] Rev. 0.1 / Jul. 2012 D0–D8 D0–D8 VDD D0–D8 VSS D0–D8 CK0 D0–D8 CK0 D0–D8 Terminated near card edge VTT CK CKE ODT A[O:N]/BA[O:N] CK CKE ODT A[O:N]/BA[O:N] CK WE CAS NC NC EVENT Temp Sensor RESET D0-D8 NC WE CAS D7 CK RAS S1 ODT1 CKE1 D6 LDQS LDQS LDM DQ CS A[O:N]/BA[O:N] ODT CK CKE CK CS A[O:N]/BA[O:N] ODT CK CKE CK WE LDQS LDQS LDM DQ RAS ODT CK CKE CK WE CAS RAS VTT SPD/TS VREFCA VREFDQ CK1 DQS7 DQS7 DM7 DQ[56, 63] D3 WE CS CAS DQS DQS DM DQ CAS DQS3 DQS3 DM3 DQ[48, 55] Vtt VDDSPD CK1 DQS5 DQS5 DM5 DQ[40, 47] D2 RAS DQS DQS DM DQ CS DQS2 DQS2 DM2 DQ[32, 39] D8 RAS CS DQS DQS DM DQ A2 Sensor PD no Thermal Sensor Vtt DQS8 DQS8 DM8 CB[0, 7] A1 SA0 SA1 SA2 ODT CK CKE CK WE CAS D5 CS A[O:N]/BA[O:N] ODT CK CKE CK WE CAS SDA DQS DQS DM DQ RAS DQS3 DQS3 DM3 DQ[24, 31] D1 RAS CS DQS DQS DM DQ A2 Sensor PD w/Integrated Thermal Sensor SCL DQS2 DQS2 DM2 DQ[16, 23] SDA A1 SA0 SA1 SA2 D4 CAS CS A[O:N]/BA[O:N] ODT CK CKE CK SCL EVENT RAS CK0 CKE0 ODT0 WE CK0 CAS CAS Option 1 Integrated Thermal Sensor in SPD DQS1 DQS1 DM1 DQ[8, 15] D0 RAS CS DQS DQS DM DQ WE DQS0 DQS0 DM0 DQ[0, 7] RAS S0 2GB, 256Mx72 Module(1Rank of x8) NOTES 1. DQ - to - I/O wiring may be changed within a byte 2. ZQ resistors are 240 ohms +/- 1%. For all other resistor values refer to the appropriate wiring diagram. 3. The connected of the Serial PD to EVENT (option 1) or to ground (option 2) is realized by resistor options. 9 DQS1 DQS1 DM1 DQ[8, 15] A[O:N]/BA[O:N] CK CKE ODT WE ZQ 240ohm +/-1% DQS3 DQS3 DM3 DQ[24, 31] A[O:N]/BA[O:N] ODT CK CKE CK WE CAS D14 RAS 240ohm +/-1% DQS DQS DM DQ DQS5 DQS5 DM5 DQ[40, 47] ZQ A[O:N]/BA[O:N] ODT CK CKE CK WE CAS RAS D15 240ohm +/-1% DQS DQS DM DQ ZQ DQS7 DQS7 DM7 DQ[56, 63] A[O:N]/BA[O:N] ODT CK CKE CK D16 WE CS DQS DQS DM DQ CK CAS RAS CS 240ohm +/-1% D13 CAS A[O:N]/BA[O:N] ODT CK CKE CK WE D7 ZQ CS ODT A[O:N]/BA[O:N] A[O:N]/BA[O:N] ODT CK CKE CK WE 240ohm +/-1% ZQ DQS DQS DM DQ RAS A[O:N]/BA[O:N] CK CKE WE ODT CK CKE CK WE CAS CAS D6 CAS CS CK CAS RAS CS CS RAS 240ohm +/-1% ZQ DQS DQS DM DQ A[O:N]/BA[O:N] ODT CK CKE 240ohm +/-1% D5 RAS CS A[O:N]/BA[O:N] ODT CK CK CKE 240ohm +/-1% D12 CK ZQ RAS ODT A[O:N]/BA[O:N] A[O:N]/BA[O:N] ODT CK CKE CK CAS WE WE CAS RAS ZQ 240ohm +/-1% D4 DQS DQS DM DQ D11 LDQS LDQS LDM DQ ZQ DQS DQS DM DQ 240ohm +/-1% VDD Vtt CS ODT1 CK1 CK1 CKE1 CK CKE WE CK CAS RAS RAS CS 240ohm +/-1% ZQ WE A[O:N]/BA[O:N] ODT CK CKE CK CAS RAS D3 CS A[O:N]/BA[O:N] 240ohm +/-1% LDQS LDQS LDM DQ Cterm Vtt DQS DQS DM DQ D10 CAS ZQ ODT CK CKE CK WE D2 240ohm +/-1% ZQ VDD Vtt D9 RAS A[O:N]/BA[O:N] CK CKE CK ODT 240ohm +/-1% ZQ LDQS LDQS LDM DQ CS A[O:N]/BA[O:N] CK CKE ODT CK WE WE CAS ZQ DQS DQS DM DQ CS 240ohm +/-1% CS LDQS LDQS LDM DQ D1 CAS CS CAS RAS DQS DQS DM DQ ZQ RAS DQS4 DQS4 DM4 DQ[32, 39] CS DQS DQS DM DQ Cterm S1 A[O:N]/BA[O:N] CK0 WE CKE0 ODT0 240ohm +/-1% D0 DQS2 DQS2 DM2 DQ[16, 23] DQS6 DQS6 DM6 DQ[48, 55] CK0 CAS ZQ RAS CS DQS DQS DM DQ WE DQS0 DQS0 DM0 DQ[0, 7] RAS S0 4GB, 512Mx72 Module(2Rank of x8) Option 1 Integrated Thermal Sensor in SPD SCL ZQ 240ohm +/-1% EVENT SCL EVENT A0 A2 Sensor PD w/Integrated Thermal Sensor A[O:N]/BA[O:N] ODT CK CKE CK WE SDA A1 SA0 SA1 SA2 D17 CAS A[O:N]/BA[O:N] ODT CK CKE WE CAS D8 LDQS LDQS LDM DQ RAS 240ohm +/-1% CS ZQ RAS CS DQS DQS DM DQ CK DQS8 DQS8 DM8 CB[0, 7] Option 2 Serial SPD SCL SCL SDA WP A0 A1 A2 SA0 SA1 SA2 NOTES 1. DQ - to - I/O wiring may be changed within a byte 2. ZQ resistors are 240 ohms +/- 1%. For all other resistor values refer to the appropriate wiring diagram. 3. The connected of the Serial PD to EVENT (option 1) or to ground (option 2) is realized by resistor options. VTT VDDSPD VREFCA VREFDQ VDD Vss Rev. 0.1 / Jul. 2012 VTT SPD/TS D0–D17 D0–D17 D0–D17 D0–D17, SPD, Temp sensor CK0 CK1 CK0 CK1 CKE0 CKE0 D0–D8 D9–D17 D0–D8 D9–D17 D0–D8 D9–D17 S0 S1 ODT0 ODT1 EVENT RESET Sensor PD no Thermal Sensor D0–D8 D9–D17 D0–D8 D9–D17 Temp Sensor D0–D17 10 Absolute Maximum Ratings Absolute Maximum DC Ratings Absolute Maximum DC Ratings Symbol VDD VDDQ Parameter Rating Units Notes Voltage on VDD pin relative to Vss - 0.4 V ~ 1.80 V V 1, Voltage on VDDQ pin relative to Vss - 0.4 V ~ 1.80 V V 1, - 0.4 V ~ 1.80 V V 1 C 1, 2 VIN, VOUT Voltage on any pin relative to Vss TSTG -55 to +100 Storage Temperature o Notes: 1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-2 standard. 3. VDD and VDDQ must be within 300mV of each other at all times; and VREF must not be greater than 0.6XVDDQ,When VDD and VDDQ are less than 500mV; VREF may be equal to or less than 300mV. DRAM Component Operating Temperature Range Temperature Range Symbol TOPER Parameter Rating Units Notes Normal Operating Temperature Range 0 to 85 oC 1,2 Extended Temperature Range 85 to 95 oC 1,3 Notes: 1. Operating Temperature TOPER is the case surface temperature on the center / top side of the DRAM. For measurement conditions, please refer to the JEDEC document JESD51-2. 2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported. During operation, the DRAM case temperature must be maintained between 0 - 85oC under all operating conditions. 3. Some applications require operation of the DRAM in the Extended Temperature Range between 85oC and 95oC case temperature. Full specifications are guaranteed in this range, but the following additional conditions apply: a. Refresh commands must be doubled in frequency, therefore reducing the Refresh interval tREFI to 3.9 µs. It is also possible to specify a component with 1X refresh (tREFI to 7.8µs) in the Extended Temperature Range. Please refer to the DIMM SPD for option availability b. DDR3L SDRAMs support Auto Self-Refresh and Extended Temperature Range and please refer to component datasheet and/or the DIMM SPD for tREFI requirement in the Extended Temperature Range. Rev. 0.1 / Jul. 2012 11 AC & DC Operating Conditions Recommended DC Operating Conditions Recommended DC Operating Conditions - DDR3L (1.35V) operation Symbol VDD VDDQ Parameter Rating Units Notes 1.45 V 1,2,3,4 1.45 V 1,2,3,4 Min. Typ. Max. Supply Voltage 1.283 1.35 Supply Voltage for Output 1.283 1.35 Notes: 1. Maximum DC value may not be greater than 1.425V. The DC value is the linear average of VDD/VDDQ (t) over a very long period of time (e.g., 1 sec). 2. If maximum limit is exceeded, input levels shall be governed by DDR3L specifications. 3. Under these supply voltages, the device operates to this DDR3L specification. 4. Once initialized for DDR3L operation, DDR3 operation may only be used if the device is in reset while VDD and VDDQ are changed for DDR3 operation (see Figure 0). Recommended DC Operating Conditions - DDR3 (1.5V) operation Symbol VDD VDDQ Parameter Rating Units Notes 1.575 V 1,2,3 1.575 V 1,2,3 Min. Typ. Max. Supply Voltage 1.425 1.5 Supply Voltage for Output 1.425 1.5 Notes: 1. If minimum limit is exceeded, input levels shall be governed by DDR3L specifications. 2. Under 1.5V operation, this DDR3L device operates to the DDR3 specifications under the same speed timings as defined for this device. 3. Once initialized for DDR3 operation, DDR3L operation may only be used if the device is in reset while VDD and VDDQ are changed for DDR3L operation (see Figure 0). Rev. 0.1 / Jul. 2012 12 Ta Tb Tc Td Te Tf Tg Th Ti Tj Tk CK,CK# VDD, VDDQ (DDR3) tCKSRX Tmin = 10ns VDD, VDDQ (DDR3L) Tmin = 10ns Tmin = 200us T = 500us RESET# Tmin = 10ns CKE VALID tDLLK tIS COMMAND READ BA READ 1) tXPR tMRD tMRD tMRD tMOD MRS MRS MRS MRS MR2 MR3 MR1 MR0 tZQinit ZQCL 1) VALID VALID tIS ODT READ tIS Static LOW in case RTT_Nom is enabled at time Tg, otherwise static HIGH or LOW VALID RTT NOTE 1: From time point “Td” until “Tk” NOP or DES commands must be applied between MRS and ZQCL commands. TIME BREAK DON’T CARE Figure 0 - VDD/VDDQ Voltage Switch Between DDR3L and DDR3 Rev. 0.1 / Jul. 2012 13 AC & DC Input Measurement Levels AC and DC Logic Input Levels for Single-Ended Signals AC and DC Input Levels for Single-Ended Command and Address Signals Single Ended AC and DC Input Levels for Command and Address DDR3L-800/1066 Symbol VIH.CA(DC90) VIL.CA(DC90) VIH.CA(AC160) VIL.CA(AC160) VIH.CA(AC135) VIL.CA(AC135) VIH.CA(AC125) VIL.CA(AC125) VRefCA(DC) DDR3L-1333/1600 Parameter DC input logic high DC input logic low AC input logic high AC input logic low AC Input logic high AC input logic low AC Input logic high AC input logic low Reference Voltage for ADD, CMD inputs Unit Notes Min Max Min Max Vref + 0.09 VSS Vref + 0.160 Note2 Vref + 0.135 Note2 - VDD Vref - 0.09 Note2 Vref - 0.160 Note2 Vref - 0.135 - Vref + 0.09 VSS Vref + 0.160 Note2 Vref + 0.135 Note2 - VDD Vref - 0.09 Note2 Vref - 0.160 Note2 Vref - 0.135 - V V V V V V V V 1 1 1,2,5 1,2,5 1,2,5 1,2,5 1,2,5 1,2,5 0.49 * VDD 0.51 * VDD 0.49 * VDD 0.51 * VDD V 3,4 Notes: 1. For input only pins except RESET, Vref = VrefCA (DC). 2. Refer to "Overshoot and Undershoot Specifications" on page 27. 3. The ac peak noise on VRef may not allow VRef to deviate from VRefCA(DC) by more than +/-1% VDD (for reference: approx. +/- 13.5 mV). 4. For reference: approx. VDD/2 +/- 13.5 mV 5. These levels apply for 1.35 volt (see table above) operation only. If the device is operated at 1.5V (table "Single Ended AC and DC Input Levels for DQ and DM" on page 15), the respective levels in JESD79-3 (VIH/L.CA(DC100), VIH/L.CA(AC175), VIH/L.CA(AC150), VIH/L.CA(AC135), VIH/L.CA(AC125) etc.) apply. The 1.5V levels (VIH/L.CA(DC100), VIH/L.CA(AC175), VIH/L.CA(AC150), VIH/L.CA(AC135), VIH/ L.CA(AC125) etc.) do not apply when the device is operated in the 1.35 voltage range. Rev. 0.1 / Jul. 2012 14 AC and DC Input Levels for Single-Ended Signals DDR3 SDRAM will support two Vih/Vil AC levels for DDR3-800 and DDR3-1066s specified in table below. DDR3 SDRAM will also support corresponding tDS values (Table 43 on page 117 and Table 50 on page 142 in “DDR3L Device Operation”) as well as derating tables Table 46 on page 135 in “DDR3L Device Operation” depending on Vih/Vil AC levels. Single Ended AC and DC Input Levels for DQ and DM DDR3L-800/1066 Symbol VIH.DQ(DC90) VIL.DQ(DC90) VIH.DQ(AC160) VIL.DQ(AC160) VIH.DQ(AC135) VIL.DQ(AC135) VIH.DQ(AC130) VIL.DQ(AC130) VRefDQ(DC) DDR3L-1333/1600 Parameter DC input logic high DC input logic low AC input logic high AC input logic low AC Input logic high AC input logic low AC Input logic high AC input logic low Reference Voltage for DQ, DM inputs Unit Notes Min Max Min Max Vref + 0.09 VSS Vref + 0.160 Note2 Vref + 0.135 Note2 - VDD Vref - 0.09 Note2 Vref - 0.160 Note2 Vref - 0.135 - Vref + 0.09 VSS Vref + 0.135 Note2 - VDD Vref - 0.09 Note2 Vref - 0.135 - V V V V V V V V 1 1 1, 2, 5 1, 2, 5 1, 2, 5 1, 2, 5 1, 2, 5 1, 2, 5 0.49 * VDD 0.51 * VDD 0.49 * VDD 0.51 * VDD V 3, 4 Notes: 1. Vref = VrefDQ (DC). 2. Refer to "Overshoot and Undershoot Specifications" on page 27. 3. The ac peak noise on VRef may not allow VRef to deviate from VRefDQ(DC) by more than +/-1% VDD (for reference: approx. +/- 13.5 mV). 4. For reference: approx. VDD/2 +/- 13.5 mV 4. For reference: approx. VDD/2 +/- 13.5 mV 5. These levels apply for 1.35 volt (table "Single Ended AC and DC Input Levels for Command and Address" on page 14) operation only. If the device is operated at 1.5V (table above), the respective levels in JESD79-3 (VIH/L.DQ(DC100), VIH/L.DQ(AC175), VIH/L.DQ(AC150), VIH/L.DQ(AC135) etc.) apply. The 1.5V levels (VIH/L.DQ(DC100), VIH/L.DQ(AC175), VIH/L.DQ(AC150), VIH/L.DQ(AC135) etc.) do not apply when the device is operated in the 1.35 voltage range. Rev. 0.1 / Jul. 2012 15 Vref Tolerances The dc-tolerance limits and ac-noise limits for the reference voltages VRefCA and VRefDQ are illustrated in figure below. It shows a valid reference voltage VRef (t) as a function of time. (VRef stands for VRefCA and VRefDQ likewise). VRef (DC) is the linear average of VRef (t) over a very long period of time (e.g. 1 sec). This average has to meet the min/max requirements in the table "Differential Input Slew Rate Definition" on page 22. Furthermore VRef (t) may temporarily deviate from VRef (DC) by no more than +/- 1% VDD. voltage VDD VRef ac-noise VRef(DC) VRef(t) VRef(DC)max VDD/2 VRef(DC)min VSS time Illustration of VRef(DC) tolerance and VRef ac-noise limits The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC), and VIL(DC) are dependent on VRef. “VRef ” shall be understood as VRef(DC), as defined in figure above. This clarifies that dc-variations of VRef affect the absolute voltage a signal has to reach to achieve a valid high or low level and therefore the time to which setup and hold is measured. System timing and voltage budgets need to account for VRef(DC) deviations from the optimum position within the data-eye of the input signals. This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with VRefac-noise. Timing and voltage effects due to ac-noise on VRef up to the specified limit (+/- 1% of VDD) are included in DRAM timings and their associated deratings. Rev. 0.1 / Jul. 2012 16 AC and DC Logic Input Levels for Differential Signals Differential signal definition tDVAC Differential Input Voltage(i.e.DQS - DQS#, CK - CK#) VIL.DIFF.AC.MIN VIL.DIFF.MIN 0 half cycle VIL.DIFF.MAX VIL.DIFF.AC.MAX tDVAC time Definition of differential ac-swing and “time above ac-level” tDVAC Rev. 0.1 / Jul. 2012 17 Differential swing requirements for clock (CK - CK) and strobe (DQS-DQS) Differential AC and DC Input Levels DDR3L-800, 1066, 1333, & 1600 Symbol Parameter VIHdiff VILdiff VIHdiff (ac) VILdiff (ac) Differential input high Differential input logic low Differential input high ac Differential input low ac Unit Notes Min Max + 0.180 Note 3 2 x (VIH (ac) - Vref) Note 3 Note 3 - 0.180 Note 3 2 x (VIL (ac) - Vref) V V V V 1 1 2 2 Notes: 1. Used to define a differential signal slew-rate. 2. For CK - CK use VIH/VIL (ac) of AADD/CMD and VREFCA; for DQS - DQS, DQSL, DQSL, DQSU, DQSU use VIH/VIL (ac) of DQs and VREFDQ; if a reduced ac-high or ac-low levels is used for a signal group, then the reduced level applies also here. 3. These values are not defined; however, the single-ended signals Ck, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective limits (VIH (dc) max, VIL (dc) min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "Overshoot and Undershoot Specifications" on page 27. Allowed time before ringback (tDVAC) for CK - CK and DQS - DQS DDR3L-800/1066/1333/1600 Slew Rate [V/ns] tDVAC [ps] @ |VIH/Ldiff (ac)| = 320mV min max tDVAC [ps] @ |VIH/Ldiff (ac)| = 270mV min max > 4.0 189 - 201 - 4.0 189 - 201 - 3.0 162 - 179 - 2.0 109 - 134 1.8 91 - 119 - 1.6 69 - 100 - 1.4 40 - 76 - 1.2 note - 44 - 1.0 note - note - < 1.0 note - note - note : Rising input signal shall become equal to or greater than VIH(ac) level and Falling input signal shall become equal to or less than VIL(ac) level. Rev. 0.1 / Jul. 2012 18 Single-ended requirements for differential signals Each individual component of a differential signal (CK, DQS, DQSL, DQSU, CK, DQS, DQSL, of DQSU) has also to comply with certain requirements for single-ended signals. CK and CK have to approximately reach VSEHmin / VSELmax (approximately equal to the ac-levels (VIH (ac) / VIL (ac)) for ADD/CMD signals) in every half-cycle. DQS, DQSL, DQSU, DQS, DQSL have to reach VSEHmin / VSELmax (approximately the ac-levels (VIH (ac) / VIL (ac)) for DQ signals) in every half-cycle preceding and following a valid transition. Note that the applicable ac-levels for ADD/CMD and DQ’s might be different per speed-bin etc. E.g., if VIH.CA(AC150)/VIL.CA(AC150) is used for ADD/CMD signals, then these ac-levels apply also for the singleended signals CK and CK. VDD or VDDQ VSEHmin VSEH VDD/2 or VDDQ/2 CK or DQS VSELmax VSS or VSSQ VSEL time Single-ended requirements for differential signals. Note that, while ADD/CMD and DQ signal requirements are with respect to Vref, the single-ended components of differential signals have a requirement with respect to VDD / 2; this is nominally the same. the transition of single-ended signals through the ac-levels is used to measure setup time. For single-ended components of differential signals the requirement to reach VSELmax, VSEHmin has no bearing on timing, but adds a restriction on the common mode characteristics of these signals. Rev. 0.1 / Jul. 2012 19 Single-ended levels for CK, DQS, DQSL, DQSU, CK, DQS, DQSL or DQSU DDR3L-800, 1066, 1333 Symbol VSEH VSEL Parameter Single-ended high level for strobes Single-ended high level for Ck, CK Single-ended low level for strobes Single-ended low level for CK, CK Unit Notes Min Max (VDD / 2) + 0.175 (VDD /2) + 0.175 Note 3 Note 3 Note 3 Note 3 (VDD / 2) = 0.175 (VDD / 2) = 0.175 V V V V 1,2 1,2 1,2 1,2 Notes: 1. For CK, CK use VIH/VIL (ac) of ADD/CMD; for strobes (DQS, DQS, DQSL, DQSL, DQSU, DQSU) use VIH/VIL (ac) of DQs. 2. VIH (ac)/VIL (ac) for DQs is based on VREFDQ; VIH (ac)/VIL (ac) for ADD/CMD is based on VREFCA; if a reduced ac-high or ac-low level is used for a signal group, then the reduced level applies also here. 3. These values are not defined; however, the single-ended signals Ck, CK, DQS, DQS, DQSL, DQSL, DQSU, DQSU need to be within the respective limits (VIH (dc) max, VIL (dc) min) for single-ended signals as well as the limitations for overshoot and undershoot. Refer to "Overshoot and Undershoot Specifications" on page 27. Rev. 0.1 / Jul. 2012 20 Differential Input Cross Point Voltage To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each cross point voltage of differential input signals (CK, CK and DQS, DQS) must meet the requirements in table below. The differential input cross point voltage VIX is measured from the actual cross point of true and complement signals to the midlevel between of VDD and VSS Vix Definition Cross point voltage for differential input signals (CK, DQS) DDR3L-800, 1066, 1333, 1600 Symbol VIX VIX Parameter Differential Input Cross Point Voltage relative to VDD/2 for CK, CK Differential Input Cross Point Voltage relative to VDD/2 for DQS, DQS Unit Notes Min Max -150 150 mV 1 -150 150 mV 1 Notes: 1. The relation between Vix Min/Max and VSEL/VSEH should satisfy following. (VDD/2) + Vix (Min) - VSEL 25mV VSEH - ((VDD/2) + Vix (Max)) 25mV Rev. 0.1 / Jul. 2012 21 Slew Rate Definitions for Single-Ended Input Signals See 7.5 “Address / Command Setup, Hold and Derating” on page 138 in “DDR3L Device Operation” for single-ended slew rate definitions for address and command signals. See 7.6 “Data Setup, Hold and Slew Rate Derating” on page 145 in “DDR3L Device Operation” for singleended slew rate definition for data signals. Slew Rate Definitions for Differential Input Signals Input slew rate for differential signals (CK, CK and DQS, DQS) are defined and measured as shown in table and figure below. Differential Input Slew Rate Definition Measured Description Min Differential input slew rate for rising edge (CK-CK and DQS-DQS) Differential input slew rate for falling edge (CK-CK and DQS-DQS) Defined by Max VILdiffmax VIHdiffmin [VIHdiffmin-VILdiffmax] / DeltaTRdiff VIHdiffmin VILdiffmax [VIHdiffmin-VILdiffmax] / DeltaTFdiff Notes: Differential Input Voltage (i.e. DQS-DQS; CK-CK) The differential signal (i.e. CK-CK and DQS-DQS) must be linear between these thresholds. Delta TRdiff vIHdiffmin 0 vILdiffmax Delta TFdiff Differential Input Slew Rate Definition for DQS, DQS# and CK, CK# Differential Input Slew Rate Definition for DQS, DQS and CK, CK Rev. 0.1 / Jul. 2012 22 AC & DC Output Measurement Levels Single Ended AC and DC Output Levels Table below shows the output levels used for measurements of single ended signals. Single-ended AC and DC Output Levels Symbol Parameter VOH(DC) DC output high measurement level (for IV curve linearity) VOM(DC) DC output mid measurement level (for IV curve linearity) VOL(DC) VOH(AC) DDR3L-800, 1066, 1333 and 1600 0.8 x VDDQ Unit Notes V V DC output low measurement level (for IV curve linearity) 0.5 x VDDQ 0.2 x VDDQ AC output high measurement level (for output SR) VTT + 0.1 x VDDQ V 1 AC output low measurement level (for output SR) VTT - 0.1 x VDDQ V 1 VOL(AC) V Notes: 1. The swing of ±0.1 x VDDQ is based on approximately 50% of the static single ended output high or low swing with a driver impedance of 40 Ω and an effective test load of 25 Ω to VTT = VDDQ / 2. Differential AC and DC Output Levels Table below shows the output levels used for measurements of single ended signals. Differential AC and DC Output Levels DDR3L-800, 1066, Symbol Parameter VOHdiff (AC) AC differential output high measurement level (for output SR) 1333 and 1600 + 0.2 x VDDQ VOLdiff (AC) AC differential output low measurement level (for output SR) - 0.2 x VDDQ Unit Notes V 1 V 1 Notes: 1. The swing of ±0.2 x VDDQ is based on approximately 50% of the static differential output high or low swing with a driver impedance of 40 Ω and an effective test load of 25 Ω to VTT = VDDQ/2 at each of the differential outputs. Rev. 0.1 / Jul. 2012 23 Single Ended Output Slew Rate When the Reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOL(AC) and VOH(AC) for single ended signals are shown in table and figure below. Single-ended Output slew Rate Definition Measured Description From VOL(AC) VOH(AC) Single-ended output slew rate for rising edge Single-ended output slew rate for falling edge Defined by To VOH(AC) VOL(AC) [VOH(AC)-VOL(AC)] / DeltaTRse [VOH(AC)-VOL(AC)] / DeltaTFse Notes: 1. Output slew rate is verified by design and characterisation, and may not be subject to production test. Single Ended Output Voltage(l.e.DQ) Delta TRse vOH(AC) V∏ vOl(AC) Delta TFse Single Ended Output Slew Rate Definition Single Ended Output slew Rate Definition Output Slew Rate (single-ended) DDR3L-800 DDR3L-1066 DDR3L-1333 DDR3L-1600 Parameter Symbol Min Max Min Max Min Max Min Max Single-ended Output Slew Rate SRQse 1.75 51) 1.75 51) 1.75 51) 1.75 51) Units V/ns Description: SR; Slew Rate Q: Query Output (like in DQ, which stands for Data-in, Query-Output) se: Single-ended Signals For Ron = RZQ/7 setting Note 1): In two cases, a maximum slew rate of 6V/ns applies for a single DQ signal within a byte lane. Case 1 is a defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low or low to high) while all remaining DQ signals in the same byte lane are static (i.e. they stay at either high or low). Case 2 is a defined for a single DQ signal within a byte lane which is switching into a certain direction (either from high to low or low to high) while all remaining DQ signals in the same byte lane switching into the opposite direction (i.e. from low to high of high to low respectively). For the remaining DQ signal switching in to the opposite direction, the regular maximum limite of 5 V/ns applies. Rev. 0.1 / Jul. 2012 24 Differential Output Slew Rate With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff (AC) and VOHdiff (AC) for differential signals as shown in table and figure below. Differential Output Slew Rate Definition Measured Description Defined by From To Differential output slew rate for rising edge VOLdiff (AC) VOHdiff (AC) [VOHdiff (AC)-VOLdiff (AC)] / DeltaTRdiff Differential output slew rate for falling edge VOHdiff (AC) VOLdiff (AC) [VOHdiff (AC)-VOLdiff (AC)] / DeltaTFdiff Notes: 1. Output slew rate is verified by design and characterization, and may not be subject to production test. Differential Output Voltage(i.e. DQS-DQS) Delta TRdiff vOHdiff(AC) O vOLdiff(AC) Delta TFdiff Differential Output Slew Rate Definition Differential Output slew Rate Definition Differential Output Slew Rate DDR3L-800 DDR3L-1066 DDR3l-1333 DDR3L-1600 Parameter Symbol Min Max Min Max Min Max Min Max Differential Output Slew Rate SRQdiff 3.5 12 3.5 12 3.5 12 3.5 12 Units V/ns Description: SR; Slew Rate Q: Query Output (like in DQ, which stands for Data-in, Query-Output) se: Single-ended Signals For Ron = RZQ/7 setting Rev. 0.1 / Jul. 2012 25 Reference Load for AC Timing and Output Slew Rate Figure below represents the effective reference load of 25 ohms used in defining the relevant AC timing parameters of the device as well as output slew rate measurements. It is not intended as a precise representation of any particular system environment or a depiction of the actual load presented by a production tester. System designers should use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers correlate to their production test conditions, generally one or more coaxial transmission lines terminated at the tester electronics. VDDQ CK, CK DUT DQ DQS DQS 25 Ohm VTT = VDDQ/2 Reference Load for AC Timing and Output Slew Rate Rev. 0.1 / Jul. 2012 26 Overshoot and Undershoot Specifications Address and Control Overshoot and Undershoot Specifications AC Overshoot/Undershoot Specification for Address and Control Pins DDR3L- DDR3L- DDR3L- DDR3L- Parameter Maximum peak amplitude allowed for overshoot area. (See Figure below) Maximum peak amplitude allowed for undershoot area. (See Figure below) Maximum overshoot area above VDD (See Figure below) Maximum undershoot area below VSS (See Figure below) 800 1066 1333 1600 0.4 0.4 0.67 0.67 0.4 0.4 0.5 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.33 0.33 Units V V V-ns V-ns (A0-A15, BA0-BA3, CS, RAS, CAS, WE, CKE, ODT) See figure below for each parameter definition M axim um A m plitude O vershoot A rea V olts (V) VDD V SS U ndershoot Area M axim um A m plitud e Tim e (ns) Add ress and Control O vershoot and U ndershoot D efinition Address and Control Overshoot and Undershoot Definition Rev. 0.1 / Jul. 2012 27 Clock, Data, Strobe and Mask Overshoot and Undershoot Specifications AC Overshoot/Undershoot Specification for Clock, Data, Strobe and Mask DDR3L- DDR3L- DDR3L- DDR3L- Parameter Maximum peak amplitude allowed for overshoot area. (See Figure below) Maximum peak amplitude allowed for undershoot area. (See Figure below) Maximum overshoot area above VDD (See Figure below) Maximum undershoot area below VSS (See Figure below) 800 1066 1333 1600 0.4 0.4 0.25 0.25 0.4 0.4 0.19 0.19 0.4 0.4 0.15 0.15 0.4 0.4 0.13 0.13 Units V V V-ns V-ns (CK, CK, DQ, DQS, DQS, DM) See figure below for each parameter definition M a x im u m A m p litu d e O v e rs h o o t A re a V o lts (V ) VDDQ VSSQ U n d e rs h o o t A re a M a x im u m A m p litu d e T im e (n s ) C lo c k , D a ta S tro b e a n d M a s k O v e rs h o o t a n d U n d e rs h o o t D e fin itio n Clock, Data, Strobe and Mask Overshoot and Undershoot Definition Rev. 0.1 / Jul. 2012 28 Refresh parameters by device density Refresh parameters by device density Parameter REF command ACT or REF command time Average periodic refresh interval Rev. 0.1 / Jul. 2012 RTT_Nom Setting 512Mb 1Gb 2Gb 4Gb 8Gb Units tRFC 90 110 160 260 350 ns 7.8 7.8 7.8 7.8 7.8 us 3.9 3.9 3.9 3.9 3.9 us tREFI 0 C TCASE 85 C 85 C TCASE 95 C 29 Standard Speed Bins DDR3 SDRAM Standard Speed Bins include tCK, tRCD, tRP, tRAS and tRC for each corresponding bin. DDR3L-800 Speed Bins For specific Notes See "Speed Bin Table Notes" on page 34. Speed Bin DDR3L-800E CL - nRCD - nRP 6-6-6 Unit Notes Parameter Symbol min max Internal read command to first data tAA 15 20 ns ACT to internal read or write delay time tRCD 15 — ns PRE command period tRP 15 — ns ACT to ACT or REF command period tRC 52.5 — ns ACT to PRE command period tRAS 37.5 9 * tREFI ns CWL = 5 tCK(AVG) 3.0 3.3 ns 1,2,3,4,9,10 CWL = 5 tCK(AVG) 2.5 3.3 ns 1,2,3 Supported CL Settings 5, 6 nCK 10 Supported CWL Settings 5 nCK CL = 5 CL = 6 Rev. 0.1 / Jul. 2012 30 DDR3L-1066 Speed Bins For specific Notes See "Speed Bin Table Notes" on page 34. Speed Bin DDR3L-1066F CL - nRCD - nRP Parameter Symbol Unit 7-7-7 min max Note Internal read command to first data tAA 13.125 20 ns ACT to internal read or write delay time tRCD 13.125 — ns PRE command period tRP 13.125 — ns ACT to ACT or REF command period tRC 50.625 — ns ACT to PRE command period tRAS 37.5 9 * tREFI ns CWL = 5 tCK(AVG) 3.0 3.3 ns 1,2,3,4,6,9,10 CWL = 6 tCK(AVG) ns 4 CWL = 5 tCK(AVG) ns 1,2,3,6 CWL = 6 tCK(AVG) Reserved ns 1,2,3,4 CWL = 5 tCK(AVG) Reserved ns 4 CWL = 6 tCK(AVG) ns 1,2,3,4 CWL = 5 tCK(AVG) ns 4 CWL = 6 tCK(AVG) ns 1,2,3 10 CL = 5 CL = 6 CL = 7 CL = 8 Reserved 2.5 3.3 1.875 < 2.5 Reserved 1.875 < 2.5 Supported CL Settings 5, 6, 7, 8 nCK Supported CWL Settings 5, 6 nCK Rev. 0.1 / Jul. 2012 31 DDR3L-1333 Speed Bins For specific Notes See "Speed Bin Table Notes" on page 34. Speed Bin DDR3L-1333H CL - nRCD - nRP Parameter Symbol Unit 9-9-9 min max Note Internal read command to first data tAA 13.5 (13.125)5,8 20 ns ACT to internal read or write delay time tRCD 13.5 (13.125)5,8 — ns PRE command period tRP 13.5 (13.125)5,8 — ns ACT to ACT or REF command period tRC 49.5 (49.125)5,8 — ns ACT to PRE command period tRAS 36 9 * tREFI ns CWL = 5 tCK(AVG) 3.0 3.3 ns 1,2,3,4,7,9,10 CWL = 6, 7 tCK(AVG) ns 4 CWL = 5 tCK(AVG) ns 1,2,3,7 CWL = 6 tCK(AVG) Reserved ns 1,2,3,4,7 CWL = 7 tCK(AVG) Reserved ns 4 CWL = 5 tCK(AVG) Reserved ns 4 CWL = 6 tCK(AVG) ns 1,2,3,4,7 CWL = 7 tCK(AVG) Reserved ns 1,2,3,4 CWL = 5 tCK(AVG) Reserved ns 4 CWL = 6 tCK(AVG) ns 1,2,3,7 CWL = 7 tCK(AVG) Reserved ns 1,2,3,4 CWL = 5, 6 tCK(AVG) Reserved ns 4 CWL = 7 tCK(AVG) ns 1,2,3,4 CWL = 5, 6 tCK(AVG) ns 4 CWL = 7 tCK(AVG) (Optional) ns ns 1,2,3 5 Supported CL Settings 5, 6, 7, 8, 9, 10 nCK Supported CWL Settings 5, 6, 7 nCK CL = 5 CL = 6 CL = 7 CL = 8 CL = 9 CL = 10 Rev. 0.1 / Jul. 2012 Reserved 2.5 3.3 1.875 < 2.5 (Optional) 5,8 1.875 < 2.5 1.5 <1.875 Reserved 1.5 <1.875 32 DDR3L-1600 Speed Bins For specific Notes See "Speed Bin Table Notes" on page 34. Speed Bin DDR3L-1600K CL - nRCD - nRP Parameter Symbol Unit 11-11-11 min max Internal read command to first data tAA 13.75 (13.125)5,9 20 ns ACT to internal read or write delay time tRCD 13.75 (13.125)5,9 — ns PRE command period tRP 13.75 (13.125)5,9 — ns ACT to ACT or REF command period tRC 48.75 (48.125)5,9 — ns ACT to PRE command period tRAS 35 9 * tREFI ns tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) 3.0 3.3 ns CL = 5 CWL = 5 CWL = 6, 7 CWL = 5 CL = 6 CWL = 6 CWL = 7 CWL = 5 CL = 7 CWL = 6 tCK(AVG) CWL = 7 tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) tCK(AVG) CWL = 8 CWL = 5 CL = 8 CWL = 6 CWL = 7 CWL = 8 CWL = 5, 6 CL = 9 CWL = 7 tCK(AVG) tCK(AVG) CWL = 5, 6 tCK(AVG) tCK(AVG) CL = 10 CWL = 7 tCK(AVG) CWL = 8 CWL = 5, 6,7 tCK(AVG) CL = 11 tCK(AVG) CWL = 8 Reserved 4 ns 1,2,3,8 Reserved ns 1,2,3,4,8 Reserved ns 4 ns 4 3.3 Reserved 1.875 < 2.5 (Optional)5,9 Reserved ns 1,2,3,4,8 ns 1,2,3,4,8 Reserved ns 4 Reserved ns 4 1.875 ns 1,2,3,8 Reserved < 2.5 ns 1,2,3,4,8 Reserved ns 1,2,3,4 ns 4 ns 1,2,3,4,8 ns 1,2,3,4 Reserved 1.5 <1.875 (Optional)5,9 Reserved Reserved ns 4 ns 1,2,3,8 Reserved ns 1,2,3,4 Reserved ns 4 ns 1,2,3 1.5 <1.875 1.25 <1.5 Supported CL Settings 5, 6, 7, 8, 9, 10, 11 Supported CWL Settings 5, 6, 7, 8 Rev. 0.1 / Jul. 2012 1,2,3,4,8,10,11 ns 2.5 CWL = 8 Note nCK nCK 33 Speed Bin Table Notes Absolute Specification (TOPER; VDDQ = VDD = 1.35V +0.100/- 0.067 V); 1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection of tCK(AVG), both need to be fulfilled: Requirements from CL setting as well as requirements from CWL setting. 2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the DLL - all possible intermediate frequencies may not be guaranteed. An application should use the next smaller JEDEC standard tCK(AVG) value (3.0, 2.5, 1.875, 1.5, or 1.25 ns) when calculating CL [nCK] = tAA [ns] / tCK(AVG) [ns], rounding up to the next ‘Supported CL’, where tCK(AVG) = 3.0 ns should only be used for CL = 5 calculation. 3. tCK(AVG).MAX limits: Calculate tCK(AVG) = tAA.MAX / CL SELECTED and round the resulting tCK(AVG) down to the next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or 1.25 ns). This result is tCK(AVG).MAX corresponding to CL SELECTED. 4. ‘Reserved’ settings are not allowed. User must program a different value. 5. ‘Optional’ settings allow certain devices in the industry to support this setting, however, it is not a mandatory feature. Refer to DIMM data sheet and/or the DIMM SPD information if and how this setting is supported. 6. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization. 7. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization. 8. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table which are not subject to Production Tests but verified by Design/Characterization. 9. DDR3 SDRAM devices supporting optional down binning to CL=7 and CL=9, and tAA/tRCD/tRP must be 13.125 ns or lower. SPD settings must be programmed to match. For example, DDR3-1333H devices supporting down binning to DDR3-1066F should program 13.125 ns in SPD bytes for tAAmin (Byte 16), tRCDmin (Byte 18), and tRPmin (Byte 20). DDR3-1600K devices supporting down binning to DDR3-1333H or DDR3-1600F should program 13.125 ns in SPD bytes for tAAmin (Byte 16), tRCDmin (Byte 18), and tRPmin (Byte 20). Once tRP (Byte 20) is programmed to 13.125ns, tRCmin (Byte 21,23) also should be programmed accordingly. For example, 49.125ns (tRASmin + tRPmin = 36 ns + 13.125 ns) for DDR3-1333H and 48.125ns (tRASmin + tRPmin = 35 ns + 13.125 ns) for DDR3-1600K. 10. DDR3 800 AC timing apply if DRAM operates at lower than 800 MT/s data rate. 11. For CL5 support, refer to DIMM SPD information. DRAM is required to support CL5. CL5 is not mandatory in SPD coding. Rev. 0.1 / Jul. 2012 34 Environmental Parameters Symbol Parameter Rating Units Notes 1, 3 TOPR Operating temperature 0 to 65 oC HOPR Operating humidity (relative) 10 to 90 % 1 TSTG Storage temperature o C 1 HSTG Storage humidity (without condensation) 5 to 95 % 1 PBAR Barometric Pressure (operating & storage) 105 to 69 K Pascal 1, 2 -50 to +100 Note: 1. Stress greater than those listed may cause permanent damage to the device. This is a stress rating only, and device functional operation at or above the conditions indicated is not implied. Expousure to absolute maximum rating conditions for extended periods may affect reliablility. 2. Up to 9850 ft. 3. The designer must meet the case temperature specifications for individual module components. Rev. 0.1 / Jul. 2012 35 IDD and IDDQ Specification Parameters and Test Conditions IDD and IDDQ Measurement Conditions In this chapter, IDD and IDDQ measurement conditions such as test load and patterns are defined. Figure 1. shows the setup and test load for IDD and IDDQ measurements. • IDD currents (such as IDD0, IDD1, IDD2N, IDD2NT, IDD2P0, IDD2P1, IDD2Q, IDD3N, IDD3P, IDD4R, IDD4W, IDD5B, IDD6, IDD6ET and IDD7) are measured as time-averaged currents with all VDD balls of the DDR3 SDRAM under test tied together. Any IDDQ current is not included in IDD currents. • IDDQ currents (such as IDDQ2NT and IDDQ4R) are measured as time-averaged currents with all VDDQ balls of the DDR3 SDRAM under test tied together. Any IDD current is not included in IDDQ currents. Attention: IDDQ values cannot be directly used to calculate IO power of the DDR3 SDRAM. They can be used to support correlation of simulated IO power to actual IO power as outlined in Figure 2. In DRAM module application, IDDQ cannot be measured separately since VDD and VDDQ are using one merged-power layer in Module PCB. For IDD and IDDQ measurements, the following definitions apply: • ”0” and “LOW” is defined as VIN <= VILAC(max). • ”1” and “HIGH” is defined as VIN >= VIHAC(max). • “MID_LEVEL” is defined as inputs are VREF = VDD/2. • Timing used for IDD and IDDQ Measurement-Loop Patterns are provided in Table 1. • Basic IDD and IDDQ Measurement Conditions are described in Table 2. • Detailed IDD and IDDQ Measurement-Loop Patterns are described in Table 3 through Table 10. • IDD Measurements are done after properly initializing the DDR3 SDRAM. This includes but is not limited to setting RON = RZQ/7 (34 Ohm in MR1); Qoff = 0B (Output Buffer enabled in MR1); RTT_Nom = RZQ/6 (40 Ohm in MR1); RTT_Wr = RZQ/2 (120 Ohm in MR2); TDQS Feature disabled in MR1 • Attention: The IDD and IDDQ Measurement-Loop Patterns need to be executed at least one time before actual IDD or IDDQ measurement is started. • Define D = {CS, RAS, CAS, WE}:= {HIGH, LOW, LOW, LOW} Define D = {CS, RAS, CAS, WE}:= {HIGH, HIGH, HIGH, HIGH} Rev. 0.1 / Jul. 2012 36 IDDQ (optional) IDD VDD VDDQ RESET CK/CK DDR3L SDRAM CKE CS RAS, CAS, WE DQS, DQS DQ, DM, TDQS, TDQS A, BA ODT ZQ VSS RTT = 25 Ohm VDDQ/2 VSSQ Figure 1 - Measurement Setup and Test Load for IDD and IDDQ (optional) Measurements [Note: DIMM level Output test load condition may be different from above Application specific memory channel environment IDDQ Test Load Channel IO Power Simulation IDDQ Simulation IDDQ Simulation Correction Channel IO Power Number Figure 2 - Correlation from simulated Channel IO Power to actual Channel IO Power supported by IDDQ Measurement Rev. 0.1 / Jul. 2012 37 Table 1 -Timings used for IDD and IDDQ Measurement-Loop Patterns Symbol tCK DDR3L-1066 DDR3L-1333 DDR3L-1600 7-7-7 9-9-9 11-11-11 1.875 1.5 1.25 Unit ns CL 7 9 11 nCK nRCD 7 9 11 nCK nRC 27 33 39 nCK nRAS 20 24 28 nCK nRP 7 9 11 nCK 1KB page size 20 20 24 nCK 2KB page size 27 30 32 nCK 1KB page size 4 4 5 nCK nFAW nRRD 6 5 6 nCK nRFC -512Mb 2KB page size 48 60 72 nCK nRFC-1 Gb 59 74 88 nCK nRFC- 2 Gb 86 107 128 nCK nRFC- 4 Gb 139 174 208 nCK nRFC- 8 Gb 187 234 280 nCK Table 2 -Basic IDD and IDDQ Measurement Conditions Symbol Description Operating One Bank Active-Precharge Current CKE: High; External clock: On; tCK, nRC, nRAS, CL: see Table 1; BL: 8a); AL: 0; CS: High between ACT and IDD0 PRE; Command, Address, Bank Address Inputs: partially toggling according to Table 3; Data IO: MID-LEVEL; DM: stable at 0; Bank Activity: Cycling with one bank active at a time: 0,0,1,1,2,2,... (see Table 3); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 3. Operating One Bank Active-Precharge Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, CL: see Table 1; BL: 8a); AL: 0; CS: High between ACT, IDD1 RD and PRE; Command, Address; Bank Address Inputs, Data IO: partially toggling according to Table 4; DM: stable at 0; Bank Activity: Cycling with on bank active at a time: 0,0,1,1,2,2,... (see Table 4); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 4. Rev. 0.1 / Jul. 2012 38 Symbol Description Precharge Standby Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank IDD2N Address Inputs: partially toggling according to Table 5; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 5. Precharge Standby ODT Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank IDD2NT Address Inputs: partially toggling according to Table 6; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: toggling according to Table 6; Pattern Details: see Table 6. Precharge Power-Down Current Slow Exit IDD2P0 CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Precharge Power Down Mode: Slow Exitc) Precharge Power-Down Current Fast Exit IDD2P1 CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Precharge Power Down Mode: Fast Exitc) Precharge Quiet Standby Current IDD2Q CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks closed; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0 Active Standby Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank IDD3N Address Inputs: partially toggling according to Table 5; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 5. Active Power-Down Current IDD3P CKE: Low; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: stable at 1; Command, Address, Bank Address Inputs: stable at 0; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: all banks open; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0 Rev. 0.1 / Jul. 2012 39 Symbol Description Operating Burst Read Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: High between RD; Command, Address, IDD4R Bank Address Inputs: partially toggling according to Table 7; Data IO: seamless read data burst with different data between one burst and the next one according to Table 7; DM: stable at 0; Bank Activity: all banks open, RD commands cycling through banks: 0,0,1,1,2,2,...(see Table 7); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 7. Operating Burst Write Current CKE: High; External clock: On; tCK, CL: see Table 1; BL: 8a); AL: 0; CS: High between WR; Command, Address, IDD4W Bank Address Inputs: partially toggling according to Table 8; Data IO: seamless read data burst with different data between one burst and the next one according to Table 8; DM: stable at 0; Bank Activity: all banks open, WR commands cycling through banks: 0,0,1,1,2,2,...(see Table 8); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at HIGH; Pattern Details: see Table 8. Burst Refresh Current CKE: High; External clock: On; tCK, CL, nRFC: see Table 1; BL: 8a); AL: 0; CS: High between REF; Command, IDD5B Address, Bank Address Inputs: partially toggling according to Table 9; Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: REF command every nREF (see Table 9); Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 9. Self-Refresh Current: Normal Temperature Range TCASE: 0 - 85 oC; Auto Self-Refresh (ASR): Disabledd);Self-Refresh Temperature Range (SRT): Normale); CKE: IDD6 Low; External clock: Off; CK and CK: LOW; CL: see Table 1; BL: 8a); AL: 0; CS, Command, Address, Bank Address Inputs, Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: MID_LEVEL Self-Refresh Current: Extended Temperature Range TCASE: 0 - 95 oC; Auto Self-Refresh (ASR): Disabledd);Self-Refresh Temperature Range (SRT): Extendede); IDD6ET CKE: Low; External clock: Off; CK and CK: LOW; CL: see Table 1; BL: 8a); AL: 0; CS, Command, Address, Bank Address Inputs, Data IO: MID_LEVEL; DM: stable at 0; Bank Activity: Extended Temperature Self-Refresh operation; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: MID_LEVEL Rev. 0.1 / Jul. 2012 40 Symbol Description Operating Bank Interleave Read Current CKE: High; External clock: On; tCK, nRC, nRAS, nRCD, NRRD, nFAW, CL: see Table 1; BL: 8a,f); AL: CL-1; CS: High between ACT and RDA; Command, Address, Bank Address Inputs: partially toggling according to Table IDD7 10; Data IO: read data burst with different data between one burst and the next one according to Table 10; DM: stable at 0; Bank Activity: two times interleaved cycling through banks (0, 1,...7) with different addressing, wee Table 10; Output Buffer and RTT: Enabled in Mode Registersb); ODT Signal: stable at 0; Pattern Details: see Table 10. a) Burst Length: BL8 fixed by MRS: set MR0 A[1,0]=00B b) Output Buffer Enable: set MR1 A[12] = 0B; set MR1 A[5,1] = 01B; RTT_Nom enable: set MR1 A[9,6,2] = 011B; RTT_Wr enable: set MR2 A[10,9] = 10B c) Precharge Power Down Mode: set MR0 A12=0B for Slow Exit or MR0 A12 = 1B for Fast Exit d) Auto Self-Refresh (ASR): set MR2 A6 = 0B to disable or 1B to enable feature e) Self-Refresh Temperature Range (SRT): set MR2 A7 = 0B for normal or 1B for extended temperature range f) Read Burst Type: Nibble Sequential, set MR0 A[3] = 0B Rev. 0.1 / Jul. 2012 41 Command CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] 0 ACT 0 0 1 1 0 0 00 0 0 0 0 - 1,2 D, D 1 0 0 0 0 0 00 0 0 0 0 - D, D 1 1 1 1 0 0 00 0 0 0 0 - 0 0 0 - Cycle Number Datab) Sub-Loop CKE CK, CK Table 3 - IDD0 Measurement-Loop Patterna) 0 3,4 ... nRAS Static High toggling ... repeat pattern 1...4 until nRAS - 1, truncate if necessary PRE 0 0 1 0 0 0 00 0 repeat pattern 1...4 until nRC - 1, truncate if necessary 1*nRC+0 ACT 0 0 1 1 0 0 00 0 0 F 0 - 1*nRC+1, 2 D, D 1 0 0 0 0 0 00 0 0 F 0 - D, D 1 1 1 1 0 0 00 0 0 F 0 - 0 - 1*nRC+3, 4 ... 1*nRC+nRAS repeat pattern 1...4 until 1*nRC + nRAS - 1, truncate if necessary PRE 0 0 1 0 0 0 00 0 0 ... repeat pattern 1...4 until 2*nRC - 1, truncate if necessary 1 2*nRC repeat Sub-Loop 0, use BA[2:0] = 1 instead 2 4*nRC repeat Sub-Loop 0, use BA[2:0] = 2 instead 3 6*nRC repeat Sub-Loop 0, use BA[2:0] = 3 instead 4 8*nRC repeat Sub-Loop 0, use BA[2:0] = 4 instead 5 10*nRC repeat Sub-Loop 0, use BA[2:0] = 5 instead 6 12*nRC repeat Sub-Loop 0, use BA[2:0] = 6 instead 7 14*nRC repeat Sub-Loop 0, use BA[2:0] = 7 instead F a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL. b) DQ signals are MID-LEVEL. Rev. 0.1 / Jul. 2012 42 Command CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] 0 ACT 0 0 1 1 0 0 00 0 0 0 0 - 1,2 D, D 1 0 0 0 0 0 00 0 0 0 0 - D, D 1 1 1 1 0 0 00 0 0 0 0 - 0 0 00000000 0 0 - Cycle Number Datab) Sub-Loop CKE CK, CK Table 4 - IDD1 Measurement-Loop Patterna) 0 3,4 ... nRCD ... nRAS Static High toggling ... repeat pattern 1...4 until nRCD - 1, truncate if necessary RD 0 1 0 1 0 0 00 0 0 repeat pattern 1...4 until nRAS - 1, truncate if necessary PRE 0 0 1 0 0 0 00 0 0 repeat pattern 1...4 until nRC - 1, truncate if necessary 1*nRC+0 ACT 0 0 1 1 0 0 00 0 0 F 0 - 1*nRC+1,2 D, D 1 0 0 0 0 0 00 0 0 F 0 - D, D 1 1 1 1 0 0 00 0 0 F 0 - 1*nRC+3,4 ... 1*nRC+nRCD ... 1*nRC+nRAS repeat pattern nRC + 1,...4 until nRC + nRCE - 1, truncate if necessary RD 0 1 0 1 0 0 00 0 0 F 0 00110011 repeat pattern nRC + 1,...4 until nRC + nRAS - 1, truncate if necessary PRE 0 0 1 0 0 0 00 0 0 F ... repeat pattern nRC + 1,...4 until *2 nRC - 1, truncate if necessary 1 2*nRC repeat Sub-Loop 0, use BA[2:0] = 1 instead 2 4*nRC repeat Sub-Loop 0, use BA[2:0] = 2 instead 3 6*nRC repeat Sub-Loop 0, use BA[2:0] = 3 instead 4 8*nRC repeat Sub-Loop 0, use BA[2:0] = 4 instead 5 10*nRC repeat Sub-Loop 0, use BA[2:0] = 5 instead 6 12*nRC repeat Sub-Loop 0, use BA[2:0] = 6 instead 7 14*nRC repeat Sub-Loop 0, use BA[2:0] = 7 instead 0 - a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MIDLEVEL. b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID_LEVEL. Rev. 0.1 / Jul. 2012 43 Static High CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] 0 D 1 0 0 0 0 0 0 0 0 0 0 - 1 D 1 0 0 0 0 0 0 0 0 0 0 - 2 D 1 1 1 1 0 0 0 0 0 F 0 - 3 D 1 1 1 1 0 0 0 0 0 F 0 - Cycle Number Command 0 toggling Datab) Sub-Loop CKE CK, CK Table 5 - IDD2N and IDD3N Measurement-Loop Patterna) 1 4-7 repeat Sub-Loop 0, use BA[2:0] = 1 instead 2 8-11 repeat Sub-Loop 0, use BA[2:0] = 2 instead 3 12-15 repeat Sub-Loop 0, use BA[2:0] = 3 instead 4 16-19 repeat Sub-Loop 0, use BA[2:0] = 4 instead 5 20-23 repeat Sub-Loop 0, use BA[2:0] = 5 instead 6 24-17 repeat Sub-Loop 0, use BA[2:0] = 6 instead 7 28-31 repeat Sub-Loop 0, use BA[2:0] = 7 instead a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL. b) DQ signals are MID-LEVEL. Static High CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] 0 D 1 0 0 0 0 0 0 0 0 0 0 - 1 D 1 0 0 0 0 0 0 0 0 0 0 - 2 D 1 1 1 1 0 0 0 0 0 F 0 - 3 D 1 1 1 1 0 0 0 0 0 F 0 - Cycle Number Command 0 toggling Datab) Sub-Loop CKE CK, CK Table 6 - IDD2NT and IDDQ2NT Measurement-Loop Patterna) 1 4-7 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 1 2 8-11 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 2 3 12-15 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 3 4 16-19 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 4 5 20-23 repeat Sub-Loop 0, but ODT = 0 and BA[2:0] = 5 6 24-17 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 6 7 28-31 repeat Sub-Loop 0, but ODT = 1 and BA[2:0] = 7 a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL. b) DQ signals are MID-LEVEL. Rev. 0.1 / Jul. 2012 44 CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] 0 RD 0 1 0 1 0 0 00 0 0 0 0 00000000 1 D 1 0 0 0 0 0 00 0 0 0 0 - 2,3 D,D 1 1 1 1 0 0 00 0 0 0 0 - 4 RD 0 1 0 1 0 0 00 0 0 F 0 00110011 5 D 1 0 0 0 0 0 00 0 0 F 0 - D,D 1 1 1 1 0 0 00 0 0 F 0 - Cycle Number Command Static High 0 toggling Datab) Sub-Loop CKE CK, CK Table 7 - IDD4R and IDDQ4R Measurement-Loop Patterna) 6,7 1 8-15 repeat Sub-Loop 0, but BA[2:0] = 1 2 16-23 repeat Sub-Loop 0, but BA[2:0] = 2 3 24-31 repeat Sub-Loop 0, but BA[2:0] = 3 4 32-39 repeat Sub-Loop 0, but BA[2:0] = 4 5 40-47 repeat Sub-Loop 0, but BA[2:0] = 5 6 48-55 repeat Sub-Loop 0, but BA[2:0] = 6 7 56-63 repeat Sub-Loop 0, but BA[2:0] = 7 a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL. b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL. 0, 0, 0, 0, 0, 0, 0, 1 1 1 1 1 1 = = = = = = = A[2:0] ODT 0 0 1 0 0 1 BA[2:0] BA[2:0] BA[2:0] BA[2:0] BA[2:0] BA[2:0] BA[2:0] A[6:3] 0 0 1 0 0 1 but but but but but but but WE CAS RAS CS 0 1 1 0 1 1 0 1 1 0 1 1 Sub-Loop Sub-Loop Sub-Loop Sub-Loop Sub-Loop Sub-Loop Sub-Loop A[9:7] WR D D,D WR D D,D repeat repeat repeat repeat repeat repeat repeat A[10] 1 2 3 4 5 6 7 1 2,3 4 5 6,7 8-15 16-23 24-31 32-39 40-47 48-55 56-63 A[15:11] 0 BA[2:0] 0 Command Cycle Number Sub-Loop CKE Static High toggling CK, CK Table 8 - IDD4W Measurement-Loop Patterna) Datab) 0 0 0 0 0 0 00 00 00 00 00 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F F F 0 0 0 0 0 0 00000000 00110011 - 1 2 3 4 5 6 7 a) DM must be driven LOW all the time. DQS, DQS are used according to WR Commands, otherwise MID-LEVEL. b) Burst Sequence driven on each DQ signal by Write Command. Outside burst operation, DQ signals are MID-LEVEL. Rev. 0.1 / Jul. 2012 45 Command CS RAS CAS WE ODT BA[2:0] A[15:11] A[10] A[9:7] A[6:3] A[2:0] 0 0 REF 0 0 0 1 0 0 0 0 0 0 0 - 1 1.2 D, D 1 0 0 0 0 0 00 0 0 0 0 - D, D 1 1 1 1 0 0 00 0 0 F 0 - Cycle Number Datab) Sub-Loop CKE CK, CK Table 9 - IDD5B Measurement-Loop Patterna) Static High toggling 3,4 2 5...8 repeat cycles 1...4, but BA[2:0] = 1 9...12 repeat cycles 1...4, but BA[2:0] = 2 13...16 repeat cycles 1...4, but BA[2:0] = 3 17...20 repeat cycles 1...4, but BA[2:0] = 4 21...24 repeat cycles 1...4, but BA[2:0] = 5 25...28 repeat cycles 1...4, but BA[2:0] = 6 29...32 repeat cycles 1...4, but BA[2:0] = 7 33...nRFC-1 repeat Sub-Loop 1, until nRFC - 1. Truncate, if necessary. a) DM must be driven LOW all the time. DQS, DQS are MID-LEVEL. b) DQ signals are MID-LEVEL. Rev. 0.1 / Jul. 2012 46 Table 10 - IDD7 Measurement-Loop Patterna) 2 3 4 Static High 5 6 7 8 9 10 4*nRRD nFAW nFAW+nRRD nFAW+2*nRRD nFAW+3*nRRD nFAW+4*nRRD 2*nFAW+0 2*nFAW+1 2&nFAW+2 11 2*nFAW+nRRD 2*nFAW+nRRD+1 2&nFAW+nRRD+2 12 13 2*nFAW+2*nRRD 2*nFAW+3*nRRD 14 2*nFAW+4*nRRD 15 16 17 18 3*nFAW 3*nFAW+nRRD 3*nFAW+2*nRRD 3*nFAW+3*nRRD 19 3*nFAW+4*nRRD 00110011 - 0 - 0 - 0 0 0 00110011 - 0 0 0 00000000 - 0 - 0 - A[10] 0 0 0 ODT 00000000 - WE 0 0 0 CAS ACT 0 0 1 1 0 0 00 0 0 0 RDA 0 1 0 1 0 0 00 1 0 0 D 1 0 0 0 0 0 00 0 0 0 repeat above D Command until nRRD - 1 ACT 0 0 1 1 0 1 00 0 0 F RDA 0 1 0 1 0 1 00 1 0 F D 1 0 0 0 0 1 00 0 0 F repeat above D Command until 2* nRRD - 1 repeat Sub-Loop 0, but BA[2:0] = 2 repeat Sub-Loop 1, but BA[2:0] = 3 D 1 0 0 0 0 3 00 0 0 F Assert and repeat above D Command until nFAW - 1, if necessary repeat Sub-Loop 0, but BA[2:0] = 4 repeat Sub-Loop 1, but BA[2:0] = 5 repeat Sub-Loop 0, but BA[2:0] = 6 repeat Sub-Loop 1, but BA[2:0] = 7 D 1 0 0 0 0 7 00 0 0 F Assert and repeat above D Command until 2* nFAW - 1, if necessary ACT 0 0 1 1 0 0 00 0 0 F RDA 0 1 0 1 0 0 00 1 0 F D 1 0 0 0 0 0 00 0 0 F Repeat above D Command until 2* nFAW + nRRD - 1 ACT 0 0 1 1 0 1 00 0 0 0 RDA 0 1 0 1 0 1 00 1 0 0 D 1 0 0 0 0 1 00 0 0 0 Repeat above D Command until 2* nFAW + 2* nRRD - 1 repeat Sub-Loop 10, but BA[2:0] = 2 repeat Sub-Loop 11, but BA[2:0] = 3 D 1 0 0 0 0 3 00 0 0 0 Assert and repeat above D Command until 3* nFAW - 1, if necessary repeat Sub-Loop 10, but BA[2:0] = 4 repeat Sub-Loop 11, but BA[2:0] = 5 repeat Sub-Loop 10, but BA[2:0] = 6 repeat Sub-Loop 11, but BA[2:0] = 7 D 1 0 0 0 0 7 00 0 0 0 Assert and repeat above D Command until 4* nFAW - 1, if necessary RAS Datab) CS A[9:7] A[15:11] BA[2:0] Command A[2:0] 1 0 1 2 ... nRRD nRRD+1 nRRD+2 ... 2*nRRD 3*nRRD A[6:3] 0 toggling Cycle Number Sub-Loop CKE CK, CK ATTENTION! Sub-Loops 10-19 have inverse A[6:3] Pattern and Data Pattern than Sub-Loops 0-9 a) DM must be driven LOW all the time. DQS, DQS are used according to RD Commands, otherwise MID-LEVEL. b) Burst Sequence driven on each DQ signal by Read Command. Outside burst operation, DQ signals are MID-LEVEL. Rev. 0.1 / Jul. 2012 47 IDD Specifications (Tcase: 0 to 95oC) * Module IDD values in the datasheet are only a calculation based on the component IDD spec. The actual measurements may vary according to DQ loading cap. 2GB, 256M x 72 SO-DIMM: HMT325A7CFR8A Symbol IDD0 IDD1 IDD2N IDD2NT IDD2P0 IDD2P1 IDD2Q IDD3N IDD3P IDD4R IDD4W IDD5B IDD6 IDD6ET IDD7 DDR3L 1066 315 405 153 180 90 117 162 180 108 585 585 990 90 108 1215 DDR3L 1333 360 405 162 207 90 117 180 198 117 720 675 1035 90 108 1485 DDR3L 1600 360 450 180 225 90 135 180 225 135 810 765 1035 90 108 1530 Unit mA mA mA mA mA mA mA mA mA mA mA mA mA mA mA note note 4GB, 512M x 72 SO-DIMM: HMT351A7CFR8A Symbol IDD0 IDD1 IDD2N IDD2NT DDR3L 1066 468 558 306 360 DDR3L 1333 522 567 324 414 DDR3L 1600 585 675 360 450 Unit mA mA mA mA IDD2P0 IDD2P1 IDD2Q IDD3N IDD3P IDD4R IDD4W IDD5B IDD6 IDD6ET IDD7 180 234 324 360 216 738 738 1143 180 216 1368 180 234 360 396 234 882 837 1197 180 216 1647 180 270 360 450 270 1035 990 1260 180 216 1755 mA mA mA mA mA mA mA mA mA mA mA Rev. 0.1 / Jul. 2012 48 Module Dimensions 256Mx72 - HMT325A7CFR8A Side Front 67.60mm 3.80mm max 2.0 Detail-A pin 1 pin 203 21.00 2.15 2 X 1.80 0.10 20.0mm 6.00 30.0mm 4.00 0.10 1.00 0.08 mm 39.00 1.65 0.10 3.00 Back SPD 0.45 0.03 2.55 0.3 0.15 4.00 0.10 Detail of Contacts A 0.3~1.0 0.60 1.00 0.05 Note: 1. 0.13 tolerance on all dimensions unless otherwise stated. Units: millimeters Rev. 0.1 / Jul. 2012 49 512Mx72 - HMT351S6CFR8A Front Side 67.60mm 3.80mm max 2.0 Detail-A pin 1 pin 203 21.00 2.15 2 X 1.80 0.10 20.0mm 6.00 30.0mm 4.00 0.10 1.00 0.08 mm 39.00 1.65 0.10 3.00 Back SPD 0.45 0.03 2.55 0.3 0.15 4.00 0.10 Detail of Contacts A 0.3~1.0 0.60 1.00 0.05 Note: 1. 0.13 tolerance on all dimensions unless otherwise stated. Units: millimeters Rev. 0.1 / Jul. 2012 50