MCNIX MX25U6435FM2I10G 1.8v 64m-bit [x 1/x 2/x 4] cmos mxsmioâ® (serial multi i/o) flash memory Datasheet

MX25U6435F
MX25U6435F
DATASHEET
P/N: PM1978
1
REV. 1.2, OCT. 23, 2013
MX25U6435F
Contents
1. FEATURES............................................................................................................................................................... 4
2. GENERAL DESCRIPTION...................................................................................................................................... 6
Table 1. Additional Feature...........................................................................................................................7
3. PIN CONFIGURATIONS .......................................................................................................................................... 8
4. PIN DESCRIPTION................................................................................................................................................... 8
5. BLOCK DIAGRAM.................................................................................................................................................... 9
6. DATA PROTECTION............................................................................................................................................... 10
Table 2. Protected Area Sizes.................................................................................................................... 11
Table 3. 4K-bit Secured OTP Definition.....................................................................................................12
7. MEMORY ORGANIZATION.................................................................................................................................... 13
Table 4. Memory Organization...................................................................................................................13
8. DEVICE OPERATION............................................................................................................................................. 14
8-1. Quad Peripheral Interface (QPI) Read Mode........................................................................................... 16
9. COMMAND DESCRIPTION.................................................................................................................................... 17
9-1.
9-2.
9-3.
9-4.
9-5.
9-6.
9-7.
9-8.
9-9.
9-10.
9-11.
9-12.
9-13.
9-14.
9-15.
9-16.
9-17.
9-18.
9-19.
9-20.
9-21.
9-22.
9-23.
9-24.
9-25.
P/N: PM1978
Table 5. Command Set...............................................................................................................................17
Write Enable (WREN)............................................................................................................................... 21
Write Disable (WRDI)................................................................................................................................ 22
Read Identification (RDID)........................................................................................................................ 23
Release from Deep Power-down (RDP), Read Electronic Signature (RES)............................................ 24
Read Electronic Manufacturer ID & Device ID (REMS)............................................................................ 26
QPI ID Read (QPIID)................................................................................................................................ 27
Table 6. ID Definitions ...............................................................................................................................27
Read Status Register (RDSR).................................................................................................................. 28
Write Status Register (WRSR).................................................................................................................. 32
Table 7. Protection Modes..........................................................................................................................33
Read Data Bytes (READ)......................................................................................................................... 36
Read Data Bytes at Higher Speed (FAST_READ)................................................................................... 37
Dual Read Mode (DREAD)....................................................................................................................... 39
2 x I/O Read Mode (2READ).................................................................................................................... 40
Quad Read Mode (QREAD)..................................................................................................................... 41
4 x I/O Read Mode (4READ).................................................................................................................... 42
Burst Read................................................................................................................................................ 45
Performance Enhance Mode.................................................................................................................... 46
Performance Enhance Mode Reset.......................................................................................................... 49
Sector Erase (SE)..................................................................................................................................... 50
Block Erase (BE32K)................................................................................................................................ 51
Block Erase (BE)...................................................................................................................................... 52
Chip Erase (CE)........................................................................................................................................ 53
Page Program (PP).................................................................................................................................. 54
4 x I/O Page Program (4PP)..................................................................................................................... 56
Deep Power-down (DP)............................................................................................................................ 57
Enter Secured OTP (ENSO)..................................................................................................................... 58
2
REV. 1.2, OCT. 23, 2013
MX25U6435F
9-26. Exit Secured OTP (EXSO)........................................................................................................................ 58
9-27. Read Security Register (RDSCUR).......................................................................................................... 58
Table 8. Security Register Definition..........................................................................................................59
9-28. Write Security Register (WRSCUR).......................................................................................................... 59
9-29. Write Protection Selection (WPSEL)......................................................................................................... 60
9-30. Single Block Lock/Unlock Protection (SBLK/SBULK)............................................................................... 63
9-31. Read Block Lock Status (RDBLOCK)....................................................................................................... 65
9-32. Gang Block Lock/Unlock (GBLK/GBULK)................................................................................................ 65
9-33. Program/ Erase Suspend/ Resume.......................................................................................................... 66
9-34. Erase Suspend......................................................................................................................................... 66
9-35. Program Suspend..................................................................................................................................... 66
9-36. Write-Resume........................................................................................................................................... 68
9-37. No Operation (NOP)................................................................................................................................. 68
9-38. Software Reset (Reset-Enable (RSTEN) and Reset (RST)).................................................................... 68
9-39. Read SFDP Mode (RDSFDP)................................................................................................................... 70
Table 9. Signature and Parameter Identification Data Values ...................................................................71
Table 10. Parameter Table (0): JEDEC Flash Parameter Tables...............................................................72
Table 11. Parameter Table (1): Macronix Flash Parameter Tables.............................................................74
10. RESET.................................................................................................................................................................. 76
Table 12. Reset Timing...............................................................................................................................76
11. POWER-ON STATE.............................................................................................................................................. 77
12. ELECTRICAL SPECIFICATIONS......................................................................................................................... 78
Table 13. Absolute Maximum Ratings........................................................................................................78
Table 14. Capacitance................................................................................................................................78
Table 15. DC Characteristics......................................................................................................................80
Table 16. AC Characteristics .....................................................................................................................81
13. OPERATING CONDITIONS.................................................................................................................................. 83
Table 17. Power-Up Timing and VWI Threshold........................................................................................85
13-1. Initial Delivery State.................................................................................................................................. 85
14. ERASE AND PROGRAMMING PERFORMANCE............................................................................................... 86
15. LATCH-UP CHARACTERISTICS......................................................................................................................... 86
16. ORDERING INFORMATION................................................................................................................................. 87
17. PART NAME DESCRIPTION................................................................................................................................ 88
18. PACKAGE INFORMATION................................................................................................................................... 89
19. REVISION HISTORY ............................................................................................................................................ 91
P/N: PM1978
3
REV. 1.2, OCT. 23, 2013
MX25U6435F
1.8V 64M-BIT [x 1/x 2/x 4] CMOS MXSMIO® (SERIAL MULTI I/O)
FLASH MEMORY
1. FEATURES
GENERAL
• Serial Peripheral Interface compatible -- Mode 0 and Mode 3
• 67,108,864 x 1 bit structure or 33,554,432 x 2 bits (two I/O mode) structure or 16,777,216 x 4 bits (four I/O
mode) structure
• Equal Sectors with 4K byte each, or Equal Blocks with 32K byte each or Equal Blocks with 64K byte each
- Any Block can be erased individually
• Single Power Supply Operation
- 1.65 to 2.0 volt for read, erase, and program operations
• Latch-up protected to 100mA from -1V to Vcc +1V
• Low Vcc write inhibit is from 1.0V to 1.4V
PERFORMANCE
• High Performance
- Fast read for SPI mode
- 1 I/O: 104MHz with 8 dummy cycles
- 2 I/O: 84MHz with 4 dummy cycles, equivalent to 168MHz
- 4 I/O: 104MHz with 2+4 dummy cycles, equivalent to 416MHz
- Fast read for QPI mode
- 4 I/O: 84MHz with 2+2 dummy cycles, equivalent to 336MHz
- 4 I/O: 104MHz with 2+4 dummy cycles, equivalent to 416MHz
- Fast program time: 0.5ms(typ.) and 3ms(max.)/page (256-byte per page)
- Byte program time: 12us (typical)
- 8/16/32/64 byte Wrap-Around Burst Read Mode
- Fast erase time: 35ms (typ.)/sector (4K-byte per sector); 200ms(typ.)/block (32K-byte per block), 350ms(typ.) /
block (64K-byte per block)
• Low Power Consumption
- Low active read current: 20mA(typ.) at 104MHz, 15mA(typ.) at 84MHz
- Low active erase current: 18mA (typ.) at Sector Erase, Block Erase (32KB/64KB); 20mA at Chip Erase
- Low active programming current: 20mA (typ.)
- Standby current: 15uA (typ.)
• Deep Power Down: 1.5uA(typ.)
• Typical 100,000 erase/program cycles
• 20 years data retention
SOFTWARE FEATURES
• Input Data Format
- 1-byte Command code
• Advanced Security Features
- Block lock protection
The BP0-BP3 status bit defines the size of the area to be software protection against program and erase instructions
- Additional 4k-bit secured OTP for unique identifier
• Auto Erase and Auto Program Algorithm
- Automatically erases and verifies data at selected sector or block
- Automatically programs and verifies data at selected page by an internal algorithm that automatically times the
program pulse widths (Any page to be programed should have page in the erased state first)
P/N: PM1978
4
REV. 1.2, OCT. 23, 2013
MX25U6435F
•
•
•
•
•
Status Register Feature
Command Reset
Program/Erase Suspend
Electronic Identification
- JEDEC 1-byte manufacturer ID and 2-byte device ID
- RES command for 1-byte Device ID
- REMS command for 1-byte manufacturer ID and 1-byte device ID
Support Serial Flash Discoverable Parameters (SFDP) mode
HARDWARE FEATURES
• SCLK Input
- Serial clock input
• SI/SIO0
- Serial Data Input or Serial Data Input/Output for 2 x I/O read mode and 4 x I/O read mode
• SO/SIO1
- Serial Data Output or Serial Data Input/Output for 2 x I/O read mode and 4 x I/O read mode
• WP#/SIO2
- Hardware write protection or serial data Input/Output for 4 x I/O read mode
• RESET#/SIO3
- Hardware Reset pin or Serial input & Output for 4 x I/O read mode
• PACKAGE
-8-pin SOP (200mil)
-8-land WSON (6x5mm)
- All devices are RoHS Compliant and Halogen-free
P/N: PM1978
5
REV. 1.2, OCT. 23, 2013
MX25U6435F
2. GENERAL DESCRIPTION
MX25U6435F is 64Mb bits serial Flash memory, which is configured as 8,388,608 x 8 internally. When it is in two or
four I/O mode, the structure becomes 33,554,432 bits x 2 or 16,777,216 bits x 4. MX25U6435F feature a serial peripheral interface and software protocol allowing operation on a simple 3-wire bus while it is in single I/O mode. The
three bus signals are a clock input (SCLK), a serial data input (SI), and a serial data output (SO). Serial access to
the device is enabled by CS# input.
When it is in two I/O read mode, the SI pin and SO pin become SIO0 pin and SIO1 pin for address/dummy bits input and data output. When it is in four I/O read mode, the SI pin, SO pin, WP# pin and Reset# pin become SIO0
pin, SIO1 pin, SIO2 pin and SIO3 pin for address/dummy bits input and data output.
The MX25U6435F MXSMIO® (Serial Multi I/O) provides sequential read operation on whole chip.
After program/erase command is issued, auto program/ erase algorithms which program/ erase and verify the
specified page or sector/block locations will be executed. Program command is executed on byte basis, or page (256
bytes) basis, or word basis for erase command is executed on sector (4K-byte), block (32K-byte), or block (64K-byte),
or whole chip basis.
To provide user with ease of interface, a status register is included to indicate the status of the chip. The status read
command can be issued to detect completion status of a program or erase operation via WIP bit.
Advanced security features enhance the protection and security functions, please see security features section for
more details.
When the device is not in operation and CS# is high, it is put in standby mode and draws less than 30uA DC current.
The MX25U6435F utilizes Macronix's proprietary memory cell, which reliably stores memory contents even after
100,000 program and erase cycles.
P/N: PM1978
6
REV. 1.2, OCT. 23, 2013
MX25U6435F
Table 1. Additional Feature
Protection and Security
MX25U6435F
Flexible Block Protection (BP0-BP3)
V
4K-bit security OTP
V
Read Performance
MX25U6435F
I/O mode
I/O
Dummy Cycle
Frequency
P/N: PM1978
SPI
QPI
1 I/O
1I /2O
2 I/O
1I/4O
4 I/O
4 I/O
4 I/O
4 I/O
8
8
4
8
4
6
4
6
104MHz 104MHz 84 MHz 104MHz 84 MHz 104MHz 84 MHz 104MHz
7
REV. 1.2, OCT. 23, 2013
MX25U6435F
3. PIN CONFIGURATIONS
4. PIN DESCRIPTION
8-PIN SOP (200mil)
CS#
SO/SIO1
WP#/SIO2
GND
SYMBOL
CS#
1
2
3
4
8
7
6
5
DESCRIPTION
Chip Select
Serial Data Input (for 1 x I/O)/ Serial
SI/SIO0
Data Input & Output (for 2xI/O or 4xI/
O read mode)
Serial Data Output (for 1 x I/O)/ Serial
SO/SIO1
Data Input & Output (for 2xI/O or 4xI/
O read mode)
SCLK
Clock Input
Write protection: connect to GND or
WP#/SIO2 Serial Data Input & Output (for 4xI/O
read mode)
Hardware Reset Pin Active low or
RESET#/SIO3 Serial Data Input & Output (for 4xI/O
read mode)
VCC
+ 1.8V Power Supply
GND
Ground
VCC
RESET#/SIO3
SCLK
SI/SIO0
8-LAND WSON (6x5mm)
CS#
SO/SIO1
WP#/SIO2
GND
P/N: PM1978
1
2
3
4
8
7
6
5
VCC
RESET#/SIO3
SCLK
SI/SIO0
8
REV. 1.2, OCT. 23, 2013
MX25U6435F
5. BLOCK DIAGRAM
X-Decoder
Address
Generator
Memory Array
Page Buffer
SI/SIO0
Data
Register
Y-Decoder
SRAM
Buffer
CS#
WP#/SIO2
Reset#/SIO3
SCLK
Mode
Logic
State
Machine
HV
Generator
Clock Generator
Output
Buffer
SO/SIO1
P/N: PM1978
Sense
Amplifier
9
REV. 1.2, OCT. 23, 2013
MX25U6435F
6. DATA PROTECTION
During power transition, there may be some false system level signals which result in inadvertent erasure or programming. The device is designed to protect itself from these accidental write cycles.
The state machine will be reset as standby mode automatically during power up. In addition, the control register
architecture of the device constrains that the memory contents can only be changed after specific command sequences have completed successfully.
In the following, there are several features to protect the system from the accidental write cycles during VCC powerup and power-down or from system noise.
•
Power-on reset: to avoid sudden power switch by system power supply transition, the power-on reset may protect the Flash.
• Valid command length checking: The command length will be checked whether it is at byte base and completed
on byte boundary.
• Write Enable (WREN) command: WREN command is required to set the Write Enable Latch bit (WEL) before issuing other commands to change data.
•
Deep Power Down Mode: By entering deep power down mode, the flash device is under protected from writing
all commands except Release from deep power down mode command (RDP) and Read Electronic Signature
command (RES) and softreset command.
•
Advanced Security Features: there are some protection and security features which protect content from inadvertent write and hostile access.
I. Block lock protection
- The Software Protected Mode (SPM) use (BP3, BP2, BP1, BP0) bits to allow part of memory to be protected
as read only. The protected area definition is shown as "Table 2. Protected Area Sizes", the protected areas are
more flexible which may protect various area by setting value of BP0-BP3 bits.
- The Hardware Proteced Mode (HPM) use WP#/SIO2 to protect the (BP3, BP2, BP1, BP0) bits and Status Register Write Protect bit.
- In four I/O and QPI mode, the feature of HPM will be disabled.
P/N: PM1978
10
REV. 1.2, OCT. 23, 2013
MX25U6435F
Table 2. Protected Area Sizes
Status bit
Protect Level
BP3
0
0
0
0
0
0
0
0
1
BP2
0
0
0
0
1
1
1
1
0
BP1
0
0
1
1
0
0
1
1
0
BP0
0
1
0
1
0
1
0
1
0
1
0
0
1
9 (96 blocks, protected block 0th~95th)
1
0
1
0
10 (112 blocks, protected block 0th~111st)
1
0
1
1
11 (120 blocks, protected block 0th~119th)
1
1
0
0
12 (124 blocks, protected block 0th~123rd)
1
1
0
1
13 (126 blocks, protected block 0th~125th)
1
1
1
0
14 (127 blocks, protected block 0th~126th)
1
1
1
1
15 (128 blocks, protected all)
P/N: PM1978
0 (none)
1 (1 block, protected block 127th)
2 (2 blocks, protected block 126th~127th)
3 (4 blocks, protected block 124th~127th)
4 (8 blocks, protected block 120th~127th)
5 (16 blocks, protected block 112nd~127th)
6 (32 blocks, protected block 96th~127th)
7 (64 blocks, protected block 64th~127th)
8 (64 blocks, protected block 0th~63th)
11
REV. 1.2, OCT. 23, 2013
MX25U6435F
II. Additional 4K-bit secured OTP for unique identifier: to provide 4K-bit one-time program area for setting device unique serial number - Which may be set by factory or system customer.
- Security register bit 0 indicates whether the chip is locked by factory or not.
- To program the 4K-bit secured OTP by entering 4K-bit secured OTP mode (with Enter Security OTP command),
and going through normal program procedure, and then exiting 4K-bit secured OTP mode by writing Exit Security
OTP command.
- Customer may lock-down the customer lockable secured OTP by writing WRSCUR(write security register) command to set customer lock-down bit1 as "1". Please refer to "Table 8. Security Register Definition" for security
register bit definition and "Table 3. 4K-bit Secured OTP Definition" for address range definition.
- Note: Once lock-down whatever by factory or customer, it cannot be changed any more. While in 4K-bit secured
OTP mode, array access is not allowed.
Table 3. 4K-bit Secured OTP Definition
Address range
Size
Standard Factory Lock
xxx000~xxx00F
128-bit
ESN (electrical serial number)
xxx010~xxx1FF
3968-bit
N/A
P/N: PM1978
12
Customer Lock
Determined by customer
REV. 1.2, OCT. 23, 2013
MX25U6435F
7. MEMORY ORGANIZATION
Table 4. Memory Organization
Block(64K-byte) Block(32K-byte)
Sector (4K-byte)
126
252
individual block
lock/unlock unit:64K-byte
251
125
250
7F7FFFh
individual 16 sectors
lock/unlock unit:4K-byte
…
7F8FFFh
7F7000h
2032
7F0000h
7F0FFFh
2031
7EF000h
7EFFFFh
…
253
7F8000h
2039
2024
7E8000h
7E8FFFh
2023
7E7000h
7E7FFFh
…
254
2040
2016
7E0000h
7E0FFFh
2015
7DF000h
7DFFFFh
…
127
7FFFFFh
2008
7D8000h
7D8FFFh
2007
7D7000h
7D7FFFh
2000
7D0000h
7D0FFFh
47
02F000h
02FFFFh
…
255
Address Range
7FF000h
…
2047
1
2
1
0
0
027FFFh
…
028FFFh
027000h
32
020000h
020FFFh
31
01F000h
01FFFFh
…
3
028000h
39
24
018000h
018FFFh
23
017000h
017FFFh
…
4
individual block
lock/unlock unit:64K-byte
40
16
010000h
010FFFh
15
00F000h
00FFFFh
…
2
8
008000h
008FFFh
7
007000h
007FFFh
000000h
000FFFh
0
P/N: PM1978
individual 16 sectors
lock/unlock unit:4K-byte
…
5
…
individual block
lock/unlock unit:64K-byte
13
REV. 1.2, OCT. 23, 2013
MX25U6435F
8. DEVICE OPERATION
1. Before a command is issued, status register should be checked to ensure device is ready for the intended operation.
2. When incorrect command is inputted to this device, it enters standby mode and remains in standby mode until
next CS# falling edge. In standby mode, SO pin of the device is High-Z.
3. When correct command is inputted to this device, it enters active mode and remains in active mode until next
CS# rising edge.
4. Input data is latched on the rising edge of Serial Clock (SCLK) and data shifts out on the falling edge of SCLK.
The difference of Serial mode 0 and mode 3 is shown as "Serial Modes Supported".
5. For the following instructions: RDID, RDSR, RDSCUR, READ, FAST_READ, DREAD, 2READ, 4READ, QREAD,
W4READ, RDSFDP, RES, REMS, QPIID, RDBLOCK, the shifted-in instruction sequence is followed by a dataout sequence. After any bit of data being shifted out, the CS# can be high. For the following instructions: WREN,
WRDI, WRSR, SE, BE32K, BE, CE, PP, 4PP, DP, ENSO, EXSO, WRSCUR, WPSEL, SBLK, SBULK, GBULK,
SUSPEND, RESUME, NOP, RSTEN, RST, EQIO, RSTQIO the CS# must go high exactly at the byte boundary;
otherwise, the instruction will be rejected and not executed.
6. While a Write Status Register, Program or Erase operation is in progress, access to the memory array is neglected and will not affect the current operation of Write Status Register, Program, Erase.
Figure 1. Serial Modes Supported
CPOL
CPHA
shift in
(Serial mode 0)
0
0
SCLK
(Serial mode 3)
1
1
SCLK
SI
shift out
MSB
SO
MSB
Note:
CPOL indicates clock polarity of Serial master, CPOL=1 for SCLK high while idle, CPOL=0 for SCLK low while not
transmitting. CPHA indicates clock phase. The combination of CPOL bit and CPHA bit decides which Serial mode is
supported.
P/N: PM1978
14
REV. 1.2, OCT. 23, 2013
MX25U6435F
Figure 2. Serial Input Timing
tSHSL
CS#
tCHSL
tSLCH
tCHSH
tSHCH
SCLK
tDVCH
tCHCL
tCHDX
tCLCH
LSB
MSB
SI
High-Z
SO
Figure 3. Output Timing
CS#
tCH
SCLK
tCLQV
tCLQX
tCL
tCLQV
tCLQX
LSB
SO
SI
P/N: PM1978
tSHQZ
ADDR.LSB IN
15
REV. 1.2, OCT. 23, 2013
MX25U6435F
8-1. Quad Peripheral Interface (QPI) Read Mode
QPI protocol enables user to take full advantage of Quad I/O Serial Flash by providing the Quad I/O interface in
command cycles, address cycles and as well as data output cycles.
Enable QPI mode
By issuing 35H command, the QPI mode is enabled.
Figure 4. Enable QPI Sequence (Command 35H)
CS#
MODE 3
SCLK
0
1
2
3
4
5
6
7
MODE 0
SIO0
35
SIO[3:1]
Reset QPI (RSTQIO)
To reset the QPI mode, the RSTQIO (F5H) command is required. After the RSTQIO command is issued, the device
returns from QPI mode (4 I/O interface in command cycles) to SPI mode (1 I/O interface in command cycles).
Note:
For EQIO and RSTQIO commands, CS# high width has to follow "write spec" tSHSL for next instruction.
Figure 5. Reset QPI Mode (Command F5H)
CS#
SCLK
SIO[3:0]
P/N: PM1978
F5
16
REV. 1.2, OCT. 23, 2013
MX25U6435F
9. COMMAND DESCRIPTION
Table 5. Command Set
Read/Write Array Commands
Mode
SPI
SPI/QPI
SPI
SPI
2READ
(2 x I/O read
command) Note1
BB (hex)
SPI/QPI
SPI
4READ
(4 x I/O read)
W4READ
1st byte
03 (hex)
0B (hex)
DREAD
(1I / 2O read
command)
3B (hex)
EB (hex)
E7 (hex)
2nd byte
ADD1(8)
ADD1(8)
ADD1(8)
ADD1(4)
ADD1(2)
ADD1
3rd byte
ADD2(8)
ADD2(8)
ADD2(8)
ADD2(4)
ADD2(2)
ADD2
4th byte
ADD3(8)
ADD3(8)
ADD3(8)
ADD3(4)
ADD3(2)
ADD3
Action
n bytes read out
until CS# goes
high
Dummy(8)/(4)*
n bytes read out
until CS# goes
high
Dummy(8)
n bytes read out
by Dual Output
until CS# goes
high
Dummy(4)
n bytes read out
by 2 x I/O until
CS# goes high
Dummy(6)
Quad I/O read
with 6 dummy
cycles
Dummy(4)
Quad I/O read
for with 4 dummy
cycles
Mode
SPI
SPI/QPI
SPI
SPI/QPI
SPI/QPI
SPI/QPI
Command
(byte)
QREAD
(1I/4O read)
PP
(page program)
1st byte
6B (hex)
02 (hex)
BE 32K
(block erase
32KB)
52 (hex)
BE
(block erase
64KB)
D8 (hex)
Command
(byte)
READ
(normal read)
5th byte
FAST READ
(fast read data)
4PP
(quad page
program)
38 (hex)
SE
(sector erase)
20 (hex)
2nd byte
ADD1(8)
ADD1
ADD1
ADD1
ADD1
ADD1
3rd byte
ADD2(8)
ADD2
ADD2
ADD2
ADD2
ADD2
4th byte
ADD3(8)
ADD3
ADD3
ADD3
ADD3
ADD3
5th byte
Dummy(8)
n bytes read out
by Quad output
until CS# goes
high
to program the
selected page
quad input to
program the
selected page
to erase the
selected sector
to erase the
selected 32K
block
to erase the
selected block
Action
Mode
SPI/QPI
Command
(byte)
1st byte
CE
(chip erase)
60 or C7 (hex)
2nd byte
3rd byte
4th byte
5th byte
to erase whole
chip
Action
* The fast read command (0Bh) when under QPI mode, the dummy cycle is 4 clocks.
P/N: PM1978
17
REV. 1.2, OCT. 23, 2013
MX25U6435F
Register/Setting Commands
SPI/QPI
RDSR
(read status
register)
SPI/QPI
WRSR
(write status
register)
SPI/QPI
WPSEL
(Write Protect
Selection)
SPI/QPI
04 (hex)
05 (hex)
01 (hex)
68 (hex)
35 (hex)
to enter and
enable individal
block protect
mode
Entering the QPI
mode
Command
(byte)
WREN
(write enable)
WRDI
(write disable)
Mode
SPI/QPI
1st byte
06 (hex)
2nd byte
EQIO
(Enable QPI)
SPI
Values
3rd byte
4th byte
5th byte
Action
sets the (WEL) resets the (WEL)
write enable latch write enable latch
bit
bit
Command
(byte)
RSTQIO
(Reset QPI)
Mode
1st byte
QPI
F5 (hex)
PGM/ERS
Suspend
(Suspends
Program/Erase)
SPI/QPI
B0 (hex)
to read out the
values of the
status register
PGM/ERS
Resume
(Resumes
Program/Erase)
SPI/QPI
30 (hex)
to write new
values of the
status register
DP
(Deep power
down)
SPI/QPI
B9 (hex)
2nd byte
RDP
(Release from
deep power
down)
SPI/QPI
AB (hex)
SBL
(Set Burst Length)
SPI/QPI
C0 (hex)
Value
3rd byte
4th byte
5th byte
Action
P/N: PM1978
Exiting the QPI
mode
enters deep
power down
mode
18
release from
to set Burst length
deep power down
mode
REV. 1.2, OCT. 23, 2013
MX25U6435F
ID/Security Commands
Command
(byte)
Mode
1st byte
RDID
RES (read
(read identificelectronic ID)
ation)
SPI
9F (hex)
SPI/QPI
AB (hex)
REMS (read
electronic
QPIID
manufacturer (QPI ID Read)
& device ID)
SPI
QPI
90 (hex)
AF (hex)
RDSFDP
SPI/QPI
5A (hex)
2nd byte
x
x
ADD1(8)
3rd byte
x
x
ADD2(8)
4th byte
x
ADD (Note 2)
ID in QPI
interface
Dummy(8)
Read SFDP
mode
SBLK
(single block
lock
SPI/QPI
36 (hex)
SBULK
(single block
unlock)
SPI/QPI
39 (hex)
RDBLOCK
(block protect
read)
SPI/QPI
3C (hex)
2nd byte
ADD1
ADD1
ADD1
3rd byte
ADD2
ADD2
ADD2
4th byte
ADD3
ADD3
ADD3
Action
COMMAND
(byte)
Mode
1st byte
RDSCUR
WRSCUR
(read security (write security
register)
register)
SPI/QPI
SPI/QPI
2B (hex)
2F (hex)
SPI/QPI
B1 (hex)
SPI/QPI
C1 (hex)
ADD3(8)
5th byte
outputs JEDEC to read out
output the
ID: 1-byte
1-byte Device Manufacturer
ID & Device ID
Manufacturer
ID
ID & 2-byte
Device ID
ENSO (enter EXSO (exit
secured OTP) secured OTP)
to enter the to exit the 4K4K-bit secured bit secured
OTP mode
OTP mode
GBLK
(gang block
lock)
SPI/QPI
7E (hex)
GBULK
(gang block
unlock)
SPI/QPI
98 (hex)
whole chip
write protect
whole chip
unprotect
5th byte
Action
P/N: PM1978
individual block read individual
to read value to set the lockindividual
down bit as
block (64K(64K-byte) or block or sector
of security
write protect
register
"1" (once lock- byte) or sector sector (4Kstatus
down, cannot (4K-byte) write byte) unprotect
be update)
protect
19
REV. 1.2, OCT. 23, 2013
MX25U6435F
Reset Commands
Mode
SPI/QPI
SPI/QPI
RST
(Reset
Memory)
SPI/QPI
1st byte
00 (hex)
66 (hex)
99 (hex)
FF (hex)
(Note 4)
All these
commands
FFh, 00h, AAh
or 55h will
escape the
performance
mode
COMMAND
(byte)
NOP
RSTEN
(No Operation) (Reset Enable)
Release Read
Enhanced
SPI/QPI
2nd byte
3rd byte
4th byte
5th byte
Action
Note 1: The count base is 4-bit for ADD(2) and Dummy(2) because of 2 x I/O. And the MSB is on SO/SIO1 which is different
from 1 x I/O condition.
Note 2: ADD=00H will output the manufacturer ID first and ADD=01H will output device ID first.
Note 3: It is not recommended to adopt any other code not in the command definition table, which will potentially enter the hidden mode.
Note 4: Before executing RST command, RSTEN command must be executed. If there is any other command to interfere, the
reset operation will be disabled.
Note 5: The number in parentheses after "ADD" or "Data" stands for how many clock cycles it has. For example, "Data(8)"
represents there are 8 clock cycles for the data in.
P/N: PM1978
20
REV. 1.2, OCT. 23, 2013
MX25U6435F
9-1. Write Enable (WREN)
The Write Enable (WREN) instruction is for setting Write Enable Latch (WEL) bit. For those instructions like PP, 4PP,
SE, BE32K, BE, CE, and WRSR, which are intended to change the device content WEL bit should be set every time
after the WREN instruction setting the WEL bit.
The sequence of issuing WREN instruction is: CS# goes low→sending WREN instruction code→ CS# goes high.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are "don't care"
in SPI mode.
Figure 6. Write Enable (WREN) Sequence (SPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
SCLK
Mode 0
Command
SI
06h
High-Z
SO
Figure 7. Write Enable (WREN) Sequence (QPI Mode)
CS#
0
Mode 3
1
SCLK
Mode 0
Command
06h
SIO[3:0]
P/N: PM1978
21
REV. 1.2, OCT. 23, 2013
MX25U6435F
9-2. Write Disable (WRDI)
The Write Disable (WRDI) instruction is to reset Write Enable Latch (WEL) bit.
The sequence of issuing WRDI instruction is: CS# goes low→sending WRDI instruction code→CS# goes high.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are "don't care"
in SPI mode.
The WEL bit is reset by following situations:
- Power-up
- Reset# pin driven low
- Completion of Write Disable (WRDI) instruction
- Completion of Write Status Register (WRSR) instruction
- Completion of Page Program (PP) instruction
- Completion of Quad Page Program (4PP) instruction
- Completion of Sector Erase (SE) instruction
- Completion of Block Erase 32KB (BE32K) instruction
- Completion of Block Erase (BE) instruction
- Completion of Chip Erase (CE) instruction
- Program/Erase Suspend
- Completion of Softreset command
- Completion of Write Security Register (WRSCUR) command
- Completion of Write Protection Selection (WPSEL) command
Figure 8. Write Disable (WRDI) Sequence (SPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
SCLK
Mode 0
Command
SI
04h
High-Z
SO
Figure 9. Write Disable (WRDI) Sequence (QPI Mode)
CS#
0
Mode 3
1
SCLK
Mode 0
Command
04h
SIO[3:0]
P/N: PM1978
22
REV. 1.2, OCT. 23, 2013
MX25U6435F
9-3. Read Identification (RDID)
The RDID instruction is for reading the manufacturer ID of 1-byte and followed by Device ID of 2-byte. The Macronix Manufacturer ID and Device ID are listed as "Table 6. ID Definitions".
The sequence of issuing RDID instruction is: CS# goes low→ sending RDID instruction code→24-bits ID data out
on SO→ to end RDID operation can drive CS# to high at any time during data out.
While Program/Erase operation is in progress, it will not decode the RDID instruction, therefore there's no effect on
the cycle of program/erase operation which is currently in progress. When CS# goes high, the device is at standby
stage.
Figure 10. Read Identification (RDID) Sequence (SPI mode only)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18
28 29 30 31
SCLK
Mode 0
Command
SI
9Fh
Manufacturer Identification
SO
High-Z
7
6
5
3
MSB
P/N: PM1978
2
1
Device Identification
0 15 14 13
3
2
1
0
MSB
23
REV. 1.2, OCT. 23, 2013
MX25U6435F
9-4. Release from Deep Power-down (RDP), Read Electronic Signature (RES)
The Release from Deep Power-down (RDP) instruction is terminated by driving Chip Select (CS#) High. When Chip
Select (CS#) is driven High, the device is put in the Stand-by Power mode. If the device was not previously in the
Deep Power-down mode, the transition to the Stand-by Power mode is immediate. If the device was previously
in the Deep Power-down mode, the transition to the Stand-by Power mode is delayed by tRES2, and Chip Select
(CS#) must remain High for at least tRES2(max), as specified in "Table 16. AC Characteristics". Once in the Standby Power mode, the device waits to be selected, so that it can receive, decode and execute instructions. The RDP
instruction is only for releasing from Deep Power Down Mode. Reset# pin goes low will release the Flash from deep
power down mode.
RES instruction is for reading out the old style of 8-bit Electronic Signature, whose values are shown as "Table 6.
ID Definitions". This is not the same as RDID instruction. It is not recommended to use for new design. For new design, please use RDID instruction.
Even in Deep power-down mode, the RDP and RES are also allowed to be executed, only except the device is in
progress of program/erase/write cycle; there's no effect on the current program/erase/write cycle in progress.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are "don't care"
in SPI mode.
The RES instruction is ended by CS# goes high after the ID been read out at least once. The ID outputs repeatedly if continuously send the additional clock cycles on SCLK while CS# is at low. If the device was not previously
in Deep Power-down mode, the device transition to standby mode is immediate. If the device was previously in
Deep Power-down mode, there's a delay of tRES2 to transit to standby mode, and CS# must remain to high at least
tRES2(max). Once in the standby mode, the device waits to be selected, so it can be receive, decode, and execute
instruction.
Figure 11. Read Electronic Signature (RES) Sequence (SPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31 32 33 34 35 36 37 38
SCLK
Mode 0
Command
SI
ABh
tRES2
3 Dummy Bytes
23 22 21
3
2
1
0
MSB
SO
Electronic Signature Out
High-Z
7
6
5
4
3
2
1
0
MSB
Deep Power-down Mode
P/N: PM1978
24
Stand-by Mode
REV. 1.2, OCT. 23, 2013
MX25U6435F
Figure 12. Read Electronic Signature (RES) Sequence (QPI Mode)
CS#
MODE 3
0
1
2
3
4
5
6
7
SCLK
MODE 0
3 Dummy Bytes
Command
SIO[3:0]
X
ABh
X
X
X
X
X
H0
L0
MSB LSB
Data In
Data Out
Stand-by Mode
Deep Power-down Mode
Figure 13. Release from Deep Power-down (RDP) Sequence (SPI Mode)
CS#
0
Mode 3
1
2
3
4
5
6
tRES1
7
SCLK
Mode 0
Command
SI
ABh
High-Z
SO
Deep Power-down Mode
Stand-by Mode
Figure 14. Release from Deep Power-down (RDP) Sequence (QPI Mode)
CS#
Mode 3
tRES1
0
1
SCLK
Mode 0
Command
SIO[3:0]
ABh
Deep Power-down Mode
P/N: PM1978
25
Stand-by Mode
REV. 1.2, OCT. 23, 2013
MX25U6435F
9-5. Read Electronic Manufacturer ID & Device ID (REMS)
The REMS instruction is an alternative to the Release from Power-down/Device ID instruction that provides both the
JEDEC assigned manufacturer ID and the specific device ID.
The REMS instruction is very similar to the Release from Power-down/Device ID instruction. The instruction is initiated by driving the CS# pin low and shift the instruction code "90h" followed by two dummy bytes and one bytes address (A7~A0). After which, the Manufacturer ID for Macronix (C2h) and the Device ID are shifted out on the falling
edge of SCLK with most significant bit (MSB) first. The Device ID values are listed in "Table 6. ID Definitions". If the
one-byte address is initially set to 01h, then the device ID will be read first and then followed by the Manufacturer
ID. The Manufacturer and Device IDs can be read continuously, alternating from one to the other. The instruction is
completed by driving CS# high.
Figure 15. Read Electronic Manufacturer & Device ID (REMS) Sequence (SPI Mode only)
CS#
SCLK
Mode 3
0
1
2
Mode 0
3
4
5
6
7
8
Command
SI
9 10
2 Dummy Bytes
15 14 13
90h
3
2
1
0
High-Z
SO
CS#
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
SCLK
ADD (1)
SI
7
6
5
4
3
2
1
0
Manufacturer ID
SO
7
6
5
4
3
2
1
Device ID
0
7
6
5
4
3
2
MSB
MSB
1
0
7
MSB
Notes:
(1) ADD=00H will output the manufacturer's ID first and ADD=01H will output device ID first.
(2) Instruction is either 90(hex).
P/N: PM1978
26
REV. 1.2, OCT. 23, 2013
MX25U6435F
9-6. QPI ID Read (QPIID)
User can execute this QPIID Read instruction to identify the Device ID and Manufacturer ID. The sequence of
issue QPIID instruction is CS# goes low→sending QPI ID instruction→→Data out on SO→CS# goes high. Most
significant bit (MSB) first.
After the command cycle, the device will immediately output data on the falling edge of SCLK. The manufacturer ID,
memory type, and device ID data byte will be output continuously, until the CS# goes high.
Table 6. ID Definitions
Command Type
Command
RDID / QPIID
9Fh / AFh
RES
ABh
REMS
90h
P/N: PM1978
MX25U6435F
Manufactory ID
C2
Manufactory ID
C2
Memory type
25
Electronic ID
37
Device ID
37
27
Memory density
37
REV. 1.2, OCT. 23, 2013
MX25U6435F
9-7. Read Status Register (RDSR)
The RDSR instruction is for reading Status Register Bits. The Read Status Register can be read at any time (even
in program/erase/write status register condition). It is recommended to check the Write in Progress (WIP) bit before
sending a new instruction when a program, erase, or write status register operation is in progress.
The sequence of issuing RDSR instruction is: CS# goes low→ sending RDSR instruction code→ Status Register data
out on SO.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are "don't care"
in SPI mode.
Figure 16. Read Status Register (RDSR) Sequence (SPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15
SCLK
Mode 0
command
05h
SI
SO
Status Register Out
High-Z
7
6
5
4
3
2
Status Register Out
1
0
7
6
5
4
3
2
1
0
7
MSB
MSB
Figure 17. Read Status Register (RDSR) Sequence (QPI Mode)
CS#
Mode 3 0
1
2
3
4
5
6
7
8
N
SCLK
Mode 0
SIO[3:0]
05h H0 L0 H0 L0 H0 L0
H0 L0
MSB LSB
Status Byte Status Byte Status Byte
P/N: PM1978
28
Status Byte
REV. 1.2, OCT. 23, 2013
MX25U6435F
For user to check if Program/Erase operation is finished or not, RDSR instruction flow are shown as follows:
Figure 18. Program/Erase flow with read array data
start
WREN command
RDSR command*
WEL=1?
No
Yes
Program/erase command
Write program data/address
(Write erase address)
RDSR command
WIP=0?
No
Yes
RDSR command
Read WEL=0, BP[3:0], QE,
and SRWD data
Read array data
(same address of PGM/ERS)
Verify OK?
No
Yes
Program/erase successfully
Program/erase
another block?
No
Program/erase fail
Yes
* Issue RDSR to check BP[3:0].
* If WPSEL = 1, issue RDBLOCK to check the block status.
Program/erase completed
P/N: PM1978
29
REV. 1.2, OCT. 23, 2013
MX25U6435F
Figure 19. Program/Erase flow without read array data (read P_FAIL/E_FAIL flag)
start
WREN command
RDSR command*
WEL=1?
No
Yes
Program/erase command
Write program data/address
(Write erase address)
RDSR command
WIP=0?
No
Yes
RDSR command
Read WEL=0, BP[3:0], QE,
and SRWD data
RDSCUR command
Yes
P_FAIL/E_FAIL =1 ?
No
Program/erase fail
Program/erase successfully
Program/erase
another block?
No
Yes
* Issue RDSR to check BP[3:0].
* If WPSEL = 1, issue RDBLOCK to check the block status.
Program/erase completed
P/N: PM1978
30
REV. 1.2, OCT. 23, 2013
MX25U6435F
Status Register
The definition of the status register bits is as below:
WIP bit. The Write in Progress (WIP) bit, a volatile bit, indicates whether the device is busy in program/erase/write status register progress. When WIP bit sets to 1, which means the device is busy in program/erase/write status register
progress. When WIP bit sets to 0, which means the device is not in progress of program/erase/write status register
cycle.
WEL bit. The Write Enable Latch (WEL) bit, a volatile bit, indicates whether the device is set to internal write enable
latch. When WEL bit sets to 1, which means the internal write enable latch is set, the device can accept program/
erase/write status register instruction. When WEL bit sets to 0, which means no internal write enable latch; the device
will not accept program/erase/write status register instruction. The program/erase command will be ignored if it is applied to a protected memory area. To ensure both WIP bit & WEL bit are both set to 0 and available for next program/
erase/operations, WIP bit needs to be confirm to be 0 before polling WEL bit. After WIP bit confirmed, WEL bit needs
to be confirmed as 0.
BP3, BP2, BP1, BP0 bits. The Block Protect (BP3, BP2, BP1, BP0) bits, non-volatile bits, indicate the protected area (as
defined in "Table 2. Protected Area Sizes") of the device to against the program/erase instruction without hardware
protection mode being set. To write the Block Protect (BP3, BP2, BP1, BP0) bits requires the Write Status Register (WRSR)
instruction to be executed. Those bits define the protected area of the memory to against Page Program (PP), Sector
Erase (SE), Block Erase 32KB (BE32K), Block Erase (BE) and Chip Erase (CE) instructions (only if Block Protect bits
(BP3:BP0) set to 0, the CE instruction can be executed). The BP3, BP2, BP1, BP0 bits are "0" as default, which is unprotected.
QE bit. The Quad Enable (QE) bit, non-volatile bit, while it is "0" (factory default), it performs non-Quad and WP#,
RESET# are enable. While QE is "1", it performs Quad I/O mode and WP#, RESET# are disabled. In the other
word, if the system goes into four I/O mode (QE=1), the feature of HPM and RESET will be disabled.
SRWD bit. The Status Register Write Disable (SRWD) bit, non-volatile bit, is operated together with Write Protection
(WP#/SIO2) pin for providing hardware protection mode. The hardware protection mode requires SRWD sets to 1 and
WP#/SIO2 pin signal is low stage. In the hardware protection mode, the Write Status Register (WRSR) instruction is
no longer accepted for execution and the SRWD bit and Block Protect bits (BP3, BP2, BP1, BP0) are read only. The
SRWD bit defaults to be "0".
Status Register
bit7
SRWD (status
register write
protect)
bit6
QE
(Quad
Enable)
bit5
BP3
(level of
protected
block)
bit4
BP2
(level of
protected
block)
1=Quad
1=status
Enable
register write
(note 1)
(note 1)
0=not Quad
disable
Enable
Non-volatile Non-volatile Non-volatile Non-volatile
bit
bit
bit
bit
Note 1: see the "Table 2. Protected Area Sizes".
P/N: PM1978
bit3
BP1
(level of
protected
block)
bit2
BP0
(level of
protected
block)
(note 1)
(note 1)
Non-volatile
bit
Non-volatile
bit
31
bit1
bit0
WEL
WIP
(write enable
(write in
latch)
progress bit)
1=write
1=write
enable
operation
0=not write 0=not in write
enable
operation
volatile bit
volatile bit
REV. 1.2, OCT. 23, 2013
MX25U6435F
9-8. Write Status Register (WRSR)
The WRSR instruction is for changing the values of Status Register Bits. Before sending WRSR instruction, the
Write Enable (WREN) instruction must be decoded and executed to set the Write Enable Latch (WEL) bit in advance. The WRSR instruction can change the value of Block Protect (BP3, BP2, BP1, BP0) bits to define the protected area of memory (as shown in "Table 2. Protected Area Sizes"). The WRSR also can set or reset the Quad
enable (QE) bit and set or reset the Status Register Write Disable (SRWD) bit in accordance with Write Protection (WP#/
SIO2) pin signal, but has no effect on bit1(WEL) and bit0 (WIP) of the status register. The WRSR instruction cannot
be executed once the Hardware Protected Mode (HPM) is entered.
The sequence of issuing WRSR instruction is: CS# goes low→ sending WRSR instruction code→ Status Register
data on SI→CS# goes high.
The CS# must go high exactly at the 8 bites or 16 bits data boundary; otherwise, the instruction will be rejected and
not executed. The self-timed Write Status Register cycle time (tW) is initiated as soon as Chip Select (CS#) goes
high. The Write in Progress (WIP) bit still can be checked during the Write Status Register cycle is in progress. The
WIP sets 1 during the tW timing, and sets 0 when Write Status Register Cycle is completed, and the Write Enable
Latch (WEL) bit is reset.
Figure 20. Write Status Register (WRSR) Sequence (SPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15
SCLK
Mode 0
command
SI
Status
Register In
01h
7
4
5
3
2
1
0
MSB
High-Z
SO
6
Note : The CS# must go high exactly at 8 bits or 16 bits data boundary to completed the write register command.
Figure 21. Write Status Register (WRSR) Sequence (QPI Mode)
CS#
Mode 3
0
1
2
3
Mode 3
SCLK
Mode 0
Mode 0
Command
SIO[3:0]
P/N: PM1978
01h
32
SR in
H0
L0
REV. 1.2, OCT. 23, 2013
MX25U6435F
Software Protected Mode (SPM):
- When SRWD bit=0, no matter WP#/SIO2 is low or high, the WREN instruction may set the WEL bit and can
change the values of SRWD, BP3, BP2, BP1, BP0. The protected area, which is defined by BP3, BP2, BP1,
BP0, is at software protected mode (SPM).
- When SRWD bit=1 and WP#/SIO2 is high, the WREN instruction may set the WEL bit can change the values of
SRWD, BP3, BP2, BP1, BP0. The protected area, which is defined by BP3, BP2, BP1, BP0, is at software protected mode (SPM)
Note:
If SRWD bit=1 but WP#/SIO2 is low, it is impossible to write the Status Register even if the WEL bit has previously
been set. It is rejected to write the Status Register and not be executed.
Hardware Protected Mode (HPM):
- When SRWD bit=1, and then WP#/SIO2 is low (or WP#/SIO2 is low before SRWD bit=1), it enters the hardware
protected mode (HPM). The data of the protected area is protected by software protected mode by BP3, BP2,
BP1, BP0 and hardware protected mode by the WP#/SIO2 to against data modification.
Note:
To exit the hardware protected mode requires WP#/SIO2 driving high once the hardware protected mode is entered.
If the WP#/SIO2 pin is permanently connected to high, the hardware protected mode can never be entered; only can
use software protected mode via BP3, BP2, BP1, BP0.
If the system enter QPI or set QE=1, the feature of HPM will be disabled.
Table 7. Protection Modes
Mode
Software protection
mode (SPM)
Hardware protection
mode (HPM)
Status register condition
WP# and SRWD bit status
Memory
Status register can be written
in (WEL bit is set to "1") and
the SRWD, BP0-BP3
bits can be changed
WP#=1 and SRWD bit=0, or
WP#=0 and SRWD bit=0, or
WP#=1 and SRWD=1
The protected area
cannot
be program or erase.
The SRWD, BP0-BP3 of
status register bits cannot be
changed
WP#=0, SRWD bit=1
The protected area
cannot
be program or erase.
Note:
1. As defined by the values in the Block Protect (BP3, BP2, BP1, BP0) bits of the Status Register, as shown in "Table 2. Protected Area Sizes".
P/N: PM1978
33
REV. 1.2, OCT. 23, 2013
MX25U6435F
Figure 22. WRSR flow
start
WREN command
RDSR command
WEL=1?
No
Yes
WRSR command
Write status register
data
RDSR command
WIP=0?
No
Yes
RDSR command
Read WEL=0, BP[3:0], QE,
and SRWD data
Verify OK?
No
Yes
WRSR successfully
P/N: PM1978
WRSR fail
34
REV. 1.2, OCT. 23, 2013
MX25U6435F
Figure 23. WP# Setup Timing and Hold Timing during WRSR when SRWD=1
WP#
tSHWL
tWHSL
CS#
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
SCLK
01h
SI
SO
High-Z
Note: WP# must be kept high until the embedded operation finish.
P/N: PM1978
35
REV. 1.2, OCT. 23, 2013
MX25U6435F
9-9. Read Data Bytes (READ)
The read instruction is for reading data out. The address is latched on rising edge of SCLK, and data shifts out on
the falling edge of SCLK at a maximum frequency fR. The first address byte can be at any location. The address
is automatically increased to the next higher address after each byte data is shifted out, so the whole memory can
be read out at a single READ instruction. The address counter rolls over to 0 when the highest address has been
reached.
The sequence of issuing READ instruction is: CS# goes low→sending READ instruction code→ 3-byte address on
SI→ data out on SO→to end READ operation can use CS# to high at any time during data out.
Figure 24. Read Data Bytes (READ) Sequence (SPI Mode only)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31 32 33 34 35 36 37 38 39
SCLK
Mode 0
SI
command
03h
24-Bit Address
23 22 21
3
2
1
0
MSB
SO
Data Out 1
High-Z
7
6
5
4
3
2
Data Out 2
1
0
7
MSB
P/N: PM1978
36
REV. 1.2, OCT. 23, 2013
MX25U6435F
9-10. Read Data Bytes at Higher Speed (FAST_READ)
The FAST_READ instruction is for quickly reading data out. The address is latched on rising edge of SCLK, and
data of each bit shifts out on the falling edge of SCLK at a maximum frequency fC. The first address byte can be at
any location. The address is automatically increased to the next higher address after each byte data is shifted out,
so the whole memory can be read out at a single FAST_READ instruction. The address counter rolls over to 0 when
the highest address has been reached.
Read on SPI Mode The sequence of issuing FAST_READ instruction is: CS# goes low→ sending FAST_READ
instruction code→ 3-byte address on SI→1-dummy byte (default) address on SI→ data out on SO→ to end FAST_
READ operation can use CS# to high at any time during data out.
Read on QPI Mode The sequence of issuing FAST_READ instruction in QPI mode is: CS# goes low→ sending
FAST_READ instruction, 2 cycles→ 24-bit address interleave on SIO3, SIO2, SIO1 & SIO0→4 dummy cycles→data
out interleave on SIO3, SIO2, SIO1 & SIO0→ to end QPI FAST_READ operation can use CS# to high at any time
during data out.
While Program/Erase/Write Status Register cycle is in progress, FAST_READ instruction is rejected without any impact on the Program/Erase/Write Status Register current cycle.
P/N: PM1978
37
REV. 1.2, OCT. 23, 2013
MX25U6435F
Figure 25. Read at Higher Speed (FAST_READ) Sequence (SPI Mode)
CS#
SCLK
Mode 3
0
1
2
Mode 0
3
4
5
6
7
8
9 10
Command
SI
28 29 30 31
24-Bit Address
23 22 21
0Bh
3
2
1
0
High-Z
SO
CS#
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
SCLK
Dummy Cycle
7
SI
6
5
4
3
2
0
1
DATA OUT 2
DATA OUT 1
7
SO
6
5
4
3
2
1
7
0
6
5
4
3
2
1
MSB
MSB
0
7
MSB
Figure 26. Read at Higher Speed (FAST_READ) Sequence (QPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
A5
A4
A3
A2
A1
A0
8
9
10
11
12
13
14
15
H1
L1
SCLK
Mode 0
Command
SIO(3:0)
0Bh
Data In
P/N: PM1978
X
X
X
X
H0
L0
MSB LSB MSB LSB
24-Bit Address
Data Out 1 Data Out 2
38
REV. 1.2, OCT. 23, 2013
MX25U6435F
9-11. Dual Read Mode (DREAD)
The DREAD instruction enable double throughput of Serial Flash in read mode. The address is latched on rising
edge of SCLK, and data of every two bits (interleave on 2 I/O pins) shift out on the falling edge of SCLK at a maximum frequency fT. The first address byte can be at any location. The address is automatically increased to the next
higher address after each byte data is shifted out, so the whole memory can be read out at a single DREAD instruction. The address counter rolls over to 0 when the highest address has been reached. Once writing DREAD instruction, the following data out will perform as 2-bit instead of previous 1-bit.
The sequence of issuing DREAD instruction is: CS# goes low → sending DREAD instruction → 3-byte address on
SI → 8-bit dummy cycle → data out interleave on SO1 & SO0 → to end DREAD operation can use CS# to high at
any time during data out.
While Program/Erase/Write Status Register cycle is in progress, DREAD instruction is rejected without any impact
on the Program/Erase/Write Status Register current cycle.
Figure 27. Dual Read Mode Sequence (Command 3B)
CS#
0
1
2
3
4
5
6
7
8
SCLK
…
Command
SI/SIO0
SO/SIO1
P/N: PM1978
30 31 32
9
3B
…
24 ADD Cycle
A23 A22
…
High Impedance
39 40 41 42 43 44 45
A1 A0
8 dummy
cycle
Data Out
1
Data Out
2
D6 D4 D2 D0 D6 D4
D7 D5 D3 D1 D7 D5
39
REV. 1.2, OCT. 23, 2013
MX25U6435F
9-12. 2 x I/O Read Mode (2READ)
The 2READ instruction enable double throughput of Serial Flash in read mode. The address is latched on rising
edge of SCLK, and data of every two bits (interleave on 2 I/O pins) shift out on the falling edge of SCLK at a maximum frequency fT. The first address byte can be at any location. The address is automatically increased to the next
higher address after each byte data is shifted out, so the whole memory can be read out at a single 2READ instruction. The address counter rolls over to 0 when the highest address has been reached. Once writing 2READ instruction, the following address/dummy/data out will perform as 2-bit instead of previous 1-bit.
The sequence of issuing 2READ instruction is: CS# goes low→ sending 2READ instruction→ 24-bit address interleave on SIO1 & SIO0→ 4 dummy cycles on SIO1 & SIO0→ data out interleave on SIO1 & SIO0→ to end 2READ
operation can use CS# to high at any time during data out.
While Program/Erase/Write Status Register cycle is in progress, 2READ instruction is rejected without any impact
on the Program/Erase/Write Status Register current cycle.
Figure 28. 2 x I/O Read Mode Sequence (SPI Mode only)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9 10
17 18 19 20 21 22 23 24 25 26 27 28 29 30
Mode 3
SCLK
Mode 0
Command
SI/SIO0
SO/SIO1
P/N: PM1978
BBh
12 ADD Cycles
4 Dummy
cycle
Data
Out 1
Data
Out 2
A22 A20 A18
A4 A2 A0
D6 D4 D2 D0 D6 D4 D2 D0
A23 A21 A19
A5 A3 A1
D7 D5 D3 D1 D7 D5 D3 D1
40
Mode 0
REV. 1.2, OCT. 23, 2013
MX25U6435F
9-13. Quad Read Mode (QREAD)
The QREAD instruction enable quad throughput of Serial Flash in read mode. The address is latched on rising
edge of SCLK, and data of every four bits (interleave on 4 I/O pins) shift out on the falling edge of SCLK at a
maximum frequency fQ. The first address byte can be at any location. The address is automatically increased
to the next higher address after each byte data is shifted out, so the whole memory can be read out at a single
QREAD instruction. The address counter rolls over to 0 when the highest address has been reached. Once writing QREAD instruction, the following data out will perform as 4-bit instead of previous 1-bit.
The sequence of issuing QREAD instruction is: CS# goes low→ sending QREAD instruction → 3-byte address
on SI → 8-bit dummy cycle → data out interleave on SO3, SO2, SO1 & SO0→ to end QREAD operation can
use CS# to high at any time during data out.
While Program/Erase/Write Status Register cycle is in progress, QREAD instruction is rejected without any impact on the Program/Erase/Write Status Register current cycle.
Figure 29. Quad Read Mode Sequence (Command 6B)
CS#
0
1
2
3
4
5
6
7
8
SCLK
…
Command
SI/SO0
SO/SO1
SO2
SO3
P/N: PM1978
29 30 31 32 33
9
6B
…
24 ADD Cycles
A23 A22
…
High Impedance
38 39 40 41 42
A2 A1 A0
8 dummy cycles
Data Data
Out 1 Out 2
Data
Out 3
D4 D0 D4 D0 D4
D5 D1 D5 D1 D5
High Impedance
D6 D2 D6 D2 D6
High Impedance
D7 D3 D7 D3 D7
41
REV. 1.2, OCT. 23, 2013
MX25U6435F
9-14. 4 x I/O Read Mode (4READ)
The 4READ instruction enable quad throughput of Serial Flash in read mode. A Quad Enable (QE) bit of status Register must be set to "1" before sending the 4READ instruction. The address is latched on rising edge of SCLK, and
data of every four bits (interleave on 4 I/O pins) shift out on the falling edge of SCLK at a maximum frequency fQ.
The first address byte can be at any location. The address is automatically increased to the next higher address after each byte data is shifted out, so the whole memory can be read out at a single 4READ instruction. The address
counter rolls over to 0 when the highest address has been reached. Once writing 4READ instruction, the following
address/dummy/data out will perform as 4-bit instead of previous 1-bit.
4 x I/O Read on SPI Mode (4READ) The sequence of issuing 4READ instruction is: CS# goes low→ sending
4READ instruction→ 24-bit address interleave on SIO3, SIO2, SIO1 & SIO0→2+4 dummy cycles→data out interleave on SIO3, SIO2, SIO1 & SIO0→ to end 4READ operation can use CS# to high at any time during data out.
4 x I/O Read on QPI Mode (4READ) The 4READ instruction also support on QPI command mode. The sequence of
issuing 4READ instruction QPI mode is: CS# goes low→ sending 4READ instruction→ 24-bit address interleave on
SIO3, SIO2, SIO1 & SIO0→2+4 dummy cycles→data out interleave on SIO3, SIO2, SIO1 & SIO0→ to end 4READ
operation can use CS# to high at any time during data out.
Another sequence of issuing 4 READ instruction especially useful in random access is : CS# goes low→sending
4 READ instruction→3-bytes address interleave on SIO3, SIO2, SIO1 & SIO0 →performance enhance toggling bit
P[7:0]→ 4 dummy cycles →data out still CS# goes high → CS# goes low (reduce 4 Read instruction) →24-bit random access address.
In the performance-enhancing mode, P[7:4] must be toggling with P[3:0] ; likewise P[7:0]=A5h, 5Ah, F0h or 0Fh can
make this mode continue and reduce the next 4READ instruction. Once P[7:4] is no longer toggling with P[3:0]; likewise P[7:0]=FFh,00h,AAh or 55h and afterwards CS# is raised and then lowered, the system then will escape from
performance enhance mode and return to normal operation.
While Program/Erase/Write Status Register cycle is in progress, 4READ instruction is rejected without any impact
on the Program/Erase/Write Status Register current cycle.
P/N: PM1978
42
REV. 1.2, OCT. 23, 2013
MX25U6435F
Figure 30. 4 x I/O Read Mode Sequence (SPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Mode 3
SCLK
Mode 0
Command
6 ADD Cycles
EBh
Performance
enhance
indicator (Note)
Data
Out 1
4 Dummy
Cycles
Data
Out 2
Data
Out 3
A20 A16 A12 A8 A4 A0 P4 P0
D4 D0 D4 D0 D4 D0
SIO1
A21 A17 A13 A9 A5 A1 P5 P1
D5 D1 D5 D1 D5 D1
SIO2
A22 A18 A14 A10 A6 A2 P6 P2
D6 D2 D6 D2 D6 D2
SIO3
A23 A19 A15 A11 A7 A3 P7 P3
D7 D3 D7 D3 D7 D3
SIO0
Mode 0
Note:
1. Hi-impedance is inhibited for the two clock cycles.
2. P7≠P3, P6≠P2, P5≠P1 & P4≠P0 (Toggling) is inhibited.
Figure 31. 4 x I/O Read Mode Sequence (QPI Mode)
CS#
MODE 3
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
MODE 3
SCLK
MODE 0
SIO[3:0]
P/N: PM1978
MODE 0
EB
A5 A4 A3 A2 A1 A0
Data In
24-bit Address
X
X
X
X
X
X
H0 L0 H1 L1 H2 L2 H3 L3
MSB
Data Out
43
REV. 1.2, OCT. 23, 2013
MX25U6435F
Figure 32. W4READ (Quad Read with 4 dummy cycles) Sequence
CS#
Mode 3
SCLK
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Mode 0
4 Dummy
Cycles
Data
Out 2
Data
Out 3
A20 A16 A12 A8 A4 A0
D4 D0 D4 D0
D4 D0
D4
SIO1
A21 A17 A13 A9 A5 A1
D5 D1 D5 D1
D5 D1
D5
SIO2
A22 A18 A14 A10 A6 A2
D6 D2 D6 D2
D6 D2
D6
SIO3
A23 A19 A15 A11 A7 A3
D7 D3 D7 D3
D7 D3
D7
Command
SIO0
P/N: PM1978
E7h
6 ADD Cycles
44
Data
Out 1
REV. 1.2, OCT. 23, 2013
MX25U6435F
9-15. Burst Read
This device supports Burst Read in both SPI and QPI mode.
To set the Burst length, following command operation is required
Issuing command: “C0h” in the first Byte (8-clocks), following 4 clocks defining wrap around enable with “0h” and
disable with“1h”.
Next 4 clocks is to define wrap around depth. Definition as following table:
Data
00h
01h
02h
03h
1xh
Wrap Around
Yes
Yes
Yes
Yes
No
Wrap Depth
8-byte
16-byte
32-byte
64-byte
X
The wrap around unit is defined within the 256Byte page, with random initial address. It’s defined as “wrap-around
mode disable” for the default state of the device. To exit wrap around, it is required to issue another “C0” command
in which data=‘1xh”. Otherwise, wrap around status will be retained until power down or reset command. To change
wrap around depth, it is requried to issue another “C0” command in which data=“0xh”. QPI “0Bh” “EBh” and SPI “EBh”
“E7h” support wrap around feature after wrap around enable. Burst read is supported in both SPI and QPI mode.
The device id default without Burst read.
Figure 33. SPI Mode
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9
D7
D6
10
11
12
13
14
15
SCLK
Mode 0
SIO
C0h
D5
D4
D3
D2
D1
D0
Figure 34. QPI Mode
CS#
Mode 3
0
1
2
3
H0
L0
SCLK
Mode 0
SIO[3:0]
C0h
MSB
LSB
Note: MSB=Most Significant Bit
LSB=Least Significant Bit
P/N: PM1978
45
REV. 1.2, OCT. 23, 2013
MX25U6435F
9-16. Performance Enhance Mode
The device could waive the command cycle bits if the two cycle bits after address cycle toggles.
Performance enhance mode is supported in both SPI and QPI mode.
In QPI mode, “EBh” “0Bh” and SPI “EBh” “E7h” commands support enhance mode. The performance enhance
mode is not supported in dual I/O mode.
After entering enhance mode, following CS# go high, the device will stay in the read mode and treat CS# go low of
the first clock as address instead of command cycle.
To exit enhance mode, a new fast read command whose first two dummy cycles is not toggle then exit. Or issue
”FFh” command to exit enhance mode.
P/N: PM1978
46
REV. 1.2, OCT. 23, 2013
MX25U6435F
Figure 35. 4 x I/O Read enhance performance Mode Sequence (SPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22
n
SCLK
Mode 0
Data
Out 2
Data
Out n
A20 A16 A12 A8 A4 A0 P4 P0
D4 D0 D4 D0
D4 D0
SIO1
A21 A17 A13 A9 A5 A1 P5 P1
D5 D1 D5 D1
D5 D1
SIO2
A22 A18 A14 A10 A6 A2 P6 P2
D6 D2 D6 D2
D6 D2
SIO3
A23 A19 A15 A11 A7 A3 P7 P3
D7 D3 D7 D3
D7 D3
Command
EBh
SIO0
6 ADD Cycles
Performance
enhance
indicator (Note)
4 Dummy
Cycles
Data
Out 1
CS#
n+1
...........
n+7 ...... n+9
........... n+13
...........
Mode 3
SCLK
6 ADD Cycles
Performance
enhance
indicator (Note)
4 Dummy
Cycles
Data
Out 1
Data
Out 2
Data
Out n
SIO0
A20 A16 A12 A8 A4 A0 P4 P0
D4 D0 D4 D0
D4 D0
SIO1
A21 A17 A13 A9 A5 A1 P5 P1
D5 D1 D5 D1
D5 D1
SIO2
A22 A18 A14 A10 A6 A2 P6 P2
D6 D2 D6 D2
D6 D2
SIO3
A23 A19 A15 A11 A7 A3 P7 P3
D7 D3 D7 D3
D7 D3
Mode 0
Note:
1. Performance enhance mode, if P7≠P3 & P6≠P2 & P5≠P1 & P4≠P0 (Toggling), ex: A5, 5A, 0F, if not using
performance enhance recommend to keep 1 or 0 in performance enhance indicator.
2. Reset the performance enhance mode, if P7=P3 or P6=P2 or P5=P1 or P4=P0, ex: AA, 00, FF
P/N: PM1978
47
REV. 1.2, OCT. 23, 2013
MX25U6435F
Figure 36. 4 x I/O Read enhance performance Mode Sequence (QPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
A1
A0
8
9
10
11
12
13
14
15
16
17
H0
L0
H1
L1
SCLK
Mode 0
SIO[3:0]
EBh
A5
A4
A3
A2
X
X
X
X
MSB LSB MSB LSB
P(7:4) P(3:0)
Data In
4 dummy
cycles
performance
enhance
indicator
Data Out
CS#
n+1
.............
SCLK
Mode 0
SIO[3:0]
A5
A4
A3
A2
A1
X
A0
X
X
P/N: PM1978
H0
L0
H1
L1
MSB LSB MSB LSB
P(7:4) P(3:0)
6 Address cycles
X
4 dummy
cycles
performance
enhance
indicator
48
Data Out
REV. 1.2, OCT. 23, 2013
MX25U6435F
9-17. Performance Enhance Mode Reset
To conduct the Performance Enhance Mode Reset operation in SPI mode, FFh command code, 8 clocks, should be
issued in 1I/O sequence. In QPI Mode, FFFFFFFFh command code, 8 clocks, in 4I/O should be issued.
If the system controller is being Reset during operation, the flash device will return to the standard SPI operation.
Upon Reset of main chip, SPI instruction would be issued from the system. Instructions like Read ID (9Fh) or Fast
Read (0Bh) would be issued.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are "don't care"
in SPI mode.
Figure 37. Performance Enhance Mode Reset for Fast Read Quad I/O (SPI Mode)
Mode Bit Reset
for Quad I/O
CS#
Mode 3
SCLK
0 1
2
3
4
5
6
Mode 3
7
Mode 0
Mode 0
SIO0
FFh
SIO1
Don’t Care
SIO2
Don’t Care
SIO3
Don’t Care
Figure 38. Performance Enhance Mode Reset for Fast Read Quad I/O (QPI Mode)
Mode Bit Reset
for Quad I/O
CS#
Mode 3
SCLK
SIO[3:0]
P/N: PM1978
0 1
2
3
4
5
6
Mode 0
7
Mode 3
Mode 0
FFFFFFFFh
49
REV. 1.2, OCT. 23, 2013
MX25U6435F
9-18. Sector Erase (SE)
The Sector Erase (SE) instruction is for erasing the data of the chosen sector to be "1". The instruction is used for
any 4K-byte sector. A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit before
sending the Sector Erase (SE). Any address of the sector (see "Table 4. Memory Organization") is a valid address
for Sector Erase (SE) instruction. The CS# must go high exactly at the byte boundary (the latest eighth of address
byte been latched-in); otherwise, the instruction will be rejected and not executed.
Address bits [Am-A12] (Am is the most significant address) select the sector address.
The sequence of issuing SE instruction is: CS# goes low→ sending SE instruction code→ 3-byte address on SI→
CS# goes high.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are "don't care"
in SPI mode.
The self-timed Sector Erase Cycle time (tSE) is initiated as soon as Chip Select (CS#) goes high. The Write in
Progress (WIP) bit still can be checked during the Sector Erase cycle is in progress. The WIP sets 1 during the
tSE timing, and sets 0 when Sector Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If
the sector is protected by BP3, BP2, BP1, BP0 bits, the Sector Erase (SE) instruction will not be executed on the
sector.
Figure 39. Sector Erase (SE) Sequence (SPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9
29 30 31
SCLK
Mode 0
24-Bit Address
Command
SI
23 22
20h
2
1
0
MSB
Figure 40. Sector Erase (SE) Sequence (QPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
SCLK
Mode 0
24-Bit Address
Command
SIO[3:0]
20h A5 A4 A3 A2 A1 A0
MSB LSB
P/N: PM1978
50
REV. 1.2, OCT. 23, 2013
MX25U6435F
9-19. Block Erase (BE32K)
The Block Erase (BE32K) instruction is for erasing the data of the chosen block to be "1". The instruction is used
for 32K-byte block erase operation. A Write Enable (WREN) instruction must execute to set the Write Enable Latch
(WEL) bit before sending the Block Erase (BE32K). Any address of the block (see "Table 4. Memory Organization")
is a valid address for Block Erase (BE32K) instruction. The CS# must go high exactly at the byte boundary (the latest eighth of address byte been latched-in); otherwise, the instruction will be rejected and not executed.
The sequence of issuing BE32K instruction is: CS# goes low→ sending BE32K instruction code→ 3-byte address
on SI→CS# goes high.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are "don't care"
in SPI mode.
The self-timed Block Erase Cycle time (tBE32K) is initiated as soon as Chip Select (CS#) goes high. The Write
in Progress (WIP) bit still can be checked during the Block Erase cycle is in progress. The WIP sets 1 during the
tBE32K timing, and sets 0 when Block Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If
the block is protected by BP3, BP2, BP1, BP0 bits, the Block Erase (BE32K) instruction will not be executed on the
block.
Figure 41. Block Erase 32KB (BE32K) Sequence (SPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9
29 30 31
SCLK
Mode 0
Command
SI
24-Bit Address
23 22
52h
2
1
0
MSB
Figure 42. Block Erase 32KB (BE32K) Sequence (QPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
SCLK
Mode 0
24-Bit Address
Command
SIO[3:0]
52h
A5 A4 A3 A2 A1 A0
MSB
P/N: PM1978
51
REV. 1.2, OCT. 23, 2013
MX25U6435F
9-20. Block Erase (BE)
The Block Erase (BE) instruction is for erasing the data of the chosen block to be "1". The instruction is used for
64K-byte block erase operation. A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL)
bit before sending the Block Erase (BE). Any address of the block (Please refer to "Table 4. Memory Organization")
is a valid address for Block Erase (BE) instruction. The CS# must go high exactly at the byte boundary (the latest
eighth of address byte been latched-in); otherwise, the instruction will be rejected and not executed.
The sequence of issuing BE instruction is: CS# goes low→ sending BE instruction code→ 3-byte address on SI→
CS# goes high.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are "don't care"
in SPI mode.
The self-timed Block Erase Cycle time (tBE) is initiated as soon as Chip Select (CS#) goes high. The Write in
Progress (WIP) bit still can be checked during the Block Erase cycle is in progress. The WIP sets 1 during the tBE
timing, and sets 0 when Block Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the block
is protected by BP3, BP2, BP1, BP0 bits, the Block Erase (BE) instruction will not be executed on the block.
Figure 43. Block Erase (BE) Sequence (SPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9
29 30 31
SCLK
Mode 0
Command
SI
24-Bit Address
23 22
D8h
2
1
0
MSB
Figure 44. Block Erase (BE) Sequence (QPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
SCLK
Mode 0
24-Bit Address
Command
SIO[3:0]
D8h
A5 A4 A3 A2 A1 A0
MSB
P/N: PM1978
52
REV. 1.2, OCT. 23, 2013
MX25U6435F
9-21. Chip Erase (CE)
The Chip Erase (CE) instruction is for erasing the data of the whole chip to be "1". A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit before sending the Chip Erase (CE). The CS# must go
high exactly at the byte boundary, otherwise the instruction will be rejected and not executed.
The sequence of issuing CE instruction is: CS# goes low→sending CE instruction code→CS# goes high.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are "don't care"
in SPI mode.
The self-timed Chip Erase Cycle time (tCE) is initiated as soon as Chip Select (CS#) goes high. The Write in
Progress (WIP) bit still can be checked during the Chip Erase cycle is in progress. The WIP sets 1 during the tCE
timing, and sets 0 when Chip Erase Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the chip is
protected by BP3, BP2, BP1, BP0 bits, the Chip Erase (CE) instruction will not be executed. It will be only executed when BP3, BP2, BP1, BP0 all set to "0".
Figure 45. Chip Erase (CE) Sequence (SPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
SCLK
Mode 0
Command
SI
60h or C7h
Figure 46. Chip Erase (CE) Sequence (QPI Mode)
CS#
Mode 3
0
1
SCLK
Mode 0
SIO[3:0]
P/N: PM1978
Command
60h or C7h
53
REV. 1.2, OCT. 23, 2013
MX25U6435F
9-22. Page Program (PP)
The Page Program (PP) instruction is for programming the memory to be "0". A Write Enable (WREN) instruction
must be executed to set the Write Enable Latch (WEL) bit before sending the Page Program (PP). The device
programs only the last 256 data bytes sent to the device. The last address byte (the 8 least significant address
bits, A7-A0) should be set to 0 for 256 bytes page program. If A7-A0 are not all zero, transmitted data that exceed
page length are programmed from the starting address (24-bit address that last 8 bit are all 0) of currently selected
page. If the data bytes sent to the device exceeds 256, the last 256 data byte is programmed at the request page
and previous data will be disregarded. If the data bytes sent to the device has not exceeded 256, the data will be
programmed at the request address of the page. There will be no effort on the other data bytes of the same page.
The sequence of issuing PP instruction is: CS# goes low→ sending PP instruction code→ 3-byte address on SI→ at
least 1-byte on data on SI→ CS# goes high.
The CS# must be kept low during the whole Page Program cycle; The CS# must go high exactly at the byte boundary (the
latest eighth bit of data being latched in), otherwise the instruction will be rejected and will not be executed.
The self-timed Page Program Cycle time (tPP) is initiated as soon as Chip Select (CS#) goes high. The Write in
Progress (WIP) bit still can be checked during the Page Program cycle is in progress. The WIP sets 1 during the
tPP timing, and sets 0 when Page Program Cycle is completed, and the Write Enable Latch (WEL) bit is reset. If the
page is protected by BP3, BP2, BP1, BP0 bits, the Page Program (PP) instruction will not be executed.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are "don't care"
in SPI mode.
P/N: PM1978
54
REV. 1.2, OCT. 23, 2013
MX25U6435F
Figure 47. Page Program (PP) Sequence (SPI Mode)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31 32 33 34 35 36 37 38 39
SCLK
1
0
7
6
5
3
2
1
0
2079
2
2078
3
2077
23 22 21
02h
SI
Data Byte 1
24-Bit Address
2076
Command
2075
Mode 0
4
1
0
MSB
MSB
2074
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
2073
2072
CS#
SCLK
Data Byte 2
7
SI
6
5
4
3
2
Data Byte 3
1
MSB
0
7
6
5
4
3
2
Data Byte 256
1
7
0
MSB
6
5
4
3
2
MSB
Figure 48. Page Program (PP) Sequence (QPI Mode)
CS#
Mode 3
0
1
2
SCLK
Mode 0
Command
SIO[3:0]
02h
Data In
P/N: PM1978
24-Bit Address
A5
A4
A3
A2
A1
A0
H0
L0
H1
L1
H2
L2
H3
L3
Data Byte Data Byte Data Byte Data Byte
1
2
3
4
55
H255 L255
......
Data Byte
256
REV. 1.2, OCT. 23, 2013
MX25U6435F
9-23. 4 x I/O Page Program (4PP)
The Quad Page Program (4PP) instruction is for programming the memory to be "0". A Write Enable (WREN) instruction must execute to set the Write Enable Latch (WEL) bit and Quad Enable (QE) bit must be set to "1" before
sending the Quad Page Program (4PP). The Quad Page Programming takes four pins: SIO0, SIO1, SIO2, and
SIO3 as address and data input, which can improve programmer performance and the effectiveness of application.
The 4PP operation frequency supports as fast as 104MHz. The other function descriptions are as same as standard
page program.
The sequence of issuing 4PP instruction is: CS# goes low→ sending 4PP instruction code→ 3-byte address on
SIO[3:0]→ at least 1-byte on data on SIO[3:0]→CS# goes high.
Figure 49. 4 x I/O Page Program (4PP) Sequence (SPI Mode only)
CS#
Mode 3
0
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21
SCLK
Mode 0
SIO0
P/N: PM1978
Command
38h
6 ADD cycles
Data Data Data Data
Byte 1 Byte 2 Byte 3 Byte 4
A20 A16 A12 A8 A4 A0 D4 D0 D4 D0 D4 D0 D4 D0
SIO1
A21 A17 A13 A9 A5 A1 D5 D1 D5 D1 D5 D1 D5 D1
SIO2
A22 A18 A14 A10 A6 A2 D6 D2 D6 D2 D6 D2 D6 D2
SIO3
A23 A19 A15 A11 A7 A3
56
D7 D3 D7 D3
D7 D3 D7 D3
REV. 1.2, OCT. 23, 2013
MX25U6435F
9-24. Deep Power-down (DP)
The Deep Power-down (DP) instruction is for setting the device on the minimizing the power consumption (to entering the Deep Power-down mode), the standby current is reduced from ISB1 to ISB2). The Deep Power-down mode
requires the Deep Power-down (DP) instruction to enter, during the Deep Power-down mode, the device is not active and all Write/Program/Erase instruction are ignored. When CS# goes high, it's only in deep power-down mode
not standby mode. It's different from Standby mode.
The sequence of issuing DP instruction is: CS# goes low→sending DP instruction code→CS# goes high.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are "don't care"
in SPI mode.
Once the DP instruction is set, all instructions will be ignored except the Release from Deep Power-down mode
(RDP) and Read Electronic Signature (RES) instruction and softreset command. (those instructions allow the ID being reading out). When Power-down, or software reset command the deep power-down mode automatically stops,
and when power-up, the device automatically is in standby mode. For DP instruction the CS# must go high exactly
at the byte boundary (the latest eighth bit of instruction code been latched-in); otherwise, the instruction will not be
executed. As soon as Chip Select (CS#) goes high, a delay of tDP is required before entering the Deep Power-down
mode.
Figure 50. Deep Power-down (DP) Sequence (SPI Mode)
CS#
0
Mode 3
1
2
3
4
5
6
tDP
7
SCLK
Mode 0
Command
B9h
SI
Stand-by Mode
Deep Power-down Mode
Figure 51. Deep Power-down (DP) Sequence (QPI Mode)
CS#
Mode 3
0
1
tDP
SCLK
Mode 0
Command
SIO[3:0]
B9h
Stand-by Mode
P/N: PM1978
57
Deep Power-down Mode
REV. 1.2, OCT. 23, 2013
MX25U6435F
9-25. Enter Secured OTP (ENSO)
The ENSO instruction is for entering the additional 4K-bit secured OTP mode. The additional 4K-bit secured OTP is
independent from main array, which may use to store unique serial number for system identifier. After entering the
Secured OTP mode, and then follow standard read or program procedure to read out the data or update data. The
Secured OTP data cannot be updated again once it is lock-down.
The sequence of issuing ENSO instruction is: CS# goes low→ sending ENSO instruction to enter Secured OTP
mode→ CS# goes high.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are "don't care"
in SPI mode.
Please note that WRSR/WRSCUR commands are not acceptable during the access of secure OTP region, once security OTP is lock down, only read related commands are valid.
9-26. Exit Secured OTP (EXSO)
The EXSO instruction is for exiting the additional 4K-bit secured OTP mode.
The sequence of issuing EXSO instruction is: CS# goes low→ sending EXSO instruction to exit Secured OTP
mode→ CS# goes high.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are "don't care"
in SPI mode.
9-27. Read Security Register (RDSCUR)
The RDSCUR instruction is for reading the value of Security Register bits. The Read Security Register can be read
at any time (even in program/erase/write status register/write security register condition) and continuously.
The sequence of issuing RDSCUR instruction is : CS# goes low→sending RDSCUR instruction→Security Register
data out on SO→ CS# goes high.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are "don't care"
in SPI mode.
The definition of the Security Register bits is as below:
Secured OTP Indicator bit. The Secured OTP indicator bit shows the chip is locked by factory before ex- factory or
not. When it is "0", it indicates non-factory lock; "1" indicates factory-lock.
Lock-down Secured OTP (LDSO) bit. By writing WRSCUR instruction, the LDSO bit may be set to "1" for customer lock-down purpose. However, once the bit is set to "1" (lock-down), the LDSO bit and the 4K-bit Secured OTP
area cannot be update any more. While it is in 4K-bit secured OTP mode, main array access is not allowed.
P/N: PM1978
58
REV. 1.2, OCT. 23, 2013
MX25U6435F
Table 8. Security Register Definition
bit7
bit6
bit5
bit4
bit3
WPSEL
E_FAIL
P_FAIL
Reserved
0=normal
WP mode
1=individual
mode
(default=0)
0=normal
Erase
succeed
1=indicate
Erase failed
(default=0)
0=normal
Program
succeed
1=indicate
Program
failed
(default=0)
-
0=Erase
is not
suspended
1= Erase
suspended
(default=0)
Non-volatile
bit (OTP)
Volatile bit
Volatile bit
Volatile bit
Volatile bit
bit2
ESB
PSB
(Erase
(Program
Suspend bit) Suspend bit)
bit1
bit0
LDSO
Secured OTP
(indicate if
indicator bit
lock-down)
0 = not lock0=Program
down
0 = nonis not
1 = lock-down
factory
suspended
(cannot
lock
1= Program
program/
1 = factory
suspended
lock
erase
(default=0)
OTP)
Non-volatile
Non-volatile
Volatile bit
bit
bit (OTP)
(OTP)
9-28. Write Security Register (WRSCUR)
The WRSCUR instruction is for changing the values of Security Register Bits. The WREN (Write Enable) instruction
is required before issuing WRSCUR instruction. The WRSCUR instruction may change the values of bit1 (LDSO
bit) for customer to lock-down the 4K-bit Secured OTP area. Once the LDSO bit is set to "1", the Secured OTP area
cannot be updated any more.
The sequence of issuing WRSCUR instruction is :CS# goes low→ sending WRSCUR instruction → CS# goes high.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are "don't care"
in SPI mode.
The CS# must go high exactly at the boundary; otherwise, the instruction will be rejected and not executed.
P/N: PM1978
59
REV. 1.2, OCT. 23, 2013
MX25U6435F
9-29. Write Protection Selection (WPSEL)
There are two write protection methods, (1) BP protection mode (2) individual block protection mode. If WPSEL=0,
flash is under BP protection mode . If WPSEL=1, flash is under individual block protection mode. The default value
of WPSEL is “0”. WPSEL command can be used to set WPSEL=1. Please note that WPSEL is an OTP bit. Once
WPSEL is set to 1, there is no chance to recover WPSEL bit back to “0”. If the flash is under BP mode, the individual block protection mode is disabled. Contrarily, if flash is on the individual block protection mode, the BP mode
is disabled.
Every time after the system is powered-on, and the Security Register bit 7 is checked to be WPSEL=1, all
the blocks or sectors will be write protected by default. User may only unlock the blocks or sectors via SBULK
and GBULK instruction. Program or erase functions can only be operated after the Unlock instruction is conducted.
BP protection mode, WPSEL=0:
ARRAY is protected by BP3~BP0 and BP3~BP0 bits are protected by “SRWD=1 and WP#=0”, where SRWD is bit 7
of status register that can be set by WRSR command.
Individual block protection mode, WPSEL=1:
Blocks are individually protected by their own SRAM lock bits which are set to “1” after power up. SBULK and SBLK
command can set SRAM lock bit to “0” and “1”. When the system accepts and executes WPSEL instruction, the bit
7 in security register will be set. It will activate SBLK, SBULK, RDBLOCK, GBLK, GBULK etc instructions to conduct
block lock protection and replace the original Software Protect Mode (SPM) use (BP3~BP0) indicated block methods.Under the individual block protection mode (WPSEL=1), hardware protection is performed by driving WP#=0.
Once WP#=0 all array blocks/sectors are protected regardless of the contents of SRAM lock bits.
The sequence of issuing WPSEL instruction is: CS# goes low → sending WPSEL instruction to enter the individual
block protect mode → CS# goes high.
WPSEL instruction function flow is as follows:
BP and SRWD if WPSEL=0
WP# pin
BP3
BP2
BP1
BP0
SRWD
64KB
64KB
64KB
.
.
.
(1) BP3~BP0 is used to define the protection group region.
(The protected area size see "Table 2. Protected Area
Sizes")
(2) “SRWD=1 and WP#=0” is used to protect BP3~BP0. In this
case, SRWD and BP3~BP0 of status register bits can not
be changed by WRSR
64KB
P/N: PM1978
60
REV. 1.2, OCT. 23, 2013
MX25U6435F
The individual block lock mode is effective after setting WPSEL=1
SRAM
SRAM
…
…
TOP 4KBx16
Sectors
4KB
4KB
4KB
SRAM
SRAM
…
64KB
SRAM
…
……
Uniform
64KB blocks
64KB
4KB
SRAM
…
…
Bottom
4KBx16
Sectors
4KB
SRAM
• Power-Up: All SRAM bits=1 (all blocks are default protected).
All array cannot be programmed/erased
• SBLK/SBULK(36h/39h):
- SBLK(36h): Set SRAM bit=1 (protect) : array can not be
programmed/erased
- SBULK(39h): Set SRAM bit=0 (unprotect): array can be
programmed/erased
- All top 4KBx16 sectors and bottom 4KBx16 sectors and other 64KB uniform blocks can be protected and
unprotected by SRAM bits individually by SBLK/SBULK
command set.
• GBLK/GBULK(7Eh/98h):
- GBLK(7Eh): Set all SRAM bits=1,whole chip is protected
and cannot be programmed/erased.
- GBULK(98h): Set all SRAM bits=0,whole chip is unprotected and can be programmed/erased.
- All sectors and blocks SRAM bits of whole chip can be
protected and unprotected at one time by GBLK/GBULK
command set.
• RDBLOCK(3Ch):
- use RDBLOCK mode to check the SRAM bits status after
SBULK /SBLK/GBULK/GBLK command set.
SBULK / SBLK / GBULK / GBLK / RDBLOCK
P/N: PM1978
61
REV. 1.2, OCT. 23, 2013
MX25U6435F
Figure 52. WPSEL Flow
start
WREN command
RDSCUR(2Bh) command
Yes
WPSEL=1?
No
WPSEL disable,
block protected by BP[3:0]
WPSEL(68h) command
RDSR command
WIP=0?
No
Yes
RDSCUR(2Bh) command
WPSEL=1?
No
Yes
WPSEL set successfully
WPSEL set fail
WPSEL enable.
Block protected by individual lock
(SBLK, SBULK,
… etc).
P/N: PM1978
62
REV. 1.2, OCT. 23, 2013
MX25U6435F
9-30. Single Block Lock/Unlock Protection (SBLK/SBULK)
These instructions are only effective after WPSEL was executed. The SBLK instruction is for write protection a specified block (or sector) of memory, using AMAX-A16 or (AMAX-A12) address bits to assign a 64Kbyte block (or 4K bytes
sector) to be protected as read only. The SBULK instruction will cancel the block (or sector) write protection state.
This feature allows user to stop protecting the entire block (or sector) through the chip unprotect command (GBULK).
The WREN (Write Enable) instruction is required before issuing SBLK/SBULK instruction.
The sequence of issuing SBLK/SBULK instruction is: CS# goes low → send SBLK/SBULK (36h/39h)
instruction→send 3-byte address assign one block (or sector) to be protected on SI pin → CS# goes high. The CS#
must go high exactly at the byte boundary, otherwise the instruction will be rejected and not be executed.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are "don't care"
in SPI mode.
SBLK/SBULK instruction function flow is as follows:
Figure 53. Block Lock Flow
Start
RDSCUR(2Bh) command
WPSEL=1?
No
WPSEL command
Yes
WREN command
SBLK command
( 36h + 24bit address )
RDSR command
WIP=0?
No
Yes
RDBLOCK command
( 3Ch + 24bit address )
Data = FFh ?
No
Yes
Block lock successfully
Lock another block?
Block lock fail
Yes
No
Block lock
P/N: PM1978
completed
63
REV. 1.2, OCT. 23, 2013
MX25U6435F
Figure 54. Block Unlock Flow
start
RDSCUR(2Bh) command
WPSEL=1?
No
WPSEL command
Yes
WREN command
SBULK command
( 39h + 24bit address )
RDSR command
No
WIP=0?
Yes
RDBLOCK command to verify
( 3Ch + 24bit address )
Data = FF ?
Yes
No
Block unlock successfully
Unlock another block?
Block unlock fail
Yes
Unlock block completed?
P/N: PM1978
64
REV. 1.2, OCT. 23, 2013
MX25U6435F
9-31. Read Block Lock Status (RDBLOCK)
This instruction is only effective after WPSEL was executed. The RDBLOCK instruction is for reading the status of
protection lock of a specified block (or sector), using AMAX-A16 (or AMAX-A12) address bits to assign a 64K bytes block (4K
bytes sector) and read protection lock status bit which the first byte of Read-out cycle. The status bit is"1" to indicate
that this block has be protected, that user can read only but cannot write/program /erase this block. The status bit is
"0" to indicate that this block hasn't be protected, and user can read and write this block.
The sequence of issuing RDBLOCK instruction is: CS# goes low → send RDBLOCK (3Ch) instruction → send
3-byte address to assign one block on SI pin → read block's protection lock status bit on SO pin → CS# goes high.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are "don't care"
in SPI mode.
9-32. Gang Block Lock/Unlock (GBLK/GBULK)
These instructions are only effective after WPSEL was executed. The GBLK/GBULK instruction is for enable/disable
the lock protection block of the whole chip.
The WREN (Write Enable) instruction is required before issuing GBLK/GBULK instruction.
The sequence of issuing GBLK/GBULK instruction is: CS# goes low → send GBLK/GBULK (7Eh/98h) instruction
→CS# goes high.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are "don't care"
in SPI mode.
The CS# must go high exactly at the byte boundary, otherwise, the instruction will be rejected and not be executed.
P/N: PM1978
65
REV. 1.2, OCT. 23, 2013
MX25U6435F
9-33. Program/ Erase Suspend/ Resume
The device allow the interruption of Sector-Erase, Block-Erase or Page-Program operations and conduct other
operations. Details as follows.
To enter the suspend/ resume mode: issuing B0h for suspend; 30h for resume (SPI/QPI all acceptable)
Read security register bit2 (PSB) and bit3 (ESB) (please refer to "Table 8. Security Register Definition") to check
suspend ready information.
For "Suspend to Read", "Resume to Read", "Resume to Suspend" timing specification please note "Figure 55.
Suspend to Read/Program Latency", "Figure 56. Resume to Read Latency" and "Figure 57. Resume to Suspend
Latency".
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are "don't care"
in SPI mode.
9-34. Erase Suspend
Erase suspend allows the interruption of all erase operations.
After erase suspend, WEL bit will be clear, following commands can be accepted. (including: 03h, 0Bh, 3Bh, 6Bh,
BBh, EBh, 5Ah, C0h, 06h, 04h, 2Bh, 9Fh, AFh, 05h, ABh, 90h, 02h, 38h, B1h, C1h, B0h, 30h, 66h, 99h, 00h, 35h,
F5h)
After issuing erase suspend command, latency time is needed before issuing another command.
For "Suspend to Read", "Resume to Read", "Resume to Suspend" timing specification please note "Figure 55.
Suspend to Read/Program Latency", "Figure 56. Resume to Read Latency" and "Figure 57. Resume to Suspend
Latency".
ESB bit (Erase Suspend Bit) indicates the status of Erase suspend operation. ESB bit is set to "1" when suspend
command is issued during erase operation. When erase operation resumes, ESB bit is reset to "0".
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are "don't care"
in SPI mode.
When ESB bit is issued, the Write Enable Latch (WEL) bit will be reset.
9-35. Program Suspend
Program suspend allows the interruption of all program operations.
After program suspend, WEL bit will be cleared, only read related, resume and reset command can be accepted.
(including: 03h, 0Bh, BBh, EBh, E7h, 9Fh, AFh, 90h, 05h, 2Bh, B1h, C1h, 5Ah, 3Ch, 30h, 66h, 99h, C0h, 35h, F5h,
00h, ABh )
After issuing program suspend command, latency time is needed before issuing another command.
For "Suspend to Read", "Resume to Read", "Resume to Suspend" timing specification please note "Figure 55.
Suspend to Read/Program Latency", "Figure 56. Resume to Read Latency" and "Figure 57. Resume to Suspend
Latency".
PSB bit (Program Suspend Bit) indicates the status of Program suspend operation. PSB bit is set to "1" when
suspend command is issued during program operation. When program operation resumes, PSB bit is reset to "0".
P/N: PM1978
66
REV. 1.2, OCT. 23, 2013
MX25U6435F
Figure 55. Suspend to Read/Program Latency
Suspend Command
[B0]
CS#
Program latency : 20us
Erase latency:20us
Read/Program Command
Note: Please note that Program Command only available after the Erase/Suspend operation
Figure 56. Resume to Read Latency
CS#
Resume Command
[30]
TSE/TBE/TPP
Read Command
Figure 57. Resume to Suspend Latency
CS#
P/N: PM1978
Resume Command
[30]
1ms
67
Suspend
Command
[B0]
REV. 1.2, OCT. 23, 2013
MX25U6435F
9-36. Write-Resume
The Write operation is being resumed when Write-Resume instruction issued. ESB or PSB (suspend status bit) in
Status register will be changed back to “0”
The operation of Write-Resume is as follows: CS# drives low → send write resume command cycle (30H) → drive
CS# high. By polling Busy Bit in status register, the internal write operation status could be checked to be completed
or not. The user may also wait the time lag of TSE, TBE, TPP for Sector-erase, Block-erase or Page-programming.
WREN (command "06" is not required to issue before resume. Resume to another suspend operation requires
latency time of 1ms.
Please note that, if "performance enhance mode" is executed during suspend operation, the device can not
be resumed. To restart the write command, disable the "performance enhance mode" is required. After the
"performance enhance mode" is disable, the write-resume command is effective.
9-37. No Operation (NOP)
The "No Operation" command is only able to terminate the Reset Enable (RSTEN) command and will not affect any
other command.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are don't care
when during SPI mode.
9-38. Software Reset (Reset-Enable (RSTEN) and Reset (RST))
The Software Reset operation combines two instructions: Reset-Enable (RSTEN) command and Reset (RST)
command. It returns the device to a standby mode. All the volatile bits and settings will be cleared then, which
makes the device return to the default status as power on.
To execute Reset command (RST), the Reset-Enable (RSTEN) command must be executed first to perform the
Reset operation. If there is any other command to interrupt after the Reset-Enable command, the Reset-Enable will
be invalid.
Both SPI (8 clocks) and QPI (2 clocks) command cycle can accept by this instruction. The SIO[3:1] are "don't care"
in SPI mode.
If the Reset command is executed during program or erase operation, the operation will be disabled, the data under
processing could be damaged or lost.
The reset time is different depending on the last operation. Longer latency time is required to recover from a program operation than from other operations.
P/N: PM1978
68
REV. 1.2, OCT. 23, 2013
MX25U6435F
Figure 58. Software Reset Recovery
Stand-by Mode
66
CS#
99
tRCR
tRCP
tRCE
Mode
tRCR: 20us (Recovery Time from Read)
tRCP: 20us (Recovery Time from Program)
tRCE: 12ms (Recovery Time from Erase)
Figure 59. Reset Sequence (SPI mode)
tSHSL
CS#
SCLK
Mode 3
Mode 3
Mode 0
Mode 0
Command
Command
99h
66h
SIO0
Figure 60. Reset Sequence (QPI mode)
tSHSL
CS#
MODE 3
MODE 3
MODE 3
SCLK
MODE 0
SIO[3:0]
P/N: PM1978
Command
MODE 0
66h
Command
MODE 0
99h
69
REV. 1.2, OCT. 23, 2013
MX25U6435F
9-39. Read SFDP Mode (RDSFDP)
The Serial Flash Discoverable Parameter (SFDP) standard provides a consistent method of describing the functional
and feature capabilities of serial flash devices in a standard set of internal parameter tables. These parameter tables
can be interrogated by host system software to enable adjustments needed to accommodate divergent features
from multiple vendors. The concept is similar to the one found in the Introduction of JEDEC Standard, JESD68 on
CFI.
The sequence of issuing RDSFDP instruction is same as FAST_READ: CS# goes low→send RDSFDP instruction
(5Ah)→send 3 address bytes on SI pin→send 1 dummy byte on SI pin→read SFDP code on SO→to end RDSFDP
operation can use CS# to high at any time during data out.
SFDP is a JEDEC Standard, JESD216.
Figure 61. Read Serial Flash Discoverable Parameter (RDSFDP) Sequence
CS#
0
1
2
3
4
5
6
7
8
9 10
28 29 30 31
SCLK
Command
SI
SO
24 BIT ADDRESS
23 22 21
5Ah
3
2
1
0
High-Z
CS#
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
SCLK
Dummy Cycle
SI
7
6
5
4
3
2
1
0
DATA OUT 2
DATA OUT 1
SO
7
6
5
3
2
1
0
7
MSB
MSB
P/N: PM1978
4
70
6
5
4
3
2
1
0
7
MSB
REV. 1.2, OCT. 23, 2013
MX25U6435F
Table 9. Signature and Parameter Identification Data Values
Description
SFDP Signature
Comment
Fixed: 50444653h
Add (h) DW Add Data (h/b)
(Byte)
(Bit)
(Note1)
00h
07:00
53h
Data
(h)
53h
01h
15:08
46h
46h
02h
23:16
44h
44h
03h
31:24
50h
50h
SFDP Minor Revision Number
Start from 00h
04h
07:00
00h
00h
SFDP Major Revision Number
Start from 01h
05h
15:08
01h
01h
Number of Parameter Headers
This number is 0-based. Therefore,
0 indicates 1 parameter header.
06h
23:16
01h
01h
07h
31:24
FFh
FFh
00h: it indicates a JEDEC specified
header.
08h
07:00
00h
00h
Start from 00h
09h
15:08
00h
00h
Start from 01h
0Ah
23:16
01h
01h
How many DWORDs in the
Parameter table
0Bh
31:24
09h
09h
0Ch
07:00
30h
30h
0Dh
15:08
00h
00h
0Eh
23:16
00h
00h
0Fh
31:24
FFh
FFh
it indicates Macronix manufacturer
ID
10h
07:00
C2h
C2h
Start from 00h
11h
15:08
00h
00h
Start from 01h
12h
23:16
01h
01h
How many DWORDs in the
Parameter table
13h
31:24
04h
04h
14h
07:00
60h
60h
15h
15:08
00h
00h
16h
23:16
00h
00h
17h
31:24
FFh
FFh
Unused
ID number (JEDEC)
Parameter Table Minor Revision
Number
Parameter Table Major Revision
Number
Parameter Table Length
(in double word)
Parameter Table Pointer (PTP)
First address of JEDEC Flash
Parameter table
Unused
ID number
(Macronix manufacturer ID)
Parameter Table Minor Revision
Number
Parameter Table Major Revision
Number
Parameter Table Length
(in double word)
Parameter Table Pointer (PTP)
First address of Macronix Flash
Parameter table
Unused
P/N: PM1978
71
REV. 1.2, OCT. 23, 2013
MX25U6435F
Table 10. Parameter Table (0): JEDEC Flash Parameter Tables
Description
Comment
Block/Sector Erase sizes
00: Reserved, 01: 4KB erase,
10: Reserved,
11: not support 4KB erase
Write Granularity
0: 1Byte, 1: 64Byte or larger
Write Enable Instruction Required 0: not required
1: required 00h to be written to the
for Writing to Volatile Status
status register
Registers
Add (h) DW Add Data (h/b)
(Byte)
(Bit)
(Note1)
31h
(1-1-2) Fast Read (Note2)
0=not support 1=support
Address Bytes Number used in
addressing flash array
Double Transfer Rate (DTR)
Clocking
00: 3Byte only, 01: 3 or 4Byte,
10: 4Byte only, 11: Reserved
01b
02
1b
03
0b
30h
0: use 50h opcode,
1: use 06h opcode
Write Enable Opcode Select for
Note: If target flash status register is
Writing to Volatile Status Registers
nonvolatile, then bits 3 and 4 must
be set to 00b.
Contains 111b and can never be
Unused
changed
4KB Erase Opcode
01:00
0=not support 1=support
32h
Data
(h)
E5h
04
0b
07:05
111b
15:08
20h
16
1b
18:17
00b
19
0b
20
1b
20h
F1h
(1-2-2) Fast Read
0=not support 1=support
(1-4-4) Fast Read
0=not support 1=support
21
1b
(1-1-4) Fast Read
0=not support 1=support
22
1b
23
1b
33h
31:24
FFh
37h:34h
31:00
03FFFFFFh
Unused
Unused
Flash Memory Density
(1-4-4) Fast Read Number of Wait 0 0000b: Wait states (Dummy
states (Note3)
Clocks) not support
(1-4-4) Fast Read Number of
000b: Mode Bits not support
Mode Bits (Note4)
38h
(1-4-4) Fast Read Opcode
39h
(1-1-4) Fast Read Number of Wait 0 0000b: Wait states (Dummy
states
Clocks) not support
(1-1-4) Fast Read Number of
000b: Mode Bits not support
Mode Bits
3Ah
(1-1-4) Fast Read Opcode
3Bh
P/N: PM1978
72
04:00
0 0100b
07:05
010b
15:08
EBh
20:16
0 1000b
23:21
000b
31:24
6Bh
FFh
44h
EBh
08h
6Bh
REV. 1.2, OCT. 23, 2013
MX25U6435F
Description
Comment
(1-1-2) Fast Read Number of Wait 0 0000b: Wait states (Dummy
states
Clocks) not support
(1-1-2) Fast Read Number of
000b: Mode Bits not support
Mode Bits
Add (h) DW Add Data (h/b)
(Byte)
(Bit)
(Note1)
3Ch
(1-1-2) Fast Read Opcode
3Dh
(1-2-2) Fast Read Number of Wait 0 0000b: Wait states (Dummy
states
Clocks) not support
(1-2-2) Fast Read Number of
000b: Mode Bits not support
Mode Bits
3Eh
(1-2-2) Fast Read Opcode
3Fh
(2-2-2) Fast Read
0=not support 1=support
Unused
(4-4-4) Fast Read
0=not support 1=support
40h
Unused
04:00
0 1000b
07:05
000b
15:08
3Bh
20:16
0 0100b
23:21
000b
31:24
BBh
00
0b
03:01
111b
04
1b
07:05
111b
Data
(h)
08h
3Bh
04h
BBh
FEh
Unused
43h:41h
31:08
FFh
FFh
Unused
45h:44h
15:00
FFh
FFh
20:16
0 0000b
23:21
000b
(2-2-2) Fast Read Number of Wait 0 0000b: Wait states (Dummy
states
Clocks) not support
(2-2-2) Fast Read Number of
000b: Mode Bits not support
Mode Bits
46h
(2-2-2) Fast Read Opcode
47h
31:24
FFh
FFh
49h:48h
15:00
FFh
FFh
20:16
0 0100b
23:21
010b
Unused
00h
(4-4-4) Fast Read Number of Wait 0 0000b: Wait states (Dummy
states
Clocks) not support
(4-4-4) Fast Read Number of
000b: Mode Bits not support
Mode Bits
4Ah
(4-4-4) Fast Read Opcode
4Bh
31:24
EBh
EBh
4Ch
07:00
0Ch
0Ch
4Dh
15:08
20h
20h
4Eh
23:16
0Fh
0Fh
4Fh
31:24
52h
52h
50h
07:00
10h
10h
51h
15:08
D8h
D8h
52h
23:16
00h
00h
53h
31:24
FFh
FFh
Sector Type 1 Size
Sector/block size = 2^N bytes (Note5)
0x00b: this sector type doesn't exist
Sector Type 1 erase Opcode
Sector Type 2 Size
Sector/block size = 2^N bytes
0x00b: this sector type doesn't exist
Sector Type 2 erase Opcode
Sector Type 3 Size
Sector/block size = 2^N bytes
0x00b: this sector type doesn't exist
Sector Type 3 erase Opcode
Sector Type 4 Size
Sector/block size = 2^N bytes
0x00b: this sector type doesn't exist
Sector Type 4 erase Opcode
P/N: PM1978
73
44h
REV. 1.2, OCT. 23, 2013
MX25U6435F
Table 11. Parameter Table (1): Macronix Flash Parameter Tables
Description
Comment
Add (h) DW Add Data (h/b)
(Byte)
(Bit)
(Note1)
Data
(h)
Vcc Supply Maximum Voltage
2000h=2.000V
2700h=2.700V
3600h=3.600V
61h:60h
07:00
15:08
00h
20h
00h
20h
Vcc Supply Minimum Voltage
1650h=1.650V
2250h=2.250V
2350h=2.350V
2700h=2.700V
63h:62h
23:16
31:24
50h
16h
50h
16h
H/W Reset# pin
0=not support 1=support
00
1b
H/W Hold# pin
0=not support 1=support
01
0b
Deep Power Down Mode
0=not support 1=support
02
1b
S/W Reset
0=not support 1=support
03
1b
S/W Reset Opcode
Reset Enable (66h) should be issued 65h:64h
before Reset Opcode
Program Suspend/Resume
0=not support 1=support
12
1b
Erase Suspend/Resume
0=not support 1=support
13
1b
14
1b
15
1b
66h
23:16
C0h
C0h
67h
31:24
64h
64h
Unused
Wrap-Around Read mode
0=not support 1=support
Wrap-Around Read mode Opcode
11:04
1001 1001b F99Dh
(99h)
Wrap-Around Read data length
08h:support 8B wrap-around read
16h:8B&16B
32h:8B&16B&32B
64h:8B&16B&32B&64B
Individual block lock
0=not support 1=support
00
1b
Individual block lock bit
(Volatile/Nonvolatile)
0=Volatile 1=Nonvolatile
01
0b
09:02
0011 0110b
(36h)
10
0b
11
1b
Individual block lock Opcode
Individual block lock Volatile
protect bit default protect status
0=protect 1=unprotect
Secured OTP
0=not support 1=support
Read Lock
0=not support 1=support
12
0b
Permanent Lock
0=not support 1=support
13
0b
Unused
15:14
11b
Unused
31:16
FFh
FFh
31:00
FFh
FFh
Unused
P/N: PM1978
6Bh:68h
6Fh:6Ch
74
C8D9h
REV. 1.2, OCT. 23, 2013
MX25U6435F
Note 1: h/b is hexadecimal or binary.
Note 2: (x-y-z) means I/O mode nomenclature used to indicate the number of active pins used for the opcode (x),
address (y), and data (z). At the present time, the only valid Read SFDP instruction modes are: (1-1-1), (2-2-2),
and (4-4-4)
Note 3: Wait States is required dummy clock cycles after the address bits or optional mode bits.
Note 4: Mode Bits is optional control bits that follow the address bits. These bits are driven by the system controller
if they are specified. (eg,read performance enhance toggling bits)
Note 5: 4KB=2^0Ch,32KB=2^0Fh,64KB=2^10h
Note 6: All unused and undefined area data is blank FFh
P/N: PM1978
75
REV. 1.2, OCT. 23, 2013
MX25U6435F
10. RESET
Driving the RESET# pin low for a period of tRLRH or longer will reset the device. After reset cycle, the device is at
the following states:
- Standby mode
- All the volatile bits such as WEL/WIP/SRAM lock bit will return to the default status as power on.
If the device is under programming or erasing, driving the RESET# pin low will also terminate the operation and data
could be lost. During the resetting cycle, the SO data becomes high impedance and the current will be reduced to
minimum.
Figure 62. RESET Timing
CS#
tRHRL
SCLK
tRH tRS
RESET#
tRLRH
Table 12. Reset Timing
Symbol Alt. Parameter
tRLRH
Reset Pulse Width
tRS
Reset Setup Time
tRH
Reset Hold Time
Reset Recovery Time (During instruction decoding)
tRCR
Read
Erase
tRHRL tRCE Reset Recovery Time
tRCP
Program
Reset Recovery Time (for WRSR operation)
P/N: PM1978
76
Min.
1
15
15
Typ.
Max.
20
20
12
20
20
Unit
us
ns
ns
us
us
ms
us
us
REV. 1.2, OCT. 23, 2013
MX25U6435F
11. POWER-ON STATE
The device is at below states when power-up:
- Standby mode (please note it is not deep power-down mode)
- Write Enable Latch (WEL) bit is reset
The device must not be selected during power-up and power-down stage unless the VCC achieves below correct
level:
- VCC minimum at power-up stage and then after a delay of tVSL
- GND at power-down
Please note that a pull-up resistor on CS# may ensure a safe and proper power-up/down level.
An internal power-on reset (POR) circuit may protect the device from data corruption and inadvertent data change
during power up state. When VCC is lower than VWI (POR threshold voltage value), the internal logic is reset and
the flash device has no response to any command.
For further protection on the device, if the VCC does not reach the VCC minimum level, the correct operation is not
guaranteed. The write, erase, and program command should be sent after the below time delay:
- tVSL after VCC reached VCC minimum level
The device can accept read command after VCC reached VCC minimum and a time delay of tVSL.
Please refer to the "Figure 69. Power-up Timing".
Note:
- To stabilize the VCC level, the VCC rail decoupled by a suitable capacitor close to package pins is recommended. (generally around 0.1uF)
- At power-down stage, the VCC drops below VWI level, all operations are disable and device has no response
to any command. The data corruption might occur during the stage while a write, program, erase cycle is in
progress.
P/N: PM1978
77
REV. 1.2, OCT. 23, 2013
MX25U6435F
12. ELECTRICAL SPECIFICATIONS
Table 13. Absolute Maximum Ratings
Rating
Value
Ambient Operating Temperature
Industrial grade
-40°C to 85°C
Storage Temperature
-65°C to 150°C
Applied Input Voltage
-0.5V to VCC+0.5V
Applied Output Voltage
-0.5V to VCC+0.5V
VCC to Ground Potential
-0.5V to 2.5V
NOTICE:
1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to
the device. This is stress rating only and functional operational sections of this specification is not implied.
Exposure to absolute maximum rating conditions for extended period may affect reliability.
2. Specifications contained within the following tables are subject to change.
3. During voltage transitions, all pins may overshoot to VCC+1.0V or -1.0V for period up to 20ns.
Figure 64. Maximum Positive Overshoot Waveform
Figure 63. Maximum Negative Overshoot Waveform
20ns
0V
VCC+1.0V
-1.0V
2.0V
20ns
Table 14. Capacitance
TA = 25°C, f = 1.0 MHz
Symbol Parameter
CIN
COUT
P/N: PM1978
Min.
Typ.
Max.
Unit
Input Capacitance
6
pF
VIN = 0V
Output Capacitance
8
pF
VOUT = 0V
78
Conditions
REV. 1.2, OCT. 23, 2013
MX25U6435F
Figure 65. Input Test Waveforms and Measurement Level
Input timing reference level
0.8VCC
Output timing reference level
0.7VCC
AC
Measurement
Level
0.3VCC
0.2VCC
0.5VCC
Note: Input pulse rise and fall time are <5ns
Figure 66. Output Loading
25K ohm
DEVICE UNDER
TEST
CL
+1.8V
25K ohm
CL=30pF Including jig capacitance
P/N: PM1978
79
REV. 1.2, OCT. 23, 2013
MX25U6435F
Table 15. DC Characteristics
Temperature = -40°C to 85°C, VCC = 1.65V ~ 2.0V
Symbol Parameter
Notes
Min.
Typ.
Max.
Units Test Conditions
ILI
Input Load Current
1
±2
uA
VCC = VCC Max,
VIN = VCC or GND
ILO
Output Leakage Current
1
±2
uA
VCC = VCC Max,
VOUT = VCC or GND
ISB1
VCC Standby Current
1
15
50
uA
VIN = VCC or GND,
CS# = VCC
ISB2
Deep Power-down
Current
1.5
15
uA
VIN = VCC or GND,
CS# = VCC
20
mA
f=104MHz, (4 x I/O read)
SCLK=0.1VCC/0.9VCC,
SO=Open
15
mA
f=84MHz,
SCLK=0.1VCC/0.9VCC,
SO=Open
20
25
mA
10
20
mA
1
18
25
mA
Erase in Progress,
CS#=VCC
1
20
25
mA
Erase in Progress,
CS#=VCC
-0.5
0.2VCC
V
0.8VCC
VCC+0.4
V
0.2
V
IOL = 100uA
V
IOH = -100uA
ICC1
VCC Read
VIL
VCC Program Current
(PP)
VCC Write Status
Register (WRSR) Current
VCC Sector/Block (32K,
64K) Erase Current
(SE/BE/BE32K)
VCC Chip Erase Current
(CE)
Input Low Voltage
VIH
Input High Voltage
VOL
Output Low Voltage
VOH
Output High Voltage
ICC2
ICC3
ICC4
ICC5
1
1
VCC-0.2
Program in Progress,
CS# = VCC
Program status register in
progress, CS#=VCC
Notes :
1. Typical values at VCC = 1.8V, T = 25°C. These currents are valid for all product versions (package and speeds).
2. Typical value is calculated by simulation.
P/N: PM1978
80
REV. 1.2, OCT. 23, 2013
MX25U6435F
Table 16. AC Characteristics
Temperature = -40°C to 85°C, VCC = 1.65V ~ 2.0V
Symbol
Alt. Parameter
Clock Frequency for the following instructions:
fSCLK
fC FAST_READ, RDSFDP, PP, SE, BE, CE, DP, RES,
RDP, WREN, WRDI, RDID, RDSR, WRSR
fRSCLK
fR Clock Frequency for READ instructions (6)
fT Clock Frequency for 2READ instructions
fTSCLK
fQ Clock Frequency for 4READ instructions (5)
Others (fSCLK)
tCH(1)
tCLH Clock High Time
Normal Read (fRSCLK)
Others (fSCLK)
tCL(1)
tCLL Clock Low Time
Normal Read (fRSCLK)
tCLCH(2)
Clock Rise Time (3) (peak to peak)
tCHCL(2)
Clock Fall Time (3) (peak to peak)
tSLCH tCSS CS# Active Setup Time (relative to SCLK)
tCHSL
CS# Not Active Hold Time (relative to SCLK)
tDVCH tDSU Data In Setup Time
tCHDX
tDH Data In Hold Time
tCHSH
CS# Active Hold Time (relative to SCLK)
tSHCH
CS# Not Active Setup Time (relative to SCLK)
Read
(3)
tSHSL
tCSH CS# Deselect Time
Write/Erase/Program
tSHQZ(2) tDIS Output Disable Time
Clock Low to Output Valid Loading: 30pF
tCLQV
tV
Loading: 30pF/15pF
Loading: 15pF
tCLQX
tHO Output Hold Time
tWHSL
Write Protect Setup Time
tSHWL
Write Protect Hold Time
tDP(2)
CS# High to Deep Power-down Mode
CS# High to Standby Mode without Electronic Signature
tRES1(2)
Read
CS# High to Standby Mode with Electronic Signature
(2)
tRES2
Read
tRCR
Recovery Time from Read
tRCP
Recovery Time from Program
tRCE
Recovery Time from Erase
tW
Write Status Register Cycle Time
tBP
Byte-Program
tPP
Page Program Cycle Time
tPP(7)
Page Program Cycle Time (n bytes)
tSE
tBE32
tBE
tCE
Sector Erase Cycle Time
Block Erase (32KB) Cycle Time
Block Erase (64KB) Cycle Time
Chip Erase Cycle Time
P/N: PM1978
81
Min.
Typ.(2)
D.C.
4.5
9
4.5
9
0.1
0.1
5
5
2
3
2
3
5
30
Max.
Unit
104
MHz
50
84
84/104
10
MHz
MHz
MHz
ns
ns
ns
ns
V/ns
V/ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
us
30
us
30
us
20
20
12
40
30
3
us
us
ms
ms
us
ms
3
ms
200
1
2
75
ms
s
s
s
8
8
6
0
10
10
12
0.5
0.008+
(nx0.004) (8)
35
0.2
0.35
50
REV. 1.2, OCT. 23, 2013
MX25U6435F
Notes:
1. tCH + tCL must be greater than or equal to 1/ Frequency.
2. Typical values given for TA=25°C. Not 100% tested.
3. Only applicable as a constraint for a WRSR instruction when SRWD is set at 1.
4. Test condition is shown as "Figure 65. Input Test Waveforms and Measurement Level", "Figure 66. Output Loading".
5. When dummy cycle=4 (In both QPI & SPI mode), maximum clock rate=84MHz; when dummy cycle=6 (In both
QPI & SPI mode), maximum clock rate=104MHz.
6. The maximum clock rate=33MHz when reading secured OTP area.
7. While programming consecutive bytes, Page Program instruction provides optimized timings by selecting to program the whole 256 bytes or only a few bytes between 1~256 bytes.
8. “n”=how many bytes to program. In the formula, while n=1, byte program time=12us.
P/N: PM1978
82
REV. 1.2, OCT. 23, 2013
MX25U6435F
13. OPERATING CONDITIONS
At Device Power-Up and Power-Down
AC timing illustrated in "Figure 67. AC Timing at Device Power-Up" and "Figure 68. Power-Down Sequence" are
for the supply voltages and the control signals at device power-up and power-down. If the timing in the figures is ignored, the device will not operate correctly.
During power-up and power-down, CS# needs to follow the voltage applied on VCC to keep the device not to be
selected. The CS# can be driven low when VCC reach Vcc(min.) and wait a period of tVSL.
Figure 67. AC Timing at Device Power-Up
VCC
VCC(min)
GND
tVR
tSHSL
CS#
tSLCH
tCHSL
tCHSH
tSHCH
SCLK
tDVCH
tCHCL
tCHDX
LSB IN
MSB IN
SI
High Impedance
SO
Symbol
tVR
tCLCH
Parameter
VCC Rise Time
Notes
1
Min.
20
Max.
500000
Unit
us/V
Notes :
1. Sampled, not 100% tested.
2. For AC spec tCHSL, tSLCH, tDVCH, tCHDX, tSHSL, tCHSH, tSHCH, tCHCL, tCLCH in the figure, please refer to
"Table 16. AC Characteristics".
P/N: PM1978
83
REV. 1.2, OCT. 23, 2013
MX25U6435F
Figure 68. Power-Down Sequence
During power-down, CS# needs to follow the voltage drop on VCC to avoid mis-operation.
VCC
CS#
SCLK
P/N: PM1978
84
REV. 1.2, OCT. 23, 2013
MX25U6435F
Figure 69. Power-up Timing
VCC
VCC(max)
Chip Selection is Not Allowed
VCC(min)
tVSL
Device is fully accessible
VWI
time
Note: VCC (max.) is 2.0V and VCC (min.) is 1.65V.
Table 17. Power-Up Timing and VWI Threshold
Symbol
tVSL(1)
VWI(1)
Parameter
VCC(min) to CS# low (VCC Rise Time)
Command Inhibit Voltage
Min.
800
1.0
Max.
1.4
Unit
us
V
Note: 1. These parameters are characterized only.
13-1. Initial Delivery State
The device is delivered with the memory array erased: all bits are set to 1 (each byte contains FFh). The Status
Register contains 00h (all Status Register bits are 0).
P/N: PM1978
85
REV. 1.2, OCT. 23, 2013
MX25U6435F
14. ERASE AND PROGRAMMING PERFORMANCE
PARAMETER
Min.
Typ. (1)
Max. (2)
Unit
40
ms
Write Status Register Cycle Time
Sector Erase Cycle Time (4KB)
35
200
ms
Block Erase Cycle Time (32KB)
0.2
1
s
Block Erase Cycle Time (64KB)
0.35
2
s
50
75
s
Chip Erase Cycle Time
(5)
Byte Program Time (via page program command)
12
30
us
Page Program Time
0.5(5)
3
ms
Erase/Program Cycle
100,000
cycles
Note:
1. Typical erase assumes the following conditions: 25°C, 1.8V, and all zero pattern.
2. Under worst conditions of 85°C and 1.65V.
3. System-level overhead is the time required to execute the first-bus-cycle sequence for the programming command.
4. The maximum chip programming time is evaluated under the worst conditions of 0°C, VCC=1.8V, and 100K cycle with 90% confidence level.
5. Typical program assumes the following conditions: 25°C, 1.8V, and checkerboard pattern.
15. LATCH-UP CHARACTERISTICS
Min.
Max.
Input Voltage with respect to GND on all power pins, SI, CS#
-1.0V
2 VCCmax
Input Voltage with respect to GND on SO
-1.0V
VCC + 1.0V
-100mA
+100mA
Current
Includes all pins except VCC. Test conditions: VCC = 1.8V, one pin at a time.
P/N: PM1978
86
REV. 1.2, OCT. 23, 2013
MX25U6435F
16. ORDERING INFORMATION
PART NO.
CLOCK (MHz)
TEMPERATURE
MX25U6435FM2I-10G
104
-40°C~85°C
MX25U6435FZNI-10G
104
-40°C~85°C
P/N: PM1978
87
PACKAGE
8-SOP
(200mil)
8-WSON
(6x5mm)
Remark
REV. 1.2, OCT. 23, 2013
MX25U6435F
17. PART NAME DESCRIPTION
MX 25
U
6435F ZN
I
10 G
OPTION:
G: RoHS Compliant and Halogen-free
SPEED:
10: 104MHz
TEMPERATURE RANGE:
I: Industrial (-40°C to 85°C)
PACKAGE:
M2: 8-SOP(200mil)
ZN: 8-WSON
DENSITY & MODE:
6435F: 64Mb
TYPE:
U: 1.8V
DEVICE:
25: Serial Flash
P/N: PM1978
88
REV. 1.2, OCT. 23, 2013
MX25U6435F
18. PACKAGE INFORMATION
P/N: PM1978
89
REV. 1.2, OCT. 23, 2013
MX25U6435F
P/N: PM1978
90
REV. 1.2, OCT. 23, 2013
MX25U6435F
19. REVISION HISTORY
Revision No.
0.01
0.02
1.0
1.1
1.2
Description
1. Modified Chip Erase Cycle Time
2. Modified tVSL(min.) from 500us to 800us
1. Changed title from "Advanced Information" to "Preliminary"
2. Modified Write Protection Selection (WPSEL) description
3. Modified Power-up Timing
1. Modified tVSL(min.) in Power-Up Timing Table
2. Modified value of tWHSL, tSHWL, tCHDX, tCHSH, tSHCH,
tSHSL and ISB1(max.) in CHARACTERISTICS Table
3. Added Reset# description for write/erase execution
1. Add DREAD function
2. Add QREAD function
3. Update DREAD(1-1-2) / QREAD(1-1-4) in SFDP Table
4. Modified Data Retention value
5. Remove MX25U3235F
6. Modified tVSL value
7. Modify accepted commands after Erase Suspend
8. Modified Page Program time
1. Updated Erase time and Consumption current
2. Updated ISB1, ISB2, ICC3 and ICC4 in DC Table
3. Updated tSE, tBE32, tBE and tCE in AC Table
4. Updated Erase time
PageDate
P78,83
AUG/25/2011
P82
P4OCT/06/2011
P59,60
P84
P84FEB/03/2012
P79,80
P33,49,50~53,58,75
P7,14,17,39
SEP/25/2013
P7,14,17,41
P72,73
P4
All
P85
P66
P4,81,86
P4
OCT/23/2013
P80
P81
P86
P/N: PM1978
91
REV. 1.2, OCT. 23, 2013
MX25U6435F
Except for customized products which have been expressly identified in the applicable agreement, Macronix's products
are designed, developed, and/or manufactured for ordinary business, industrial, personal, and/or household applications
only, and not for use in any applications which may, directly or indirectly, cause death, personal injury, or severe property
damages. In the event Macronix products are used in contradicted to their target usage above, the buyer shall take any
and all actions to ensure said Macronix's product qualified for its actual use in accordance with the applicable laws and
regulations; and Macronix as well as it’s suppliers and/or distributors shall be released from any and all liability arisen
therefrom.
Copyright© Macronix International Co., Ltd. 2011~2013. All rights reserved, including the trademarks and tradename
thereof, such as Macronix, MXIC, MXIC Logo, MX Logo, Integrated Solutions Provider, NBit, Nbit, NBiit, Macronix NBit,
eLiteFlash, HybridNVM, HybridFlash, XtraROM, Phines, KH Logo, BE-SONOS, KSMC, Kingtech, MXSMIO, Macronix
vEE, Macronix MAP, Rich Au­dio, Rich Book, Rich TV, and FitCAM. The names and brands of third party referred thereto (if
any) are for identification purposes only.
For the contact and order information, please visit Macronix’s Web site at: http://www.macronix.com
MACRONIX INTERNATIONAL CO., LTD. reserves the right to change product and specifications without notice.
92
Similar pages