Renesas MC-10118B Multimedia processor for mobile application Datasheet

To our customers,
Old Company Name in Catalogs and Other Documents
On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.
Renesas Electronics website: http://www.renesas.com
April 1st, 2010
Renesas Electronics Corporation
Issued by: Renesas Electronics Corporation (http://www.renesas.com)
Send any inquiries to http://www.renesas.com/inquiry.
Notice
1.
2.
3.
4.
5.
6.
7.
All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.
You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.
When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.
Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.
Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.
“Standard”:
8.
9.
10.
11.
12.
Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
“Specific”:
Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.
This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.
(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
DATA SHEET
MOS INTEGRATED CIRCUIT
MC-10118B
MULTIMEDIA PROCESSOR FOR MOBILE APPLICATIONS
DESCRIPTION
EMMA Mobile1-D512 (EM1-D512) (SIP: MC-10118B) is a multimedia processor for mobile applications that
integrates a logic chip incorporating a CPU and DSP, and a Mobile DDR SDRAM chip, in one package.
As multimedia processor functions, EM1-D512 incorporates one CPU (ARM1176JZF-STM) and one DSP
(SPXK701), achieving high-speed, power-efficient application processing. EM1-D512 also incorporates image
processors with various functions to accelerate image processing.
Various power save modes enable the power to be controlled according to application processing. Moreover,
power consumption can be reduced during standby by using sequences independent from the system.
FEATURES
 CPU: ARM1176JZF-S (Max. 500 MHz, I-cache: 32 KB, D-cache: 32 KB)
 DSP: SPXK701 (Max. 500 MHz, I-cache: 32 KB, D-cache: 32 KB)
 Mobile DDR SDRAM (512Mb)
 DMA controller: Memory  memory and memory  peripheral interface
 Timers: General-purpose timers, watchdog timer (WDT)
 Image processing
 Image processor (resizing, filtering, etc.)
 Image rotator (0, 90, 180, 270)
 Graphics DMA (ROP and FILL)
 Image composer (LCD output image synthesis)
 H.264/MPEG-4 AVC accelerator application performance
 H.264/MPEG-4 AVC Encode/Decode: D1 30 fps
 Peripheral interfaces
 Memory interface: External bus interface (16 bits: Flash memory, etc.), NAND interface
 Serial interfaces: UART, I2C, audio/voice, SPI, IrDA
 SD card interface
 Image-related interfaces: LCD interface, terrestrial digital TV interface (DTV),
ITU-R.BT656 interface (NTS), camera interface
 General-purpose I/O interface
 USB interface
 Power supply voltage
 Core power supply : V (1.2 V system : 1.1V - 1.3V)
 IO power supply : VIO18 (1.8 V system : 1.7V - 1.9V), VIO3 (3 V system : 2.7V - 3.6V)
The information in this document is subject to change without notice. Before using this document, please
confirm that this is the latest version.
Not all products and/or types are available in every country. Please check with an NEC Electronics
sales representative for availability and additional information.
Document No. R19DS0008EJ0700 (7th edition)
(S19657EJ7V0DS00)
Date Published March 2010
Printed in Japan
2010
MC-10118B
Order Information
2
Order name
Package
MC-10118BF1-ENY-A
481-pin FPBGA (12.7mm×12.7mm)
Data Sheet R19DS0008EJ0700
MC-10118B
RELATED DOCUMENTS
The functions of the multimedia processor for mobile applications are described in the following documents. Refer
to these documents together with this data sheet during design operations.
The related documents indicated in this publication may include preliminary versions.
However, preliminary
versions are not marked as such.

Multimedia Processor for Mobile Applications User’s Manual
Audio/Voice and PWM Interfaces (R19UH0027EJ)
DDR SDRAM Interface (R19UH0028EJ)
DMA Controller (S19255E)
I2C Interface (S19256E)
ITU-R BT.656 Interface (S19257E)
LCD Controller (S19258E)
MICROWIRE (S19259E)
NAND Flash Interface (S19260E)
SPI (S19261E)
UART Interface (S19262E)
Image Composer (S19263E)
Image Processor Unit (S19264E)
System Control/General-Purpose I/O Interface (R19UH0029EJ)
Timer (S19266E)
Terrestrial Digital TV Interface (S19267E)
Camera Interface (S19285E)
USB Interface (S19359E)
SD Memory Card Interface (S19361E)
PDMA (S19373E)
One Chip (R19UH0030EJ)
Caution The related documents listed above are subject to change without notice. Be sure to use the
latest version of each document when designing.
Data Sheet R19DS0008EJ0700
3
MC-10118B
BLOCK DIAGRAM
EM1-D512
EM1-Logic
SD
SD/MMC
CAM IF
ARM1176
OFDM IF
1-seg
I2S
Audio
DAC
I2S
Mic
NTSC IF
NTSC
dec
500MHz
WiFi
SDIO
FM
Tuner
UART
Blue
Tooth
DSP
K701
UART
500MHz
GPS
UART
DMA
IPU
LCD IF
USB2.0 HS
Link
PMU
Rotator
GPIO
INT
Timer*14
SPI
SDRAM
IF
NAND/
eMMC IF
Async
IF
JAIRO
I2C
SPI
Video
Engine
DDR 166M
512Mbit
NAND
eMMC
4
Data Sheet R19DS0008EJ0700
NOR
LCD
MC-10118B
PIN LAYOUT
481-pin fine-pitch BGA package (12.7  12.7 mm)
(Top View)
(Bottom View)
23
21
19
17
15
13
11
9
7
5
3
1
INDEX MARK
24
22
20
18
16
14
12
10
8
6
4
2
AC AA W U R N L J
G E
C A
AD AB Y V
T P M K H F D B
Data Sheet R19DS0008EJ0700
5
MC-10118B
Pin Assignment
(1/5)
Pin No.
Type
A1
−
Pin Name
A2
−
G
B16
D
A3
−
G
B17
A4
D
PWM0
G
URT0_SRIN
Pin No.
Type
B15
-
Pin Name
G
Pin No.
Type
Pin Name
D5
D
URT0_CTSB
JT0_TMS
D6
−
G
A
DET1
D7
-
VIO3
B18
J
LCD_HSYNC
D8
D
SP0_SO
B19
−
G
D9
D
PM0_SEN
B20
−
V
D10
C
IIC_SCL
VA1
A5
D
A6
−
A7
−
V
B21
−
VIO18
D11
−
A8
C
PM0_CLK
B22
J
LCD_G1
D12
E
BOOTSEL2
A9
B
C32K
B23
−
G
D13
D
GIO_P3
A10
−
VA2
B24
−
G
D14
-
VIO3
A11
−
G
C1
−
G
D15
−
G
A12
−
VA3
C2
D
DTV_DATA
D16
D
JT0_TDO
A13
−
V
C3
D
URT2_SRIN
D17
C
JT0_TRSTB
A14
−
VIO3
C4
D
URT2_RTSB
D18
J
LCD_ENABLE
A15
−
G
C5
D
URT0_RTSB
D19
J
LCD_B4
A16
D
REFCLKO
C6
−
G
D20
J
LCD_B1
A17
Z
OSC12M_CKO
C7
−
VIO3
D21
J
LCD_G4
A18
Z
OSC12M_CKI
C8
D
SP0_SI
D22
J
LCD_R5
A19
−
G
C9
C
IIC2_SCL
D23
J
LCD_R4
A20
−
V
C10
C
IIC_SDA
D24
J
LCD_PXCLK
A21
−
C11
−
E1
−
V
A22
−
E2
−
V
A23
−
E3
−
VIO18
A24
−
E4
−
VIO18
B1
−
B2
−
B3
G
VIO18
G
E
BOOTSEL1
C13
D
C14
-
VIO3
G
C15
-
G
E5
D
GIO_P6
G
C16
D
JT0_TDI
E6
D
GIO_P5
D
URT2_SOUT
C17
D
JT0_RTCK
E7
D
GIO_P4
B4
D
PWM1
C18
J
LCD_VSYNC
E8
D
SP0_CS2
B5
D
URT0_SOUT
C19
J
LCD_B3
E9
D
SP0_CS0
B6
-
G
C20
J
LCD_B0
E10
D
PM0_SI
B7
-
V
C21
J
LCD_G3
E11
R
TE2
B8
D
SP0_CLK
C22
J
LCD_G2
E12
E
BOOTSEL3
B9
C
IIC2_SDA
C23
J
LCD_G0
E13
E
BOOTSEL0
B10
−
VA2
C24
-
G
E14
D
GIO_P0
B11
−
G
D1
C
DTV_BCLK
E15
-
G
B12
−
VA3
D2
D
DTV_PSYNC
E16
C
JT0_TCK
B13
−
V
D3
D
DTV_VLD
E17
N
TESTRSTB
B14
−
VIO3
D4
D
URT2_CTSB
E18
M
TRSTB
6
G
C12
VA1
G
GIO_P2
Data Sheet R19DS0008EJ0700
MC-10118B
(2/5)
Pin No.
Type
E19
J
E20
J
Pin Name
LCD_B5
LCD_B2
Pin No.
Type
H14
D
H15
-
Pin Name
GIO_P1
G
Pin No.
Type
Pin Name
K12
−
G
K13
−
G
G
E21
J
LCD_G5
H16
J
DEBUG_EN
K14
−
E22
J
LCD_R3
H17
E
UTEST
K15
−
G
E23
J
LCD_R2
H20
M
AB0_CSB0
K16
-
G
E24
J
LCD_R1
H21
−
VDD_DDR
K17
-
IC
F1
−
G
H22
−
VDD_DDR
K20
M
AB0_A24
F2
−
G
H23
−
VDD_DDR
K21
M
AB0_A23
F3
−
G
H24
−
VDD_DDR
K22
M
AB0_A22
F4
−
G
J1
D
NTS_DATA1
K23
M
AB0_A21
F5
D
GIO_P7
J2
D
NTS_DATA2
K24
M
AB0_A20
F6
−
G
J3
D
NTS_DATA3
L1
D
SD1_DATA1
F20
J
LCD_R0
J4
D
NTS_DATA4
L2
D
SD1_DATA2
F21
M
AB0_CSB3
J5
D
NTS_DATA6
L3
D
SD1_DATA3
J8
−
G
L4
D
SD0_CMD
J9
−
G
L5
D
SD0_DATA0
J10
−
L8
−
G
J11
−
L9
−
G
J12
−
L10
−
G
J13
−
L11
−
G
G
F22
M
F23
−
F24
−
G1
−
G2
−
G3
−
G4
−
VDD_DDR
J14
−
G
L12
−
G5
D
GIO_P8
J15
−
G
L13
−
G
G20
M
AB0_CSB1
J16
−
G
L14
−
G
G21
−
G
J17
−
G
L15
−
G
G22
−
G
J20
M
AB0_WAIT
L16
-
G
G23
−
G
J21
M
AB0_BEN1
L17
−
G
G24
−
G
J22
M
AB0_BEN0
L20
M
AB0_A19
H1
C
NTS_CLK
J23
M
AB0_A26
L21
−
V
H2
D
NTS_VS
J24
M
AB0_A25
L22
−
V
H3
D
NTS_HS
K1
C
SD1_CKI
L23
−
VIO18
H4
D
NTS_DATA0
K2
D
SD1_CMD
L24
−
VIO18
M1
−
VIO3
M2
−
VIO3
M3
−
VIO3
−
VIO3
H5
H8
H9
D
D
D
H10
D
H11
−
H12
H13
Remark
Q
C
AB0_CSB2
V
V
VDDQ_DDR
VDDQ_DDR
VDD_DDR
NTS_DATA5
SP0_CS1
PM0_SO
ERR_RST_REQB
G
TE1
A_RESETB
K3
K4
D
D
G
G
G
G
SD1_CKO
SD1_DATA0
K5
D
K8
−
NTS_DATA7
G
M4
K9
−
G
M5
D
SD0_DATA1
K10
-
M8
-
G
K11
-
M9
-
G
G
G
IC : Internally-connected pins (Leave open)
Data Sheet R19DS0008EJ0700
7
MC-10118B
(3/5)
Pin No.
Type
M10
−
M11
−
M12
−
M13
−
M14
Pin No.
Type
Pin No.
Type
Pin Name
P8
−
P9
−
G
T4
D
SD2_DATA2
G
P10
−
G
T5
D
GIO_P10
G
T8
−
G
P11
−
G
G
T9
−
G
−
G
P12
−
G
T10
−
G
M15
−
G
P13
−
G
T11
−
G
M16
−
G
P14
−
G
T12
−
IC
M17
−
G
P15
−
G
T13
−
IC
M20
M
AB0_A18
P16
−
G
T14
−
G
M21
−
G
P17
−
G
T15
−
G
M22
−
G
P20
M
AB0_WRB
T16
-
G
M23
−
G
P21
M
AB0_RDB
T17
-
G
M24
−
G
P22
P
AB0_AD15
T20
P
AB0_AD8
N1
−
G
P23
P
AB0_AD14
T21
P
AB0_AD7
N2
−
G
P24
P
AB0_AD13
T22
P
AB0_AD6
N3
−
G
R1
C
SD0_CKI
T23
P
AB0_AD5
N4
−
G
R2
D
SD0_DATA2
T24
P
AB0_AD4
N5
−
U1
−
V
N8
−
U2
−
V
N9
−
U3
−
V
N10
−
V
N11
−
N12
−
N13
G
G
G
G
G
R3
R4
D
D
Pin Name
SD0_DATA3
SD2_CMD
R5
D
G
R8
−
G
U4
−
G
R9
−
G
U5
−
V
G
R10
−
G
U8
−
G
−
G
R11
−
G
U9
−
G
N14
−
G
R12
−
G
U10
−
G
N15
-
G
R13
−
G
U11
−
G
N16
-
G
R14
−
G
U12
−
IC
N17
-
G
R15
−
G
U13
−
IC
N20
M
AB0_A17
R16
-
G
U14
−
IC
N21
−
VDD_DDR
R17
-
G
U15
-
IC
N22
−
VDD_DDR
R20
P
AB0_AD12
U16
-
IC
N23
−
VDD_DDR
R21
P
AB0_AD11
U17
-
G
N24
−
VDD_DDR
R22
P
AB0_AD10
U20
P
AB0_AD3
P1
−
U21
−
V
P2
−
U22
−
V
P3
−
U23
−
VIO18
P4
−
U24
−
VIO18
P5
−
V1
-
G
Remark
8
Pin Name
VDD_DDR
VDD_DDR
VDDQ_DDR
VDDQ_DDR
VDDQ_DDR
R23
R24
T1
T2
T3
P
J
D
D
D
GIO_P9
AB0_AD9
AB0_CLK
SD0_CKO
SD2_DATA0
SD2_DATA1
IC : Internally-connected pins (Leave open)
Data Sheet R19DS0008EJ0700
MC-10118B
(4/5)
Pin No.
Type
Pin No.
Type
V2
−
AB12
−
V3
−
IC
AB13
−
V4
−
IC
USB_STP
AB14
−
G
Y23
G
V5
−
G
Y24
G
IC
USB_CLK
AB15
−
G
V20
P
AB0_AD2
AA1
C
SD2_CKI
AB16
−
IC
V21
−
G
AA2
D
SD2_DATA3
AB17
−
IC
V22
−
G
AA3
−
IC
AB18
−
VIO18
V23
−
G
AA4
−
IC
AB19
−
G
V24
−
G
AA5
−
IC
AB20
−
IC
W1
−
VDDQ_DDR
AA6
−
G
AB21
G
USB_DATA4
W2
−
VDDQ_DDR
AA7
−
IC
AB22
G
USB_DIR
W3
−
VDD_DDR
AA8
−
IC
AB23
G
USB_DATA3
W4
−
VDD_DDR
AA9
−
IC
AB24
−
G
AA10
−
AC1
−
G
AA11
−
AC2
−
G
AA12
−
AC3
−
IC
AA13
−
AC4
−
IC
AA14
−
AC5
−
V
AA15
−
AC6
−
G
AA16
−
AC7
−
VIO18
IC
W5
-
Pin Name
G
G
IC
AB0_AD1
Pin No.
Type
Y21
P
Y22
G
Pin Name
AB0_AD0
AB0_ADV
G
W20
P
W21
−
W22
−
W23
−
W24
−
Y1
−
Y2
−
VIO3
AA17
−
IC
AC8
−
Y3
−
VIO3
AA18
−
VIO18
AC9
−
IC
Y4
−
VIO3
AA19
−
G
AC10
−
G
Y5
−
IC
AA20
−
IC
AC11
−
VIO18
Y6
−
IC
AA21
G
USB_DATA7
AC12
−
IC
Y7
−
IC
AA22
G
USB_DATA6
AC13
−
IC
Y8
−
IC
AA23
G
USB_DATA5
AC14
−
IC
Y9
−
IC
AA24
G
USB_NXT
AC15
−
G
Y10
−
IC
AB1
−
G
AC16
−
IC
Y11
−
V
AB2
D
SD2_CKO
AC17
−
IC
Y12
−
IC
AB3
−
IC
AC18
−
V
Y13
−
AB4
−
AC19
−
G
Y14
−
AB5
−
IC
AC20
−
IC
Y15
−
AB6
−
G
AC21
G
USB_DATA1
Y16
−
AB7
−
VIO18
AC22
G
USB_DATA2
Y17
−
AB8
−
AC23
−
G
Y18
−
AB9
−
AC24
−
G
Y19
−
AB10
−
AD1
−
G
Y20
−
AB11
−
AD2
−
G
VDD_DDR
VDD_DDR
VDD_DDR
VDD_DDR
VIO3
IC
IC
IC
IC
IC
IC
IC
IC
V
Pin Name
IC
IC
IC
G
IC
IC
IC
IC
G
VIO18
Data Sheet R19DS0008EJ0700
9
MC-10118B
(5/5)
Pin No.
Type
AD3
−
G
AD4
−
IC
AD5
−
V
AD6
−
G
AD7
−
VIO18
AD8
−
IC
AD9
−
IC
AD10
−
G
AD11
−
VIO18
AD12
−
IC
AD13
−
IC
AD14
−
IC
AD15
−
G
AD16
−
IC
AD17
−
IC
AD18
−
V
AD19
−
G
AD20
-
IC
AD21
G
USB_DATA0
AD22
-
G
AD23
-
G
AD24
-
G
10
Pin Name
Data Sheet R19DS0008EJ0700
MC-10118B
CONTENTS
1. PIN FUNCTIONS ...................................................................................................................................12
1.1 Pin Configuration ........................................................................................................................12
1.2 Pin Functions ..............................................................................................................................13
1.3 I/O Circuits ...................................................................................................................................27
2. ELECTRICAL SPECIFICATIONS .........................................................................................................31
2.1 Absolute Maximum Ratings .......................................................................................................31
2.2 Recommended Operating Conditions ......................................................................................31
2.3 Capacitance .................................................................................................................................32
2.4 DC Characteristics ......................................................................................................................33
2.5 AC Characteristics ......................................................................................................................36
3. PACKAGE DRAWING...........................................................................................................................60
Data Sheet R19DS0008EJ0700
11
MC-10118B
1. PIN FUNCTIONS
1.1
Pin Configuration
16
10
2
External bus interface
4
AB0_CLK
BOOTSEL[3:0]
AB0_AD[15:0]
4
DET1
A_RESETB
C32K
REFCLKO
PLL2OUT
OSC12M_OUT
ERR_RST_REQB
OSC12M_CKI
AB0_A[26:17]
AB0_BEN[1:0]
AB0_CSB[3:0]
AB0_WAIT
AB0_WRB
AB0_RDB
AB0_ADV
System interface
OSC12M_CKO
LCD_PXCLK
x:0~1
SPI interface
x:0~2
3
SP0_CS[2:0]
SP1_CS[5:0]
SP2_CS0
DTV_BCLK
DTV_DATA
DTV_PSYNC
DTV_VLD
Terrestrial digital TV interface
NTS_CLK
NTS_VS
NTS_HS
ITU-R BT.656 interface
8
NTS_DATA[7:0]
SDx_CKO
SDx_CMD
SD interface
4
8
NAND Flash interface
4
4
12
LCD_B[5:0]
LCD_HSYNC
LCD_VSYNC
LCD_ENABLE
6
6
LCD interface
6
USB_CLK
EM1-D512
USB_DATA[7:0]
USB_DIR
USB_STP
USB_NXT
USB_WAKEUP
USB_PWR_FAULTZ
8
USB interface
IIC_SCL
IIC_SDA
IIC2_SCL
IIC2_SDA
IIC interface
URTx_SRIN
URTx_SOUT
URT0_CTSB
URT0_RTSB
URT2_RTSB
URT2_CTSB
SDx_DATA[3:0]
SDx_CKI
NAND_ALE
NAND_CLE
JTAG pins
LCD_G[5:0]
SPx_CLK
SPx_SI
SPx_SO
6
x:0~2
LCD_R[5:0]
PMx_CLK
PMx_SEN
PMx_SI
PMx_SO
Audio/Voice interface
UART interface
x:0~2
PWM interface
x:0~1
PWMx
GIO_P[117:0]
118
MWI_SK
MWI_SI
MWI_SO
MWI_CS
NAND_D[7:0]
NAND_OE
NAND_WE
General-purpose I/O interface
MICROWIRE interface
NAND_RB[3:0]
NAND_CE[3:0]
DEBUG_EN
JT0_TCK
JT0_TRSTB
JT0_TMS
JT0_TDI
JT0_TDO
JT0_RTCK
CAM_SCLK
CAM_YUV[7:0]
CAM_VS
CAM_HS
CAM_CLKI
UTEST
TESTRSTB
TRSTB
TE1
TE2
Data Sheet R19DS0008EJ0700
8
Camera interface
Test pins
MC-10118B
1.2
Pin Functions
(1) Boot select signals (VIO18)
Pin Name
Pin No.
I/O
Function
Alternate Pin
Type
Function
Handling When
Not Used
BOOTSEL3
E12
Input
Boot mode selection 3

E

BOOTSEL2
D12
Input
Boot mode selection 2

E

BOOTSEL1
C12
Input
Boot mode selection 1

E

BOOTSEL0
E13
Input
Boot mode selection 0

E

Alternate Pin
Type
Handling When
(2) System control signals (VIO3 / VIO18)
Pin Name
Pin No.
I/O
Function
Function
Not Used
Power-on reset

A
Input
System reset

C
.
Input
Reference clock (32.768 kHz)

B
−.
PLL2OUT
D
Leave open.
D
Leave open.
D
Leave open.
DET1
B17
Input
A_RESETB
H13
C32K
A9
REFCLKO
A16
Output
Reference clock

OSC12M_OUT
PLL2OUT
A16
Output
Internal PLL2 output
REFCLKO
OSC12M_OUT
OSC12M_OUT
A16
Output
Internal OSC output
REFCLKO
ERR_RST_REQB
H10
Output
Error reset request

D
Leave open.
A18
Input
OSC XT1

Z
Leave open.
A17
Output
OSC XT2

Z
Leave open.
PLL2OUT
OSC12M_CKI
NOTE
OSC12M_CKO
Note
NOTE
VIO18
Data Sheet R19DS0008EJ0700
13
MC-10118B
(3) External bus interface signals (VIO18)
Pin Name
Pin No.
I/O
Function
Alternate Pin
Type
Function
AB0_CLK
R24
Output
Clock
GIO_P11
Handling When
Not Used
J
Leave open.
NTS_CLK
AB0_AD[15:0]
P22, P23, P24,
I/O
Data
GIO_P[27:12]
P
Leave open.
Output
Address
GIO_P[37:31]
M
Leave open.
M
Leave open.
M
Leave open
M
Leave open
R20, R21, R22,
R23, T20, T21,
T22, T23, T24,
U20, V20, W20,
Y21
AB0_A[26:20]
J23, J24, K20, K21,
K22, K23, K24
AB0_A[19:17]
L20, M20, N20
AB0_A[10:4]
Output
Address
GIO_P[30:28]
NTS_DATA[2:0]
AB0_A[3:1]
AB0_A[10:4]
J23, J24, K20, K21,
Output
Address
K22, K23, K24
AB0_A[3:1]
L20, M20, N20
GIO_P[37:31]
AB0_A[26:20]
Output
Address
GIO_P[30:28]
NTS_DATA[2:0]
AB0_A[19:17]
AB0_BEN[1:0]
J21, J22
Output
Byte enable
GIO_P[47:46]
M
Leave open.
AB0_CSB3
F21
Output
Chip select
GIO_P45
M
Leave open.
M
Leave open.
M
Leave open.
M
Leave open.
M
Leave open.
M
Leave open.
M
Leave open.
G
Leave open.
NTS_HS
AB0_CSB2
F22
Output
Chip select
GIO_P44
NTS_VS
AB0_CSB1
G20
Output
Chip select
GIO_P43
NTS_DATA7
AB0_CSB0
H20
Output
Chip select
GIO_P42
NTS_DATA6
AB0_WAIT
J20
Input
Wait
GIO_P41
NTS_DATA5
AB0_WRB
P20
Output
Write strobe
GIO_P40
NTS_DATA4
AB0_RDB
P21
Output
Read strobe
GIO_P39
NTS_DATA3
AB0_ADV
14
Y22
Output
Address enable
Data Sheet R19DS0008EJ0700
GIO_P38
MC-10118B
(4) Audio interface signals (VIO3)
Pin Name
Pin No.
I/O
Function
Alternate Pin
Type
Function
PM0_CLK
A8
I/O
PM0_SEN
D9
I/O
Handling When
Not Used
PCM0 clock (default input)

C
Leave open.
PCM0 frame synchronization (default

D
Leave open.
input)
PM0_SI
E10
Input
PCM0 data
GIO_P87
D
Leave open.
PM0_SO
H9
Output
PCM0 data

D
Leave open.
PM1_CLK
H1
I/O
PCM1 clock (default input)
GIO_P72
C
Leave open.
PM1_SEN
H5
I/O
PCM1 frame synchronization (default
GIO_P80
D
Leave open.
input)
NTS_DATA5
D
Leave open.
D
Leave open.
NTS_CLK
SP1_CS4
PM1_SI
J5
Input
PCM1 data
GIO_P81
NTS_DATA6
SP1_CS5
PM1_SO
K5
Output
PCM1 data
GIO_P82
NTS_DATA7
(5) Camera interface signals (VIO3)
Pin Name
Pin No.
I/O
Function
Alternate Pin Function
Type
Handling When
Not Used
CAM_SCLK
E6
Output
Camera clock
GIO_P5, NAND_RB2
D
Leave open.
CAM_CLKI
K1
Input
Camera interface
GIO_P92, SD1_CKI
C
Leave open.
CAM_YUV7
L1
Input
Camera interface
SD1_DATA1
D
Leave open.
CAM_YUV6
K4
Input
Camera interface
SD1_DATA0
D
Leave open.
CAM_YUV5
K2
Input
Camera interface
SD1_CMD
D
Leave open.
CAM_YUV4
J4
Input
Camera interface
NTS_DATA4, SP1_CS3
D
Leave open.
D
Leave open.
D
Leave open.
D
Leave open
D
Leave open
GIO_P79
CAM_YUV3
J3
Input
Camera interface
NTS_DATA3, SP1_CS2
GIO_P78
CAM_YUV2
J2
Input
Camera interface
NTS_DATA2, SP1_CS1
GIO_P77
CAM_YUV1
J1
Input
Camera interface
NTS_DATA1, SP1_CS0
GIO_P76
CAM_YUV0
H4
Input
Camera interface
NTS_DATA0, SP1_SO
GIO_P75
CAM_HS
L3
Input
Camera interface
SD1_DATA3
D
Leave open
CAM_VS
L2
Input
Camera interface
SD1_DATA2
D
Leave open
Data Sheet R19DS0008EJ0700
15
MC-10118B
(6) SPI interface signals (VIO3)
Pin Name
Pin No.
I/O
Function
Alternate Pin
Type
Function
Handling When
Not Used
SP0_CLK
B8
I/O
SPI0 clock output
MWI_SK
D
Leave open.
SP0_SI
C8
Input
SPI0 data
MWI_SI
D
Leave open.
SP0_SO
D8
Output
SPI0 data
MWI_SO
D
Leave open.
SP0_CS0
E9
I/O
SPI0 chip select
MWI_CS
D
Leave open.
SP0_CS[2:1]
E8, H8
Output
SPI0 chip select
GIO_P[49:48]
D
Leave open.
SP1_CLK
H2
I/O
SPI1 clock input
GIO_P73
D
Leave open.
D
Leave open.
D
Leave open.
D
Leave open.
D
Leave open.
D
Leave open.
D
Leave open.
NTS_VS
SP1_SI
H3
Input
SPI1 data
GIO_P74
NTS_HS
SP1_SO
H4
Output
SPI1 data
GIO_P75
NTS_DATA0
CAM_YUV0
SP1_CS5
J5
Output
SPI1 chip select
GIO_P81
NTS_DATA6
PM1_SI
SP1_CS4
H5
Output
SPI1 chip select
GIO_P80
NTS_DATA5
PM1_SEN
SP1_CS[3:1]
J4, J3, J2
Output
SPI1 chip select
GIO_P[79:77]
NTS_DATA[4:2]
CAM_YUV[4:2]
SP1_CS0
J1
I/O
SPI1 chip select
GIO_P76
NTS_DATA1
CAM_YUV1
SP2_CLK
D1
I/O
SPI2 clock input
DTV_BCLK
C
Leave open.
SP2_SI
C2
Input
SPI2 data
DTV_DATA
D
Leave open.
SP2_SO
D2
Output
SPI2 data
DTV_PSYNC
D
Leave open.
SP2_CS0
D3
I/O
SPI2 chip select
DTV_VLD
D
Leave open.
(7) Terrestrial digital TV interface signals (VIO3)
Pin Name
Pin No.
I/O
Function
Alternate Pin
Type
Function
Handling When
Not Used
DTV_BCLK
D1
Input
Clock
SP2_CLK
C
Leave open.
DTV_DATA
C2
Input
YUV data
SP2_SI
D
Leave open.
DTV_PSYNC
D2
Input
Vertical synchronization
SP2_SO
D
Leave open.
DTV_VLD
D3
Input
Horizontal synchronization
SP2_CS0
D
Leave open.
16
Data Sheet R19DS0008EJ0700
MC-10118B
(8) LCD interface signals (VIO18)
Pin Name
Pin No.
I/O
Function
Alternate Pin
Type
Function
Handling When
Not Used
LCD_PXCLK
D24
Output
Pixel clock
GIO_P50
J
Leave open.
LCD_R[5:0]
D22, D23, E22,
Output
Red data
GIO_P[56:51]
J
Leave open.
Output
Green data
GIO_P[62:57]
J
Leave open.
Output
Blue data
GIO_P[68:63]
J
Leave open.
Horizontal
GIO_P69
J
Leave open.
E23, E24, F20
LCD_G[5:0]
E21, D21, C21,
C22, B22, C23
LCD_B[5:0]
E19, D19, C19,
E20, D20, C20
LCD_HSYNC
B18
Output
synchronization
LCD_VSYNC
C18
Output
Vertical synchronization
GIO_P70
J
Leave open.
LCD_ENABLE
D18
Output
Data enable
GIO_P71
J
Leave open.
(9) USB interface signals (VIO18 / VIO3)
Pin Name
Pin No.
I/O
Function
Alternate Pin
Type
Function
Handling When
Not Used
USB_CLK
Y24
Input
Clock
GIO_P96
G
Leave open.
USB_DATA[7:0]
AA21, AA22,
I/O
USB data
GIO_P[104:97]
G
Leave open.
AA23, AB21,
AB23, AC22,
AC21, AD21
USB_DIR
AB22
Input
USB DIR input
GIO_P105
G
Leave open.
USB_STP
Y23
Output
USB STOP output
GIO_P106
G
Leave open.
AA24
Input
USB NXT input
GIO_P107
G
Leave open.
H14
Output
Suspend wakeup
GIO_P1
D
Leave open.
D
Leave open.
USB_NXT
USB_WAKEUP
NOTE
USB_PWR_FAULT
USB_PWR_FAULT
NOTE
H14
Input
Power fault
GIO_P1
USB_WAKEUP
Note
VIO3
Data Sheet R19DS0008EJ0700
17
MC-10118B
(10) ITU-R BT.656 interface signals (VIO3 / VIO18)
Pin Name
Pin No.
I/O
Function
Alternate Pin Function
Type
Handling When
Not Used
NTS_CLK
H1
Input
R24
NTS_VS
H2
Output
H3
Output
K5
Output
NTSC data
Note
G20
NTS_DATA6
Horizontal synchronization
Note
F21
NTS_DATA7
Vertical synchronization
Note
F22
NTS_HS
Clock
Note
J5
Output
NTSC data
GIO_P72, PM1_CLK
C
Leave open.
AB0_CLK, GIO_P11
J
Leave open
GIO_P73, SP1_CLK
D
Leave open.
AB0_CSB2, GIO_P44
M
Leave open.
GIO_P74, SP1_SI
D
Leave open.
AB0_CSB3, GIO_P45
M
Leave open.
GIO_P82, PM1_SO
D
Leave open.
AB0_CSB1, GIO_P43
M
Leave open
GIO_P81, SP1_CS5
D
Leave open.
AB0_CSB0, GIO_P42
M
Leave ope
GIO_P80, SP1_CS4
D
Leave open.
AB0_WAIT, GIO_P41
M
Leave open.
GIO_P79, SP1_CS3
D
Leave open.
PM1_SI
Note
H20
NTS_DATA5
H5
Output
NTSC data
PM1_SEN
J20
NTS_DATA4
Note
J4
Output
NTSC data
CAM_YUV4
P20
NTS_DATA3
Note
J3
Output
NTSC data
AB0_WRB, GIO_P40
M
Leave open.
GIO_P78, SP1_CS2
D
Leave open.
AB0_RDB, GIO_P39
M
Leave open
GIO_P77, SP1_CS1
D
Leave open.
M
Leave open
D
Leave open.
M
Leave ope
D
Leave open.
M
Leave open.
CAM_YUV3
P21
NTS_DATA2
Note
J2
Output
NTSC data
CAM_YUV2
L20
Note
AB0_A3, AB0_A19,
GIO_P30
NTS_DATA1
J1
Output
NTSC data
GIO_P76, SP1_CS0
CAM_YUV1
M20
Note
AB0_A2, AB0_A18,
GIO_P29
NTS_DATA0
H4
Output
NTSC data
GIO_P75, SPI_SO
CAM_YUV0
N20
Note
AB0_A1, AB0_A17,
GIO_P28
Note
18
VIO18
Data Sheet R19DS0008EJ0700
MC-10118B
(11) IIC interface signals (VIO3)
Pin Name
Pin No.
I/O
Function
Alternate Pin Function
Type
Handling When
Not Used
IIC_SCL
D10
Output
Serial clock input
GIO_P83
C
Leave open.
IIC_SDA
C10
I/O
Serial data input
GIO_P84
C
Leave open.
IIC2_SCL
C9
Output
Serial clock input
NAND_WE
C
Leave open.
IIC2_SDA
B9
I/O
Serial data input
NAND_RB0
C
Leave open.
(12) UART interface signals (VIO3)
Pin Name
Pin No.
I/O
Function
Alternate Pin
Type
Function
Handling When
Not Used
URT0_SRIN
A5
Input
Serial data

D
Leave open.
URT0_SOUT
B5
Output
Serial data

D
Leave open.
URT0_CTSB
D5
Input
Data transmission/reception ready in
GIO_P85
D
Leave open.
destination device
URT1_SRIN
Data transmission/reception ready
GIO_P86
D
Leave open.
D
Leave open.
D
Leave open.
D
Leave open.
D
Leave open.
D
Leave open.
D
Leave open.
URT0_RTSB
C5
Output
URT1_SOUT
URT1_SRIN
D5
Input
Serial data
GIO_P85
URT0_CTSB
URT1_SOUT
C5
Output
Serial data
GIO_P86
URT2_SRIN
C3
Input
Serial data
GIO_P108
URT0_RTSB
NAND_ALE
URT2_SOUT
B3
Output
Serial data
GIO_P109
NAND_CLE
URT2_CTSB
URT2_RTSB
D4
C4
Input
Output
Data transmission/reception ready in
GIO_P110
destination device
NAND_D0
Data transmission/reception ready
GIO_P111
NAND_D1
Data Sheet R19DS0008EJ0700
19
MC-10118B
(13) Memory card interface signals (VIO3)
Pin Name
Pin No.
I/O
Function
Alternate Pin
Type
Function
Handling When
Not Used
SD0_CKO
T1
Output
Clock
−
D
Leave open.
SD0_CMD
L4
I/O
Command response
−
D
Leave open.
SD0_DATA[3:1]
R3, R2,
I/O
Data
D
Leave open.
D
Leave open.
GIO_P91
C
Leave open.

D
Leave open.
GIO_P[90:88]
M5
−
SD0_DATA0
L5
I/O
Data
SD0_CKI
R1
Input
Loop back
SD1_CKO
K3
Output
Clock
SD1_CMD
K2
I/O
Command response
CAM_YUV5
D
Leave open.
SD1_DATA3
L3
I/O
Data
CAM_HS
D
Leave open.
SD1_DATA2
L2
I/O
Data
CAM_VS
D
Leave open.
SD1_DATA1
L1
I/O
Data
CAM_YUV7
D
Leave open.
SD1_DATA0
K4
I/O
Data
CAM_YUV6
D
Leave open.
SD1_CKI
K1
Input
Loop back
GIO_P92
C
Leave open.
D
Leave open.
D
Leave open.
D
Leave open.
C
Leave open.
CAM_CLKI
SD2_CKO
AB2
Output
Clock
GIO_P112
NAND_D2
SD2_CMD
R4
I/O
Command response
GIO_P113
NAND_D3
SD2_DATA[3:0]
AA2, T4,
I/O
Data
GIO_P[117:114]
T3, T2
SD2_CKI
AA1
NAND_D[7:4]
Input
Loop back
GPIO_P93
NAND_OE
(14) PWM interface signals (VIO3)
Pin Name
Pin No.
I/O
Function
Alternate Pin
Type
Function
Handling When
Not Used
PWM0
A4
Output
PWM output
GIO_P94
D
Leave open.
PWM1
B4
Output
PWM output
GIO_P95
D
Leave open.
20
Data Sheet R19DS0008EJ0700
MC-10118B
(15) General-purpose I/O interface signals (VIO18 / VIO3)
(1/3)
Pin Name
Pin No.
I/O
Function
Alternate Pin
Type
Function
GIO_P[117:114]
AA2, T4, T3, T2
I/O
General-purpose IO
SD2_DATA[3:0]
Handling When
Not Used
D
Leave open.
D
Leave open.
D
Leave open.
D
Leave open.
D
Leave open.
D
Leave open.
D
Leave open.
NAND_D[7:4]
GIO_P113
R4
I/O
General-purpose IO
SD2_CMD
NAND_D3
GIO_P112
AB2
I/O
General-purpose IO
SD2_CKO
NAND_D2
GIO_P111
C4
I/O
General-purpose IO
URT2_RTSB
NAND_D1
GIO_P110
D4
I/O
General-purpose IO
URT2_CTSB
GIO_P109
B3
I/O
General-purpose IO
URT2_SOUT
NAND_D0
NAND_CLE
GIO_P108
C3
I/O
General-purpose IO
URT2_SRIN
NAND_ALE
GIO_P107
Note
AA24
I/O
General-purpose IO
USB_NXT
G
Leave open.
GIO_P106
Note
Y23
I/O
General-purpose IO
USB_STP
G
Leave open.
GIO_P105
Note
AB22
I/O
General-purpose IO
USB_DIR
G
Leave open.
AA21, AA22,
I/O
General-purpose IO
USB_DATA[7:0]
G
Leave open.
Y24
I/O
General-purpose IO
USB_CLK
G
Leave open.
GIO_P[95:94]
B4, A4
I/O
General-purpose IO
PWM[1:0]
D
Leave open.
GIO_P93
AA1
I/O
General-purpose IO
SD2_CKI
C
Leave open.
GIO_P92
K1
I/O
General-purpose IO
C
Leave open.
GIO_P[104:97]
Note
AA23, AB21,
AB23, AC22,
AC21, AD21
GIO_P96
Note
NAND_OE
SD1_CKI
CAM_CLKI
GIO_P91
R1
I/O
General-purpose IO
SD0_CKI
C
Leave open.
GIO_P[90:88]
R3, R2, M5
I/O
General-purpose IO
SD0_DATA[3:1]
D
Leave open.
GIO_P87
E10
I/O
General-purpose IO
PM0_SI
D
Leave open.
GIO_P86
C5
I/O
General-purpose IO
URT0_RTSB
D
Leave open.
D
Leave open.
URT1_SOUT
GIO_P85
D5
I/O
General-purpose IO
URT0_CTSB
URT1_SRIN
GIO_P84
C10
I/O
General-purpose IO
IIC_SDA
C
Leave open.
GIO_P83
D10
I/O
General-purpose IO
IIC_SCL
C
Leave open.
Data Sheet R19DS0008EJ0700
21
MC-10118B
(2/3)
Pin Name
Pin No.
I/O
Function
Alternate Pin
Type
Function
GIO_P82
K5
I/O
General-purpose IO
NTS_DATA7
Handling When
Not Used
D
Leave open.
D
Leave open.
D
Leave open.
D
Leave open.
D
Leave open.
D
Leave open.
D
Leave open.
C
Leave open.
PM1_SO
GIO_P81
J5
I/O
General-purpose IO
NTS_DATA6
SP1_CS5
PM1_SI
GIO_P80
H5
I/O
General-purpose IO
NTS_DATA5
SP1_CS4
PM1_SEN
GIO_P[79:76]
J4, J3, J2, J1
I/O
General-purpose IO
NTS_DATA[4:1]
SP1_CS[3:0]
CAM_YUV[4:1]
GIO_P75
H4
I/O
General-purpose IO
NTS_DATA0
SP1_SO
CAM_YUV0
GIO_P74
H3
I/O
General-purpose IO
NTS_HS
SP1_SI
GIO_P73
H2
I/O
General-purpose IO
NTS_VS
SP1_CLK
GIO_P72
H1
I/O
General-purpose IO
NTS_CLK
PM1_CLK
GIO_P71
Note
D18
I/O
General-purpose IO
LCD_ENABLE
J
Leave open.
GIO_P70
Note
C18
I/O
General-purpose IO
LCD_VSYNC
J
Leave open.
GIO_P69
Note
B18
I/O
General-purpose IO
LCD_HSYNC
J
Leave open.
E19, D19, C19,
I/O
General-purpose IO
LCD_B[5:0]
J
Leave open.
I/O
General-purpose IO
LCD_G[5:0]
J
Leave open.
I/O
General-purpose IO
LCD_R[5:0]
J
Leave open.
GIO_P[68:63]
Note
GIO_P[62:57]
Note
GIO_P[56:51]
Note
E20, D20, C20
E21, D21, C21,
C22, B22, C23
D22, D23, E22,
E23, E24, F20
GIO_P50
Note
D24
I/O
General-purpose IO
LCD_PXCLK
J
Leave open.
GIO_P[49:48]
Note
E8, H8
I/O
General-purpose IO
SP0_CS[2:1]
D
Leave open.
GIO_P[47:46]
Note
J21,J22
I/O
General-purpose IO
AB0_BEN[1:0]
M
Leave open.
F21
I/O
General-purpose IO
AB0_CSB3
M
Leave open.
M
Leave open.
M
Leave open.
M
Leave open.
GIO_P45
Note
GIO_P44
Note
GIO_P43
Note
NTS_HS
F22
I/O
General-purpose IO
AB0_CSB2
NTS_VS
G20
I/O
General-purpose IO
AB0_CSB1
NTS_DATA7
GIO_P42
Note
H20
I/O
General-purpose IO
AB0_CSB0
NTS_DATA6
22
Data Sheet R19DS0008EJ0700
MC-10118B
(3/3)
Pin Name
Pin No.
I/O
Function
Alternate Pin
Type
Function
GIO_P41
Note
GIO_P40
Note
J20
I/O
General-purpose IO
AB0_WAIT
Handling When
Not Used
M
Leave open.
M
Leave open.
M
Leave open.
NTS_DATA5
P20
I/O
General-purpose IO
AB0_WRB
NTS_DATA4
GIO_P39
Note
GIO_P38
Note
P21
I/O
General-purpose IO
AB0_RDB
NTS_DATA3
GIO_P[37:31]
Note
Y22
I/O
General-purpose IO
AB0_ADV
G
Leave open.
J23, J24, K20,
I/O
General-purpose IO
AB0_A[26:20]
M
Leave open.
M
Leave open.
AB0_AD[15:0]
P
Leave open.
AB0_CLK
J
Leave open.
K21, K22, K23,
AB0_A[10:4]
K24
GIO_P[30:28]
Note
L20, M20, N20
I/O
General-purpose IO
AB0_A[19:17]
NTS_DATA[2:0]
AB0_A[3:1]
GIO_P[27:12]
Note
P22, P23, P24,
I/O
General-purpose IO
I/O
General-purpose IO
R20, R21, R22,
R23, T20, T21,
T22, T23, T24,
U20, V20, W20,
Y21
GIO_P11
Note
R24
NTS_CLK
GIO_P[10:7]
T5, R5, G5, F5
I/O
General-purpose IO
NAND_CE[3:0]
D
Leave open.
GIO_P6
E5
I/O
General-purpose IO
NAND_RB3
D
Leave open.
GIO_P5
E6
I/O
General-purpose IO
NAND_RB2
D
Leave open.
D
Leave open.
D
Leave open.
D
Leave open.
D
Leave open.
CAM_SCLK
GIO_P4
E7
I/O
General-purpose IO
GIO_P[3:2]
D13, C13
I/O
General-purpose IO
GIO_P1
H14
I/O
General-purpose IO
NAND_RB1

USB_WAKEUP
USB_PWR_FAUL
T
GIO_P0
Note
E14
I/O
General-purpose IO

VIO18
Data Sheet R19DS0008EJ0700
23
MC-10118B
(16) MICROWIRE interface signals (VIO3)
Pin Name
Pin No.
I/O
Function
Alternate Pin
Type
Function
Handling When
Not Used
MWI_SK
B8
Output
Clock
SP0_CLK
D
Leave open.
MWI_SI
C8
Input
Data
SP0_SI
D
Leave open.
MWI_SO
D8
Output
Data
SP0_SO
D
Leave open.
MWI_CS
E9
Output
Chip select
SP0_CS0
D
Leave open.
Type
Handling When
(17) NAND Flash interface signals (VIO3)
Pin Name
Pin No.
I/O
Function
Alternate Pin
Function
NAND_ALE
C3
Output
Address latch enable
URT2_SRIN
Not Used
D
Leave open.
D
Leave open.
D
Leave open.
D
Leave open.
D
Leave open.
D
Leave open.
D
Leave open.
C
Leave open.
GIO_P108
NAND_CLE
B3
Output
Command latch enable
URT2_SOUT
GIO_P109
NAND_D[7:4]
AA2, T4
I/O
Data
SD2_DATA[3:0]
T3, T2
NAND_D3
R4
GIO_P[117:114]
I/O
Data
SD2_CMD
GIO_P113
NAND_D2
AB2
I/O
Data
SD2_CKO
GIO_P112
NAND_D1
C4
I/O
Data
URT2_RTSB
GIO_P111
NAND_D0
D4
I/O
Data
URT2_CTSB
GIO_P110
NAND_OE
AA1
Output
Output enable
SD2_CKI
GIO_P93
NAND_WE
C9
Output
Write enable
IIC2_SCL
C
Leave open.
NAND_RB0
B9
Input
Ready busy
IIC2_SDA
C
Leave open.
NAND_RB3
E5
Input
Ready busy
GIO_P6
D
Leave open.
NAND_RB2
E6
Input
Ready busy
GIO_P5
D
Leave open.
CAM_SCLK
NAND_RB1
E7
Input
Ready busy
GIO_P4
D
Leave open.
NAND_CE[3:0]
T5, R5,
Output
Chip enable
GIO_P[10:7]
D
Leave open.
G5, F5
24
Data Sheet R19DS0008EJ0700
MC-10118B
(18) JTAG signals (VIO18 / VIO3)
Pin Name
Pin No.
I/O
Function
Alternate Pin
Type
Function
Note
Handling When
Not Used
H16
Input
JTAG

J
Leave open.
JT0_TCK
E16
Input
JTAG

C
Leave open.
JT0_TRSTB
D17
Input
JTAG

C
Leave open.
JT0_TMS
B16
Input
JTAG

D
Leave open.
JT0_TDI
C16
Input
JTAG

D
Leave open.
JT0_TDO
D16
Output
JTAG

D
Leave open.
JT0_RTCK
C17
Output
JTAG

D
Leave open.
Alternate Pin
Type
DEBUG_EN
VIO18
Note
(19) Test signals (VIO18)
Pin Name
Pin No.
I/O
Function
Function
Handling When
Not Used
UTEST
H17
Input
Test pin (usually fixed to 0)

E
“L” level hold.
TESTRSTB
E17
Input
Asynchronous reset for testing

N
Leave open.
TRSTB
E18
Input
Test pin

M
Leave open.
TE1
H12
Input
Test pin

Q
Leave open.
TE2
E11
Input
Test pin

R
Leave open.
(20) Power supply
Pin Name
Pin No.
I/O
Function
Type
Handling When
Not Used
V
A7, A13, A20, B7, B13, B20, E1,

Core power supply (1.2 V)



IO power supply (1.8 V system)



IO power supply (3 V system)


E2, F23, F24, L21, L22, U1, U2, U3,
U4, U5, U21, U22, Y11, AA11, AC5,
AC18, AD5, AD18
VIO18
A21, B21, E3, E4, L23, L24, U23, U24,
AA18, AB7, AB11, AB18, AC7, AC11,
AD7, AD11
VIO3
A14, B14, C7, C14, D7, D14, M1, M2,
M3, M4, Y1, Y2, Y3, Y4
VA1
C11, D11

PLL power supply (1.2V)


VA2
A10, B10

PLL power supply (1.2V)


VA3
A12, B12

PLL power supply (1.2V)


VDDQ_DDR
G1, G2, P3, P4, P5, W1, W2

DDR power supply (1.8V)


VDD_DDR
G3, G4, H21, H22, H23, H24, N21,

DDR power supply (1.8V)


N22, N23, N24, P1, P2, W3, W4,
W21 ,W22, W23, W24
Data Sheet R19DS0008EJ0700
25
MC-10118B
(21) GND
Pin Name
G
Pin No.
Function
A1, A2, A3, A6, A11, A15, A19, A22, A23, A24, B1, B2, B6, B11, B15, B19, B23, B24, C1, C6,
GND
C15, C24, D6, D15, E15, F1, F2, F3, F4, F6, G21, G22, G23, G24, H11, H15, J8, J9, J10, J11,
J12, J13, J14, J15, J16, J17,K8, K9, K10, K11, K12, K13, K14, K15, K16, L8, L9, L10, L11,
L12, L13, L14, L15, L16, L17, M8, M9, M10, M11, M12, M13, M14, M15, M16, M17, M21, M22,
M23, M24, N1, N2, N3, N4, N5, N8, N9, N10, N11, N12, N13, N14, N15, N16, N17, P8, P9,
P10, P11, P12, P13, P14, P15, P16, P17, R8, R9, R10, R11, R12, R13, R14, R15, R16, R17,
T8, T9, T10, T11, T14, T15, T16, T17, U8, U9, U10, U11, U17, V1, V2, V3, V4, V5, V21, V22,
V23, V24, AA6, AA10, AA15, AA19, AB1, AB6, AB10, AB15, AB19, AB24, AC1, AC2, AC6,
AC10, AC15, AC19, AC23, AC24, AD1, AD2, AD3, AD6, AD10, AD15, AD19, AD22, AD23,
AD24
(22) Other
Pin Name
Pin No.
I/O
Function
Type
Handling When
Not Used
IC
K17, T12, T13, U12, U13, U14, U15,

Internally-connected pins
U16, W5, Y5, Y6, Y7, Y8, Y9, Y10,
Y12, Y13, Y14, Y15, Y16, Y17, Y18,
Y19, Y20, AA3, AA4, AA5, AA7, AA8,
AA9, AA12, AA13, AA14, AA16, AA17,
AA20, AB3, AB4, AB5, AB8, AB9,
AB12, AB13, AB14, AB16, AB17, AB20,
AC3, AC4, AC8, AC9, AC12, AC13,
AC14, AC16, AC17, AC20, AD4,
AD8, AD9, AD12, AD13, AD14, AD17,
AD16, AD20
26
Data Sheet R19DS0008EJ0700


MC-10118B
1.3
I/O Circuits
(1/4)
Type A
Description
Input buffer Schmitt (VIO3)
w / IO-Standby Control
Other IO buffers are fixed on the time of Power OFF mode in
A
Y
POW OFF state of appendix D by inputting the Low level to this
buffer.
IO-Standby
go-around signal
Remark In the Power-off mode, pins remain in a Hi-Z state
(input) and the signals are passed through this
buffer.
Types B, E
Normal
Description
C0
C1
Bidirectional buffer Schmitt (type B = VIO3, type E = VIO18)
w / IOLH control Normal / Pull-up 50 k / Pull-down 50 k
A
OEN
 During power-off:
Pins remain in a Hi-Z state
 Resistance = 50 k (typ.)
Y1
Y0
50 kΩ
UPC
POENB
Type C
Normal
Description
C0
C1
Bidirectional buffer Schmitt (VIO3)
w / IOLH control Normal / Pull-up 50 k / Pull-down 50 k
A
OEN
 During power-off:
Pins remain in a Hi-Z state (masked by 0
internally)
Y1
Y0
 Resistance = 50 k (typ.)
50 kΩ
UPC
POENB
Data Sheet R19DS0008EJ0700
27
MC-10118B
(2/4)
Type D
Normal
Description
C0
C1
A
OEN
Bidirectional buffer AND (VIO3)
w / IOLH control Normal / Pull-up 50 k / Pull-down 50 k
 During power-off:
Pins remain in a Hi-Z state (masked by 0
internally)
Y0
Y1
50 k
 Resistance = 50 k (typ.)
CTL
UPC
POENB
Types G
Normal
Description
C0
C1
A
OEN
Bidirectional buffer AND (VIO18)
w / IOLH control Normal / Pull-up 50 k Pull-down 50 k
 During power-off:
Type G: Pins are pulled down (masked by 0 internally)
Y0
Y1
50 k
 Resistance = 50 k (typ.)
CTL
UPC
POENB
Type J
Normal
Description
C0
C1
A
OEN
Bidirectional buffer AND, Schmitt (VIO18)
w / IOLH control Normal / Pull-up 50 k / Pull-down 50 k
 During power-off:
Pins are pulled down (masked by 0
internally)
Y0
Y1
50 k
 Resistance = 50 k (typ.)
CTL
UPC
POENB
28
Data Sheet R19DS0008EJ0700
MC-10118B
(3/4)
Types M, N
Low noise
Description
C0
C1
Bidirectional buffer Schmitt / LowNoise (VIO18)
w / IOLH control Normal / Pull-up 50 k / Pull-down 50 k
A
OEN
 During power-off:
Type M: Pins are pulled down (masked by 0 internally)
Type N: Pins are pulled up (masked by 0 internally)
Y1
Y0
 Resistance = 50 k (typ.)
50 kΩ
UPC
POENB
Type P
Normal
Description
C0
Bidirectional buffer (VIO18)
C1
w / IOLH control bus holder
A
OEN
 During power-off:
Pins output a low level (masked by 0
internally)

Y0
Resistance = 6.5 k (typ.)
Y1
6.5 k
BusHolder
Types Q, R
Description
Test buffer (VIO18)
Types Q and R are buffers used exclusively for testing.
Leave open when used in the actual device. (Always pull
A
down the pins (typ. 50 k)
50 k
Go-around
signal
Data Sheet R19DS0008EJ0700
29
MC-10118B
(4/4)
Type Z
Description
oscillator
XT1
30
XT2
Data Sheet R19DS0008EJ0700
MC-10118B
2. ELECTRICAL SPECIFICATIONS
2.1
Absolute Maximum Ratings
Parameter
Symbol
Power supply voltage
Rating
Unit
1.2 V system
0.5 to +1.8
V
VIO18
1.8 V system (I/O)
0.5 to +2.5
V
VIO3
3 V system (I/O)
0.5 to +4.6
V
Power supply for memories
0.5 to +2.3
V
V
VDD_DDR
Conditions
VDDQ_DDR
Input voltage
Output voltage
Storage temperature
VI_18
1.8 V system (I/O)
0.5 to VIO18 + 0.5
V
VI_33
3 V system (I/O)
0.5 to VIO3 + 0.5
V
VO_18
1.8 V system (I/O)
0.5 to VIO18 + 0.5
V
VO_33
3 V system (I/O)
0.5 to VIO3 + 0.5
V
40 to +125
−
Tstg
C
Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any
parameter. That is, the absolute maximum ratings are rated values at which the product is on the
verge of suffering physical damage, and therefore the product must be used under conditions
that ensure that the absolute maximum ratings are not exceeded.
Note
Instantaneous input of a voltage in the range of 0.8 to VDD12 + 0.8 V is allowed as long as capacitive
coupling is implemented.
2.2
Recommended Operating Conditions
Parameter
Symbol
Power supply voltage
V
Conditions
MIN.
TYP.
MAX.
Unit
1.2 V system, during normal operation
1.1
1.2
1.3
V
Memory retention voltage
0.64
−
−
V
Note 1
V_PLL
1.2 V system (PLL power supply, pin: VA)
1.1
1.2
1.3
V
VIO18
1.8 V system (I/O power supply)
1.7
1.8
1.9
V
VIO3
3 V system (I/O power supply)
2.7
−
3.6
V
Power supply for memories
1.7
1.8
1.9
V
VDD_DDR
VDDQ_DDR
Oscillation start
voltage
VOSC_S
−
1.7
−
−
V
VOSC_H
−
1.7
−
−
V
TA
−
20
−
+70
C
Note 2
Oscillation start
voltageNote 3
Operating ambient
temperature
Notes 1. This is the voltage that guarantees retention of data in the internal SRAM when the voltage drops during
normal operation.
2. This is the voltage at which oscillation always starts after power-on.
3. This is the voltage that guarantees oscillation when the voltage drops during normal operation.
Data Sheet R19DS0008EJ0700
31
MC-10118B
2.3
Capacitance
(TA = +25C, f = 1 MHz, unmeasured pins returned to 0 V)
Parameter
Input capacitance
Symbol
CI
Conditions
1.8 V
2.8 V
Output capacitance
CO
1.8 V
2.8 V
I/O capacitance
CIO
1.8 V
2.8 V
32
Data Sheet R19DS0008EJ0700
MIN.
TYP.
MAX.
Unit
3
−
5
pF
2
−
4
pF
3
−
5
pF
2
−
4
pF
3
−
5
pF
2
−
4
pF
MC-10118B
2.4
2.4.1
DC Characteristics
VIO18
(Unless it's designated in particular by the item after this, it'll be the standard under 2.2 recommendation
operating condition. )
Parameter
Symbol
Conditions
MIN.
TYP.
MAX.
Unit
VIO18  0.1
−
−
V
−
−
0.1
V
Output voltage, high
VOH
No DC loadNote 1
Output voltage, low
VOL
No DC load
Input voltage, high
VIH
I/O pins and monitor pins
0.65  VIO18
−
VIO18 + 0.5
V
Input voltage, low
VIL
I/O pins and monitor pins
0.5
−
0.35  VIO18
V
1.7
−
−
mA
−
mA
Output current, high
VOH = VIO18  0.4 VNote 2
Output current, low
VOL = 0.4 V
Note 2
Note 1
IOUT_H1
2 mA setting
Note 3
IOUT_H2
4 mA setting
Note 3
3.7
−
IOUT_H3
6 mA setting
Note 3
5.7
−
−
mA
IOUT_H4
8 mA settingNote 3
7.7
−
−
mA
IOUT_H5
12 mA settingNote 3
11.0
−
−
mA
IOUT_L1
2 mA setting
Note 3
1.7
−
−
mA
IOUT_L2
4 mA setting
Note 3
3.7
−
−
mA
IOUT_L3
6 mA setting
Note 3
5.7
−
−
mA
IOUT_L4
8 mA setting
Note 3
7.7
−
−
mA
IOUT_L5
12 mA setting
11.0
−
−
mA
Note 3
Hysteresis voltage
VH
Schmitt input
0.20  VIO18
−
0.63  VIO18
V
Negative trigger voltage
VN
Schmitt input
0.53  VIO18  0.66
−
0.35  VIO18
V
Positive trigger voltage
VP
Schmitt input
0.68  VIO18
−
0.83  VIO18
V
Input leakage current, high
IL_H
VI = VIO18
−
−
1
A
Input leakage current, low
IL_L
VI = GND
−
−
1
A
Pull-up resistance
RPU
−
40
−
65
k
Pull-down resistance
RPD
−
40
−
65
k
Bus-holder hold resistance
RBH
5
−
11
k
Bus-holder series
resistance
Pull-up pin current
IPU
−
−
−
50
A
Pull-down pin current
IPD
−
−
−
50
A
Notes 1. The parameters VOH and VOL here are the values guaranteed when there is no load when applying the
DC current.
2. The parameters VOH and VOL here define the output current.
3. This is the value set to the I/O buffer output current drive switch register.
Data Sheet R19DS0008EJ0700
33
MC-10118B
2.4.2
VIO3
Parameter
Symbol
Conditions
MIN.
TYP.
MAX.
Unit
Output voltage, high
VOH
No DC loadNote 1
VIO3  0.1
−
−
V
Output voltage, low
VOL
No DC loadNote 1
−
−
0.1
V
Input voltage, high
VIH
I/O pins and monitor pins
2.0
−
VIO3 + 0.5
V
Input voltage, low
VIL
I/O pins and monitor pins
0.5
−
0.8
V
IOUT_H1
2 mA setting
Note 3
1.7
−
−
mA
IOUT_H2
4 mA setting
Note 3
3.7
−
−
mA
IOUT_H3
6 mA setting
Note 3
5.7
−
−
mA
IOUT_H4
8 mA setting
Note 3
7.7
−
−
mA
Output current, low
IOUT_L1
2 mA setting
Note 3
1.7
−
−
mA
VOL = 0.4 VNote 2
IOUT_L2
4 mA settingNote 3
3.7
−
−
mA
IOUT_L3
6 mA settingNote 3
5.7
−
−
mA
IOUT_L4
8 mA setting
7.7
−
−
mA
Hysteresis voltage
VH
Schmitt input
0.11  VIO3
−
0.41  VIO3
V
Negative trigger voltage
VN
Schmitt input
0.17  VIO3
−
0.38  VIO3
V
Schmitt input
0.54  VIO3
−
0.65  VIO3
V
VI = VIO3
−
−
1
A
−
Output current, high
VOH = VIO3  0.4 VNote 2
Positive trigger voltage
VP
Input leakage current, high
IL_H
Note 3
Input leakage current, low
IL_L
VI = GND
−
1
A
Pull-up resistance
RPU
50 k resistor
40
−
65
k
Pull-down resistance
RPD
50 k resistor
40
−
65
k
Pull-up pin current
IPU
50 k resistor
−
−
90
A
Pull-down pin current
IPD
50 k resistor
−
−
90
A
Notes 1. The parameters VOH and VOL here are the values guaranteed when there is no load when applying the
DC current.
2. VOL = 0.4 V, VOH = VIO3  0.4 V. The parameters VOH and VOL here define the output current.
3. This is the value set to the output current drive switch register.
2.4.3
Standby state current (Logic)
(TA = 25C)
Parameter
Standby current
Symbol
MIN.
TYP.
MAX.
Unit
−
130
400
A
Logic power supply L0 on, f = 0 Hz, V = 0.75 V
−
100
300
A
Logic power supply L0 on, f = 0 Hz, V = 1.2 V
−
340
−
A
IDD_IO18
IO power supply f = 0 Hz, VIO18 = 1.8 V
−
−
10
A
IDD_IO3
IO power supply f = 0 Hz, VIO3 = 2.85 V
−
−
10
A
IDD_L0
Conditions
Logic power supply L0 + L2 on, f = 0 Hz, V =
0.75 V
34
Data Sheet R19DS0008EJ0700
MC-10118B
2.4.4
Standby state current (Mobile DDR SDRAM)
Parameter
Standby current
Symbol
DDR IDD7
Conditions
MIN.
TYP.
MAX.
Unit
−
−
10
μA
MIN.
TYP.
MAX.
Unit
-25C ≦DDR_TJ≦+85C
−
−
500
μA
CKE≦0.2V
−
−
400
μA
−
−
300
μA
CKE≦0.2V
(Deep power-down mode)
2.4.5
Self refresh current
Parameter
PASR = “000” (Full)
PASR = “001” (2BK)
Symbol
DDR IDD6
Conditions
PASR = “010” (1BK)
Data Sheet R19DS0008EJ0700
35
MC-10118B
2.5
2.5.1
AC Characteristics
AC test I/O measurement points
Figure 2-1. AC Test I/O Measurement Points
VIO18
VIO3
0.7  VIO
Input pin
Input
measurement
points
0.3  VIO
0.7  VIO
0.3  VIO
VIO18
VIO3
Input
measurement
points
0.8  VIO
Input pin
(Schmitt)
0.1  VIO
0.8  VIO
0.1  VIO
VIO18
VIO3
Output pin
Load condition
Output
measurement
points
0.5 VDD
DUT
0.5 VDD
Output pin
CL = 15 pF
Remark
Excluding the OSC pin. Unless specified otherwise, the load of CL is assumed to be 15 pF.
Unless it's designated in particular by the item after this, it'll be the standard under 2.2 recommendation
operating condition
36
Data Sheet R19DS0008EJ0700
MC-10118B
2.5.2
System control
(1) Clock (input timing requirements)
Parameter
C32K frequency
Symbol
Conditions
MIN.
TYP.
MAX.
Unit
fclkC32K
−
−
32.768
−
kHz
−
−
1
s
32 kHz input clock duty ratio
IdutyC32K
−
40
50
60
%
32 kHz input clock jitter
IjitterC32K
−
20
−
20
ns
OSC oscillation frequency range
fC(OSC)
Internal oscillator (OSC12M_CKI
−
−
13
MHz
−
0.5
1
ms
C32K rise/fall time
trfC32K
10 to 90%
or OSC12M_CKO)
(with crystal resonator
DSX530GA; made by Daishinku)
OSC clock stabilization time
tSTAB12
CI = CO = 15 pF
The oscillating frequency : 12MHz
(with crystal resonator
DSX530GA; made by Daishinku)
Figure 2-2. Clock Timing
1/fclkC32K
trfC32K
trfC32K
twC32K(H)
twC32K(L)
Input clock
C32K
Figure 2-3. Recommended Oscillator
OSC12M_CKI
OSC12M_CKO
Cautions 1. Keep the wiring length between the oscillator and the OSC12M_CKI and OSC12M_CKO pins
as short as possible.
2. Do not cross the wiring with the other signal lines in the area enclosed by the broken lines.
3. Thoroughly evaluate matching of the resonator.
Data Sheet R19DS0008EJ0700
37
MC-10118B
(2) Reset (A_RESETB)
Parameter
Symbol
A_RESETB low-level width
Remark
Conditions
MIN.
TYP.
MAX.
Unit
−
6
−
−
ms
tA_RESETB
In the case of a hardware reset.
Figure 2-4. Reset Timing
tRSTIB, tA_RESETB
A_RESETB
(3) Power supply start-up Timing (without power supply -> Normal)
IO power supply (VIO18)
Time when a VIO18 power supply becomes stable.
IO power supply (VIO3)
Time when a VIO3 power supply becomes stable.
Core power supply (V)
PLL power supply (VA1/2/3)
Time when V,VA1,VA2,VA3 power supply becomes stable.
Min:0us
C32K
Min:200us
DET1
Min:200us
A_RESETB
(inside PLL)
(1)
(2)
(3)
(4)
(5)
(6)
Figure 2-5. Power supply start-up timing
Remarks “Stable” means that each power supply becomes the specification minimum voltage.
The timing figure which starts from the “Without power supply”.
(1) IO power supply (VIO18) is supplied, and stands by until a power supply becomes stable.
(2) IO power supply (VIO3) is supplied, and stands by until a power supply becomes stable.
(3) Corepower supply (V) and PLL power supply (VA1/2/3) are supplied, and stands by until a power supply becomes
stable.
(4) RTC clock 32.768kHz (C32K) is input.
(5) DET1 is signal is started.
(6) A_RESETB signal rising (reset release), and PLL begins to oscillate.
38
Data Sheet R19DS0008EJ0700
MC-10118B
(4) Power supply start-up Timing (DeepSleep<- -> Normal)
IO power supply (VIO18,VIO3)
Min:2ms
Core power supply (V)
“0.75V” setting
“OFF”setting
PLL power supply (VA1/2/3)
C32K
DET1
A_RESETB
(inside PLL)
Min:0ms
GIO_P0
Normal
(1)
DeepSleep
(2)
Normal
(3)
(4)
Figure 2-6. DeepSleep Normal timing
(1) EM1-D512 sends the command to Power Management IC by SPI Interface. The contents of the command are as
follows. Core power supply (V) voltage is changed to 0.75 from 1.2V. PLL power supply (VA1/2/3) is stopped.
(2) Power Management IC changes the Core power supply (V) to 0.75V from 1.2V in at least 2 ms later and stops PLL
power supply (VA1/2/3). EM1-D512 does the preparations to transfer to the DeepSleep state between (1) and (2).
(3) Core power supply (V) voltage is changed to 1.2V from 0.75V. VPLL power supply (VA1/2/3) is supplied.
(4) GIO_P0 signal rising and inside PLL begins to oscillate. EM1-D512 is transit of state from DeepSleep to Normal
after inside PLL stable.
Data Sheet R19DS0008EJ0700
39
MC-10118B
(5) Power supply start-up Timing (PowerOff<- -> Normal)
IO power supply (VIO18,VIO3)
Core power supply(V)
PLL power supply(VA1/2/3)
Min:0us
Min:0us
C32K
Min:200us
Min:0us
DET1
Min:200us
Min:0us
A_RESETB
(inside PLL)
GIO_P0
Normal
Normal
PowerOff
(1)
(2)(3)
(4)
(5)
Figure 2-7. PowerOff Normal timing
(1) A_RESETB signal and DET1 signal are falling, and RTC clock (C32K) is stop. Next Core power supply and PLL
power supply are stopped at the same time.
(2) Core power supply (V) and PLL power supply (VA1/2/3) are supplied same time, and stand by until a power
supplies become stable.
(3) RTC clock 32.768kHz (C32K) is input.
GIO_P0 signal rising. It's to make EM1-D512 recognizes that it's different from "Without power supply".
(4) DET1 is signal is started.
(5) A_RESETB signal rising (reset release), and inside PLL begins to oscillate.
40
Data Sheet R19DS0008EJ0700
MC-10118B
2.5.3
Asynchronous bus (AB0) interface
Parameter
Asynchronous single
Symbol
t201
Conditions
Note
MIN.
TYP.
MAX.
Unit
(1 + T0 + T1 + T2)
−
(2 + T0 + T1 + T2)
ns
 Tf  3
read access time
 Tf + 3
CSZ rise to ADVZ fall
t202
Note
Tf  3
−
2Tf + 3
ns
ADVZ active width
t203
AB0_ADVZ = Low
Tf  3
−
Tf + 3
ns
Lower ADD for ADMUX
t204
T0  Tf  3
−
T0  Tf + 3
ns
−
hold time
t205
Falling edge of AB0_RDZ
T0  Tf  3
−
T0  Tf + 3
ns
Read signal active width
t206
AB0_RDZ = Low
T1  Tf  3
−
T1  Tf + 3
ns
Delay time from RDZ rise
t207
Rising edge of AB0_RDZ
T2  Tf  3
−
T2  Tf + 3
ns
CSInt  Tf  3
−
−
ns
−
ns
Delay time from ADVZ
rise to read signal output
to CSZ fall output
CS assert interval time
Asynchronous _RDATA
−
t208
t209
Rising edge of AB0_RDZ
15
−
t210
Rising edge of AB0_RDZ
0
−
−
ns
t211
Falling edge of AB0_RDZNote
(1 + T0)  Tf  8
−
−
ns
t212
Falling edge of AB0_RDZNote
(1 + T0)  Tf  3
−
−
ns
t220
Note
(1 + T0 + T1W +
−
(2 + T0 + T1W +
ns
setup time
Asynchronous _RDATA
hold time
Delay time from address
determination to RDZ fall
Delay time from CSZ fall
to RDZ rise output
Asynchronous single
T2W )  Tf  3
write access time
Delay time from ADVZ
T2W )  Tf + 3
T0×Tf  3
−
T0 Tf + 3
ns
AB0_WRZ = Low
T1W  Tf  3
−
T1W  Tf + 3
ns
t223
Rising edge of AB0_WRZ
T2W  Tf  3
−
T2W  Tf + 3
ns
t224
Rising edge of AB0_WRZ
T2W  Tf  8
−
−
ns
t225
Falling edge of AB0_WRZNote
(1 + T0)  Tf  8
−
−
ns
t226
Falling edge of AB0_WRZNote
(1 + T0)  Tf  3
−
−
ns
t221
Rising edge of AB0_WRZ
Write signal active width
t222
Delay time from WRZ
rise to write signal output
rise to CSZ fall output
Asynchronous _WDATA
output hold time
Delay time from address
determination to WRZ
fall
Delay time from CSZ fall
to WRZ fall output
Note
The time from the CSB falling edge to the ADV falling edge (Tf) can be shortened by setting a register.
Remark
Tf = 1/4 of AB0_CLK. (When frequency ratio 1/4 is usually the time of the state (AB0_CLK:FLASH_CLK
= 2:1).
T0, T1, T2, CSInt: Values set to read the wait timing control register (AB0_CSxWAITCTRL)
T1W , T2W : Values set to write the wait timing control register (AB0_CSxWAITCTRL_W)
Data Sheet R19DS0008EJ0700
41
MC-10118B
Figure 2-8. Asynchronous Single Read Timing
t211
AB0_A[25:1]
ADD
t212
t201
t208
CSZ[3:0]
BENZ[1:0]
t202
AB0_ADV
t205
t207
t206
t203
t209
AB0_RDZ
t204
AB0_D[15:0]
t210
((Lower ADD)
(Data)
Figure 2-9. Asynchronous Single Write Timing
t225
AB0_A[25:1]
ADD
t226
t208
t220
CSZ[3:0]
BENZ[1:0]
t202
AB0_ADV
t221
t222
t223
AB0_WRZ
t224
t204
AB0_D[15:0]
42
(Lower ADD)
(Data)
Data Sheet R19DS0008EJ0700
MC-10118B
2.5.4
UART interface
(IO buffer drive capability: 2 mA)
Parameter
Symbol
UARTx_SOUT output delay
tDC
tDR
Conditions
MIN.
TYP.
MAX.
Unit
Falling edge of UARTx_CTSB
−
−
4
RCLK
Center of UARTx_SRIN stop bit
−
−
3
RCLK
time
UARTx_RTSB output delay
time
Remark
RCLK: 1/16 of baud rate clock cycle
Figure 2-10. UART Interface Timing
Start
UARTx_SOUT
data
Stop
tDC
UARTx_CTSB
UARTx_SRIN
Start
data
Stop
tDR
UARTx_RSTB
Remark
x = 0 to 2 (UARTx_CTSB and UARTx_RSTB for UART0 and UART2 are pins and are not provided for
UART1.)
Data Sheet R19DS0008EJ0700
43
MC-10118B
2.5.5
IIC interface
(IO buffer drive capability: 2 mA)
Parameter
Symbol
Conditions
IIC_SCL clock frequency
fC
−
IIC bus free time
tBF
Standard ModeNote 1
Interval between stop and start
High-Speed ModeNote 1
Unit
MIN.
MAX.
MIN.
MAX.
0
70
0
341
kHz
4.7

1.3

s
4.0

0.6

s
conditions
−
IIC hold timeNote 2
tH1
IIC hold time (SCL clock)
tWL
“Low” state
4.7

1.3

s
tWH
“Hi” state
4.0

0.6

s
tSU1
Start condition
4.7

0.6

s
250

100Note 3
IIC setup time
Restart condition

ns
IIC rise time
tR
SDA and SCL signals



300Note 4
ns
IIC fall time
tF
SDA and SCL signals



300Note 4
ns
IIC data setup time
−
tSU2
IIC setup time
tSU3
Stop condition
4.0

0.6

s
IIC data hold time
tH2
Clock fall output
5.0

−

s
0
3.45
0Note 5
0.9Note 6
s

400

400
pF
Clock fall input
Capacitance load of each
Cb
−
IIC bus line
Notes 1. Select the standard mode or high-speed mode by using the SMC0 bit of the IIC0 clock select register
(IICCL0).
2. At the start condition, the first clock pulse is generated after the hold time.
3. The high-speed mode I2C bus can be used in the standard-mode I2C bus system. In this case, set the
high-speed mode I2C bus so that it meets the following conditions.
 If the system does not extend the IIC_SCL signal’s low state hold time: tSU2  250 ns
4. Do not input noise exceeding the hysteresis width of the 1.8 V system IO Schmitt buffer during a rise or
fall time.
5. The system requires a minimum of 300 ns hold time internally for the SDA signal (at VIH (MIN.) [0.7 VDD2]
of IIC_SCL signal) in order to occupy the undefined area at the falling edge of IIC_SCL.
6. If the system does not extend the IIC_SCL signal low hold time (tWL), only the maximum data hold time
(tH2) needs to be satisfied.
44
Data Sheet R19DS0008EJ0700
MC-10118B
Figure 2-11. IIC Bus Interface Timing
tWL
tR
tWH
tF
IIC_SCL
tH1
IIC_SDA
tBF
tH2
tSU2
Stop condition
Start condition
IIC_SCL
tSU3
tSU1
tH1
IIC_SDA
Restart condition
Data Sheet R19DS0008EJ0700
Stop condition
45
MC-10118B
2.5.6
Audio/Voice interface
(1) Slave mode
Parameter
Symbol
Conditions
MIN.
TYP.
MAX.
Unit
tC
−
100
−
−
ns
PMx_CLK high-level width
tWH
−
40
−
−
ns
PMx_CLK low-level width
tWL
−
40
−
−
ns
Clock rise time
tR
−
−
−
10
ns
Clock fall time
tF
−
−
−
10
ns
PMx_SI, PMx_SEN setup time
tSU
20
−
−
ns
20
−
−
ns
0
−
20
ns
PMx_CLK cycle time
Rising and falling edges of
PMx_CLK
PMx_SI, PMx_SEN hold time
tH
Rising and falling edges of
PMx_CLK
PMx_SO output delay time
tD
Rising and falling edges of
PMx_CLK
Remark
Time from the valid edge
x = 0, 1
Figure 2-12. Audio/Voice Interface Timing (Slave Mode)
tC
t WH
tR
tWL
PMx_CLK (input)
tSU
tH
PMx_SI (input)
PMx_SEN (input)
tD
PMx_SO (output)
46
Data Sheet R19DS0008EJ0700
tF
MC-10118B
(2) Master mode
Parameter
Symbol
Conditions
MIN.
TYP.
MAX.
Unit
tC
−
100
−
−
ns
tWH
−
40
−
−
ns
PM0_CLK low-level width
tWL
−
40
−
−
ns
Clock rise time
tR
−
−
−
10
ns
Clock fall time
tF
−
−
−
10
ns
PMx_SI setup time
tSU
−
20
−
−
ns
PM0_SI hold time
tH
−
20
−
−
ns
PM0_SO, PM0_SEN output delay time
tD
−
5
−
20
ns
PM0_CLK cycle time
PM0_CLK high-level width
Remark
Time from the valid edge
x = 0, 1
Figure 2-13. Audio/Voice Interface Timing (Master Mode)
tC
tH
tR
tF
tL
PMx_CLK (output)
tSU
tH
PMx_SI (input)
tD
PMx_SO (output)
PMx_SEN (output)
Data Sheet R19DS0008EJ0700
47
MC-10118B
2.5.7
SDIO interface
Parameter
Symbol
Conditions
SD0 (SDIA), SD1 (SDIB), SD2 (SDIC)
MIN.
TYP.
MAX.
Unit
Tcyc
−
24.0
−
−
ns
Output clock high-level width
Thwcko
−
11.5
−
−
ns
Output clock low-level width
Tlwcko
−
11.5
−
−
ns
Tod
−
−
−
2
ns
Thwcki
−
7.5
−
−
ns
Tlwcki
−
7.5
−
−
ns
Tdcki
−
−
−
6
ns
Tiscki
−
3.5
−
−
ns
Tihcki
−
0
−
−
ns
Clock cycle
Output delay
Input clock high-level width
Input clock low-level width
Input clock delay time
Setup time
Hold time
Figure 2-14. SDIO Interface Timing
T cyc
Tl wcko
Thwcko
SDx_CKO (output)
Tod
SDx_DATA[3:0] (output)
SDx_CMD (output)
T dcki
T cyc
Thwcki
SDx_CKI (input)
Ti scki
SDx_DATA[3:0] (input)
SDx_CMD (input)
Remark
48
x = 0 to 2
Data Sheet R19DS0008EJ0700
T ihcki
T lwcki
MC-10118B
2.5.8
Camera interface
Parameter
Symbol
Conditions
MIN.
TYP.
MAX.
Unit
tC
−
12.5
−
−
ns
CAM_CLKI high-level width
tWH
−
4
−
−
ns
CAM_CLKI low-level width
tWL
−
4
−
−
ns
−
ns
CAM_CLKI input cycle
CAM_YUV[7:0], CAM_HS, CAM_VS
tSU0
DET = 0
5
−
tH0
DET = 0
0
−
−
ns
tSU1
DET = 1
5
−
−
ns
tH1
DET = 1
1
−
−
ns
setup time
CAM_YUV[7:0], CAM_HS, CAM_VS
hold time
CAM_YUV[7:0], CAM_HS, CAM_VS
setup time
CAM_YUV[7:0], CAM_HS, CAM_VS
hold time
Figure 2-15. Camera Interface Timing
tC
tWH
tWL
CAM_CLKI (input)
tSU0
tH0
DET = 0
CAM_YUV[7:0] (input)
CAM_HS, CAM_VS (input)
tSU1
tH1
DET = 1
CAM_YUV[7:0] (input)
CAM_HS, CAM_VS (input)
Data Sheet R19DS0008EJ0700
49
MC-10118B
2.5.9
LCD interface
Parameter
Symbol
Conditions
MIN.
TYP.
MAX.
Unit
tC
−
30
−
−
ns
LCD_PXCLK high-level width
tWH
−
12
−
−
ns
LCD_PXCLK low-level width
tWL
−
12
−
−
ns
LCD_PXCLK rise time
tR
LCD_PXCLK cycle
LCD_PXCLK fall time
tF
Data delay time
tD1
20 to 80%
−
−
5
ns
80 to 20%
−
−
5
ns
0
−
10
ns
0
−
10
ns
LCD_R[5:0], LCD_G[5:0],
LCD_B[5:0]
tD2
LCD_VSYNC, CD_HSYNC,
LCD_ENABLE
Remark
The setting of the rise and fall timing for LCD_PXCLK is based on the valid edge set by the CLKPOL
value in the LCD control register (rising: CLKPOL = 0, falling: CLKPOL = 1).
Figure 2-16. LCD Interface Timing
tR
tC
tWH
tWL
LCD_PXCLK
tD1
LCD_R[5:0]
LCD_G[5:0]
LCD_B[5:0]
tD2
LCD_ENABLE
LCD_HSYNC
LCD_VSYNC
50
Data Sheet R19DS0008EJ0700
tF
MC-10118B
2.5.10 USB interface
Parameter
Symbol
USB_CLK cycle
tK01
Conditions
60 MHz
MIN.
TYP.
MAX.
Unit
−
16.7
−
ns
USB_CLK high-level width
tK02
−
7
−
−
ns
USB_CLK low-level width
tK03
−
7
−
−
ns
USB_CLK rise time
tK04
−
−
−
2
ns
USB_CLK fall time
tK05
−
−
−
2
ns
USB control input setup time
tK06
−
5
−
−
ns
USB control input hold time
tK07
−
1
−
−
ns
USB data input setup time
tK08
−
5
−
−
ns
USB data input hold time
tK09
−
1
−
−
ns
USB data output delay time
tK11
−
0.5
−
7
ns
USB_STP output delay time
tK10
−
1
−
9
ns
Figure 2-17. USB Interface Timing
tK04
tK01
tK02
tK05
tK03
USB_CLK (input)
tK06
tK07
tK08
tK09
USB_DIR (input)
USB_NXT (input)
USB_DATA[7:0] (input)
tK10
USB_STP (output)
tK11
USB_DATA[7:0] (output)
Data Sheet R19DS0008EJ0700
51
MC-10118B
2.5.11 SPI interface
(1) Master mode
Parameter
Symbol
Conditions
MIN.
TYP.
MAX.
Unit
tC
−
40
−
−
ns
SPx_CLK high-level width
tWH
−
16
−
−
ns
SPx_CLK low-level width
tWL
−
16
−
−
ns
SPx_CLK rise time
tR
20 to 80%
−
4
ns
80 to 20%
−
4
ns
12
−
−
ns
0
−
−
ns
0
−
12
ns
12
−
−
ns
0
−
−
ns
0
−
12
ns
12
−
−
ns
0
−
−
ns
0
−
12
ns
Common to SP0, SP1, and SP2
SPx_CLK output cycle
SPx_CLK fall time
tF
SP0
SP0_SI setup time
tSU0
Rising and falling edges of
SP0_CLK
SP0_SI hold time
tH0
Rising and falling edges of
SP0_CLK
SP0_SO delay time
tDO0
Rising and falling edges of
SP0_CLK
SP1
SP1_SI setup time
tSU1
Rising and falling edges of
SP1_CLK
SP1_SI hold time
tH1
Rising and falling edges of
SP1_CLK
SP1_SO delay time
tDO1
Rising and falling edges of
SP1_CLK
SP2
SP2_SI setup time
tSU2
Rising and falling edges of
SP2_CLK
SP2_SI hold time
tH2
Rising and falling edges of
SP2_CLK
SP2_SO delay time
tDO2
Rising and falling edges of
SP2_CLK
52
Data Sheet R19DS0008EJ0700
MC-10118B
Figure 2-18. SPI Interface Timing (Master Mode)
tC
tWH
tR
tF
tWL
SPx_CLK (output)
tSU
tH
SPx_SI
SPx_CSn (input)
t DO
SPx_SO (output)
Remarks 1. The level of the SPx_CLK output can be inverted by setting a register.
2. SPx_CLK is not output while SPx_CLK is inactive. (Fixed to inactive.)
3. If the read latency of the connected device is long, the time can be adjusted by means such as using
a function to switch the I/O phase of SI and SO (by using the rise and fall of SCLK).
Data Sheet R19DS0008EJ0700
53
MC-10118B
(2) Slave mode
Parameter
Symbol
Conditions
MIN.
TYP.
MAX.
Unit
tC
−
50
−
−
ns
tWH
−
20
−
−
ns
tWL
−
20
−
−
ns
tR
−
−
−
4
ns
tF
−
−
−
4
ns
tSU0
Rising and falling edges of SP0_CLK
5
−
−
ns
15
−
−
ns
−
18
ns
Common to SP0, SP1, SP2
SPx_CLK input cycle
SPx_CLK high-level width
SPx_CLK low-level width
SPx_CLK rise time
SPx_CLK fall time
SP0
SP0_CS setup time
SP0_CS hold time
tH0
SP0_SO delay time
Rising and falling edges of SP0_CLK
tDO0
Rising and falling edges of SP0_CLK
3
tSU1
Rising and falling edges of SP1_CLK
5
−
−
ns
15
−
−
ns
20
ns
SP1
SP1_CS setup time
SP1_CS hold time
tH1
Rising and falling edges of SP1_CLK
tDO1
Rising and falling edges of SP1_CLK
3
−
SP2_CS setup time
tSU2
Rising and falling edges of SP2_CLK
5
−
−
ns
SP2_CS hold time
tH2
Rising and falling edges of SP2_CLK
15
−
−
ns
SP2_SO delay time
tDO2
Rising and falling edges of SP2_CLK
3
−
18
ns
SP1_SO delay time
SP2
Figure 2-19. SPI Interface Timing (Slave Mode)
tC
tWH
tR
tWL
SPx_CLK (input)
tSU
tH
SPx_SI
SPx_CSn (input)
t DO
SPx_SO (output)
54
Data Sheet R19DS0008EJ0700
tF
MC-10118B
2.5.12 DTV interface
Parameter
Symbol
Conditions
MIN.
TYP.
MAX.
Unit
tC
−
66
−
−
ns
DTV_BCLK high-level width
tWH
−
28
−
−
ns
DTV_BCLK low-level width
tWL
−
28
−
−
ns
DTV_DATA, DTV_PSYNC, DTV_VLD
tSU
−
12
−
−
ns
tH
−
12
−
−
ns
DTV_BCLK input cycle
setup time
DTV_DATA, DTV_PSYNC, DTV_VLD
hold time
Figure 2-20. DTV Interface Timing
tC
tWH
tWL
DTV_BCLK (input)
tSU
tH
DTV_DATA[7:0] (input)
DTV_PSYNC (input)
DTV_VLD (input)
Data Sheet R19DS0008EJ0700
55
MC-10118B
2.5.13 NAND Flash interface
Parameter
Symbol
Conditions
MIN.
TYP.
MAX.
Unit
CLE setup time
tCLS
−
tC-3
−
8 tC+3
ns
CLE hold time
tCLH
−
tC-3
−
8 tC+3
ns
tALS
−
tC-3
−
8 tC+3
ns
tALH
−
tC-3
−
8 tC+3
ns
Write pulse width
tWP
−
tC-3
−
16 tC+3
ns
WEZ high-level hold time
tWH
−
tC-3
−
16 tC+3
ns
Write data setup time
tDS1
Rising edge of NAND_WEZ
tWP-3
−
tWP+3
ns
Write data hold time
tDH1
Rising edge of NAND_WEZ
tWH-3
−
tWH+3
ns
ALE setup time
ALE hold time
Remarks 1. tC = tC (AHB) in the above table
2. The AC characteristics for NAND_WEZ, REZ, CLE, and ALE are determined by a register setting,
and the unit is tC (when AHB = 83 MHz with ACPU operating at 500 MHz).
Figure 2-21. NAND Flash Interface Timing 1
N AND_CLE (output)
tC LS
tCLH
N AND_ALE (output)
tAL S
tALH
tW P
tWP
tWP
tWH
tDS1
tD H1
N AND_WE (output)
tDS1
tDH1
tDS1
tD H1
N AND_DA (output)
56
Data Sheet R19DS0008EJ0700
MC-10118B
Parameter
Symbol
Conditions
MIN.
TYP.
MAX.
Unit
Read pulse width
tRP
−
tC-3
−
16 tC+3
ns
High-level hold time
tREH
−
tC-3
−
16 tC+3
ns
Read data setup time
tDS2
Rising edge of NAND_OE
8
−
−
ns
Read data hold time
tDH2
Rising edge of NAND_OE
0
−
−
ns
Remarks 1. tC in the above table = tC when AHB = 83 MHz with ACPU operating at 500 MHz, = 12 ns
2. The AC characteristics for NAND_WE, OE, CLE, and ALE are determined by a register setting, and
the unit is tC.
3. The internal bus clock is used for data latching during reading via NAND_DA (input).
Figure 2-22. NAND Flash Interface Timing 2
t RP
tREH
NAND_OE (output)
t DS2
t DH2
NAND_DA (input)
Data Sheet R19DS0008EJ0700
57
MC-10118B
2.5.14 ITU-R BT.656 interface
Parameter
Symbol
Conditions
MIN.
TYP.
MAX.
Unit
tC
−
−
37Note
−
ns
NTSC_CLK high-level width
tWH
−
13
−
−
ns
NTSC_CLK low-level width
tWL
−
13
−
−
ns
NTSC_CLK rise time
tR
−
−
5
ns
NTSC_CLK fall time
tF
−
−
5
ns
NTSC_DATA output delay
tD
18
ns
NTSC_CLK input cycle
Rising edge of NTSC_CLK
4
time
Note
−
NTSC_CLK = 27 MHz
Figure 2-23. ITU-R BT.656 Interface Timing
tC
tWH
tR
tWL
NTS_BCLK(input)
tD
NTS_DATA[7:0]( output)
NTS_VS (output)
NTS_HS(output)
58
Data Sheet R19DS0008EJ0700
tF
MC-10118B
2.5.15 MICROWIRE interface
Parameter
Symbol
Conditions
MIN.
TYP.
MAX.
Unit
tC
−
160
−
−
ns
tWH
−
72
−
−
ns
tWL
−
72
−
−
ns
tR
−
−
−
8
ns
MWI_SK clock fall time
tF
−
−
−
8
ns
MWI_SI setup time
tSU
Rising edge of MWI_SK
20
−
−
ns
MWI_SI hold time
tH
Rising edge of MWI_SK
0
−
−
ns
MWI_SO, MWI_CSn output delay
tD
Rising edge of MWI_SK
−
−
20
ns
MWI_SK clock cycle
MWI_SK clock high-level width
MWI_SK clock low-level width
MWI_SK clock rise time
time
Figure 2-24. MICROWIRE Interface Timing
tC
tR
tW H
tF
tWL
MWI_SK (output)
tSU
tH
MWI_SI (input)
tD
MWI_SO (output)
MWI_C S0 (output)
MWI_C S1 (output)
Data Sheet R19DS0008EJ0700
59
MC-10118B
3. PACKAGE DRAWING
60
Data Sheet R19DS0008EJ0700
MC-10118B
Revision History
Date
Revision
Comments
February 10, 2009
1.0
−
April 27, 2009
2.0
Incremental update from comments to the 1.0..
June 30, 2009
3.0
Incremental update from comments to the 2.0.
The item of the power supply start-up sequence is added. (chapter 2.5.16)
September 30, 2009
4.0
Incremental update from comments to the 3.0.
UTEST pins : Handling When Not Used : Leave open -> “L” level hold.
Power supply start-up (chapter 2.5.17) sequence is indicated on a user's manual
(one chip).
December 22, 2009
5.0
Incremental update from comments to the 4.0.
The specification of the self refresh current is changed with name of product
change (MC-10118A->, MC-10118B).
February 15, 2010
6.0
Incremental update from comments to the 5.0.
Change in the product name (MC-10118A/B->, MC-10118). A self-refresh electric
current was returned to the value of revision 4.0.
March 31, 2010
7.0
Order name change (MC-10118AF1-ENY-A -> MC-10118BF1-ENY-A).
The specification of the self refresh current is changed with name of product change
(MC-10118->, MC-10118B).
Data Sheet R19DS0008EJ0700
61
NOTES FOR CMOS DEVICES
(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a
reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX)
and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from
entering the device when the input level is fixed, and also in the transition period when the input level passes
through the area between VIL (MAX) and VIH (MIN).
(2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction.
If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc.,
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS
devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be
connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related
to unused pins must be judged separately for each device and according to related specifications governing
the device.
(3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause
destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop
generation of static electricity as much as possible, and quickly dissipate it when it has occurred.
Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to
avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and
transported in an anti-static container, static shielding bag or conductive material. All test and measurement
tools including work benches and floors should be grounded. The operator should be grounded using a wrist
strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for
PW boards with mounted semiconductor devices.
(4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS
device. Immediately after the power source is turned ON, devices with reset functions have not yet been
initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A
device is not initialized until the reset signal is received. A reset operation must be executed immediately after
power-on for devices with reset functions.
(5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal
operation and external interface, as a rule, switch on the external power supply after switching on the internal
power supply. When switching the power supply off, as a rule, switch off the external power supply and then
the internal power supply. Use of the reverse power on/off sequences may result in the application of an
overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements
due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for
each device and according to related specifications governing the device.
(6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power
supply while the device is not powered. The current injection that results from input of such a signal or I/O
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time
may cause degradation of internal elements. Input of signals during the power off state must be judged
separately for each device and according to related specifications governing the device.
62
Data Sheet S19657EJ6V0DS
The names of other companies and products are the registered trademarks or trademarks of these
companies.
• The information in this document is current as of March, 2010. The information is subject to change without
notice. For actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc.,
for the most up-to-date specifications of NEC Electronics products. Not all products and/or types are available in
every country. Please check with an NEC Electronics sales representative for availability and additional
information.
• No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this
document.
• NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from the use of NEC Electronics products listed in this document or
any other liability arising from the use of such products. No license, express, implied or otherwise, is granted
under any patents, copyrights or other intellectual property rights of NEC Electronics or others.
• Descriptions of circuits, software and other related information in this document are provided for illustrative
purposes in semiconductor product operation and application examples. The incorporation of these circuits,
software and information in the design of a customer's equipment shall be done under the full responsibility of
the customer. NEC Electronics assumes no responsibility for any losses incurred by customers or third parties
arising from the use of these circuits, software and information.
• While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products,
customers agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To
minimize risks of damage to property or injury (including death) to persons arising from defects in NEC
Electronics products, customers must incorporate sufficient safety measures in their design, such as
redundancy, fire-containment and anti-failure features.
• NEC Electronics products are classified into the following three quality grades: "Standard", "Special" and
"Specific". The "Specific" quality grade applies only to NEC Electronics products developed based on a
customer-designated "quality assurance program" for a specific application. The recommended applications of
an NEC Electronics product depend on its quality grade, as indicated below. Customers must check the quality
grade of each NEC Electronics product before using it in a particular application.
"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio
and visual equipment, home electronic appliances, machine tools, personal electronic equipment
and industrial robots.
"Special":
Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for
life support).
"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support
systems and medical equipment for life support, etc.
The quality grade of NEC Electronics products is "Standard" unless otherwise expressly specified in NEC
Electronics data sheets or data books, etc. If customers wish to use NEC Electronics products in applications
not intended by NEC Electronics, they must contact an NEC Electronics sales representative in advance to
determine NEC Electronics' willingness to support a given application.
(Note 1) "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its
majority-owned subsidiaries.
(Note 2) "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics
(as defined above).
(M8E0909E)
Data Sheet R19DS0008EJ0700
63
For further information,
please contact:
NEC Electronics Corporation
1753, Shimonumabe, Nakahara-ku,
Kawasaki, Kanagawa 211-8668,
Japan
Tel: 044-435-5111
http://www.necel.com/
[America]
[Europe]
[Asia & Oceania]
NEC Electronics America, Inc.
2880 Scott Blvd.
Santa Clara, CA 95050-2554, U.S.A.
Tel: 408-588-6000
800-366-9782
http://www.am.necel.com/
NEC Electronics (Europe) GmbH
Arcadiastrasse 10
40472 Düsseldorf, Germany
Tel: 0211-65030
http://www.eu.necel.com/
NEC Electronics (China) Co., Ltd
7th Floor, Quantum Plaza, No. 27 ZhiChunLu Haidian
District, Beijing 100083, P.R.China
Tel: 010-8235-1155
http://www.cn.necel.com/
Hanover Office
Podbielskistrasse 166 B
30177 Hannover
Tel: 0 511 33 40 2-0
Munich Office
Werner-Eckert-Strasse 9
81829 München
Tel: 0 89 92 10 03-0
Stuttgart Office
Industriestrasse 3
70565 Stuttgart
Tel: 0 711 99 01 0-0
United Kingdom Branch
Cygnus House, Sunrise Parkway
Linford Wood, Milton Keynes
MK14 6NP, U.K.
Tel: 01908-691-133
Succursale Française
9, rue Paul Dautier, B.P. 52
78142 Velizy-Villacoublay Cédex
France
Tel: 01-3067-5800
Sucursal en España
Juan Esplandiu, 15
28007 Madrid, Spain
Tel: 091-504-2787
Tyskland Filial
Täby Centrum
Entrance S (7th floor)
18322 Täby, Sweden
Tel: 08 638 72 00
Filiale Italiana
Via Fabio Filzi, 25/A
20124 Milano, Italy
Tel: 02-667541
Shanghai Branch
Room 2509-2510, Bank of China Tower,
200 Yincheng Road Central,
Pudong New Area, Shanghai, P.R.China P.C:200120
Tel:021-5888-5400
http://www.cn.necel.com/
Shenzhen Branch
Unit 01, 39/F, Excellence Times Square Building,
No. 4068 Yi Tian Road, Futian District, Shenzhen,
P.R.China P.C:518048
Tel:0755-8282-9800
http://www.cn.necel.com/
NEC Electronics Hong Kong Ltd.
Unit 1601-1613, 16/F., Tower 2, Grand Century Place,
193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: 2886-9318
http://www.hk.necel.com/
NEC Electronics Taiwan Ltd.
7F, No. 363 Fu Shing North Road
Taipei, Taiwan, R. O. C.
Tel: 02-8175-9600
http://www.tw.necel.com/
NEC Electronics Singapore Pte. Ltd.
238A Thomson Road,
#12-08 Novena Square,
Singapore 307684
Tel: 6253-8311
http://www.sg.necel.com/
NEC Electronics Korea Ltd.
11F., Samik Lavied’or Bldg., 720-2,
Yeoksam-Dong, Kangnam-Ku,
Seoul, 135-080, Korea
Tel: 02-558-3737
http://www.kr.necel.com/
Branch The Netherlands
Steijgerweg 6
5616 HS Eindhoven
The Netherlands
Tel: 040 265 40 10
G0706
Similar pages