PD - 97243A IRF6662PbF IRF6662TRPbF DirectFET™ Power MOSFET Typical values (unless otherwise specified) RoHs Compliant Lead-Free (Qualified up to 260°C Reflow) Application Specific MOSFETs Ideal for High Performance Isolated Converter Primary Switch Socket Optimized for Synchronous Rectification Low Conduction Losses High Cdv/dt Immunity Low Profile (<0.7mm) Dual Sided Cooling Compatible Compatible with existing Surface Mount Techniques VDSS RDS(on) VGS 17.5mΩ@ 10V 100V max ±20V max Qg Qgd Qgs2 Qrr Qoss Vgs(th) 6.8nC 1.2nC 50nC 11nC 3.9V tot 22nC S D G S D DirectFET™ ISOMETRIC MZ Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) SQ SX ST MQ MX MT MZ Description The IRF6662PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has the footprint of a SO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques. Application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF6662PbF is optimized for primary side bridge topologies in isolated DC-DC applications, for wide range universal input Telecom applications (36V - 75V), and for secondary side synchronous rectification in regulated DC-DC topologies. The reduced total losses in the device coupled with the high level of thermal performance enables high efficiency and low temperatures, which are key for system reliability improvements, and makes this device ideal for high performance isolated DC-DC converters. Absolute Maximum Ratings Parameter VDS Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V VGS ID @ TA = 25°C ID @ TA = 70°C ID @ TC = 25°C IDM EAS IAR Typical RDS(on) (mΩ) 100 ID = 4.9A 80 60 T J = 125°C 40 20 T J = 25°C 0 4 6 8 10 12 14 16 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage Notes: Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. Surface mounted on 1 in. square Cu board, steady state. www.irf.com VGS, Gate-to-Source Voltage (V) Pulsed Drain Current Single Pulse Avalanche Energy Avalanche Current Max. Units 100 ±20 8.3 6.6 47 66 39 4.9 V A mJ A 12.0 ID= 4.9A 10.0 8.0 VDS= 80V VDS= 50V VDS= 20V 6.0 4.0 2.0 0.0 0 5 10 15 20 25 QG Total Gate Charge (nC) Fig 2. Typical Total Gate Charge vs. Gate-to-Source Voltage TC measured with thermocouple mounted to top (Drain) of part. Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 3.2mH, RG = 25Ω, IAS = 4.9A. 1 08/25/06 IRF6662PbF Static @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Conditions Units VGS = 0V, ID = 250µA BVDSS Drain-to-Source Breakdown Voltage 100 ––– ––– V ∆ΒVDSS/∆TJ RDS(on) Breakdown Voltage Temp. Coefficient ––– 0.10 ––– V/°C Reference to 25°C, ID = 1mA Static Drain-to-Source On-Resistance ––– 17.5 22 VGS = 10V, ID = 8.2A VGS(th) Gate Threshold Voltage 3.0 3.9 4.9 mΩ V ∆VGS(th)/∆TJ IDSS Gate Threshold Voltage Coefficient ––– -9.7 ––– mV/°C IGSS gfs Qg Qgs1 Drain-to-Source Leakage Current VDS = VGS, ID = 100µA ––– ––– 20 µA VDS = 100V, VGS = 0V ––– ––– 250 VDS = 80V, VGS = 0V, TJ = 125°C nA VGS = 20V Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 Forward Transconductance 11 ––– ––– Total Gate Charge ––– 22 31 Pre-Vth Gate-to-Source Charge ––– 4.9 ––– VDS = 50V VGS = 10V VGS = -20V S VDS = 10V, ID = 4.9A Qgs2 Post-Vth Gate-to-Source Charge ––– 1.2 ––– Qgd Gate-to-Drain Charge ––– 6.8 10 ID = 4.9A Qgodr ––– 9.1 ––– See Fig. 15 Qsw Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– 8.0 ––– Qoss Output Charge ––– 11 ––– nC RG Gate Resistance ––– 1.2 ––– Ω td(on) Turn-On Delay Time ––– 11 ––– VDD = 50V, VGS = 10V tr Rise Time ––– 7.5 ––– ID = 4.9A td(off) Turn-Off Delay Time ––– 24 ––– tf Fall Time ––– 5.9 ––– Ciss Input Capacitance ––– 1360 ––– Coss Output Capacitance ––– 270 ––– Crss Reverse Transfer Capacitance ––– 61 ––– Coss Output Capacitance ––– 1340 ––– ƒ = 1.0MHz VGS = 0V, VDS = 1.0V, f=1.0MHz Coss Output Capacitance ––– 160 ––– VGS = 0V, VDS = 80V, f=1.0MHz Min. Typ. Max. ––– ––– 2.5 nC ns VDS = 16V, VGS = 0V RG=6.2Ω See Fig. 17 VGS = 0V pF VDS = 25V Diode Characteristics Parameter IS Continuous Source Current (Body Diode) ISM Pulsed Source Current Units A ––– ––– Conditions MOSFET symbol D showing the G 66 integral reverse p-n junction diode. TJ = 25°C, IS = 4.9A, VGS = 0V S (Body Diode) VSD Diode Forward Voltage ––– ––– 1.3 V trr Reverse Recovery Time ––– 34 51 ns TJ = 25°C, IF = 4.9A, VDD = 50V Qrr Reverse Recovery Charge ––– 50 75 nC di/dt = 100A/µs See Fig. 18 Notes: Repetitive rating; pulse width limited by max. junction temperature. Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 www.irf.com IRF6662PbF Absolute Maximum Ratings Max. Units 2.8 1.8 89 270 -40 to + 150 W Parameter Power Dissipation Power Dissipation Power Dissipation Peak Soldering Temperature Operating Junction and Storage Temperature Range PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C TP TJ TSTG °C Thermal Resistance Parameter RθJA RθJA RθJA RθJC RθJ-PCB Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case Junction-to-PCB Mounted Typ. Max. Units ––– 12.5 20 ––– 1.0 45 ––– ––– 1.4 ––– °C/W 100 Thermal Response ( Z thJA ) D = 0.50 10 0.20 0.10 0.05 1 0.02 0.01 τJ 0.1 0.01 SINGLE PULSE ( THERMAL RESPONSE ) R1 R1 τJ τ1 R2 R2 R3 R3 Ri (°C/W) R4 R4 τA τ2 τ1 τ2 τ3 τ3 τ4 1.2801 τA τ4 Ci= τi/Ri Ci τi/Ri τi (sec) 0.000322 8.7256 0.164798 21.7500 2.2576 13.2511 69 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Notes: Used double sided cooling , mounting pad. Mounted on minimum footprint full size board with metalized back and with small clip heatsink. Surface mounted on 1 in. square Cu (still air). www.irf.com Rθ is measured at TJ of approximately 90°C. Mounted to a PCB with small clip heatsink (still air) Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) 3 IRF6662PbF 100 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 7.0V 6.0V 10 6.0V BOTTOM 6.0V 10 ≤60µs PULSE WIDTH ≤60µs PULSE WIDTH Tj = 150°C Tj = 25°C 1 0.1 1 1 10 0.1 100 100 2.0 VDS = 10V ≤60µs PULSE WIDTH 10 VGS = 10V ID = 8.2A Typical RDS(on) (Normalized) ID, Drain-to-Source Current (Α) 10 Fig 5. Typical Output Characteristics 100 T J = 150°C T J = 25°C T J = -40°C 1 0.1 1.5 1.0 0.5 3 4 5 6 7 8 -60 -40 -20 0 Fig 6. Typical Transfer Characteristics 100000 Fig 7. Normalized On-Resistance vs. Temperature 45 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd T J = 25°C 40 Typical RDS(on) ( mΩ) C oss = C ds + C gd 10000 Ciss 1000 Coss 100 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) C, Capacitance(pF) 1 V DS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 4. Typical Output Characteristics Crss Vgs = 7.0V Vgs = 8.0V Vgs = 10V Vgs = 15V 35 30 25 20 15 10 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs.Drain-to-Source Voltage 4 VGS 15V 10V 8.0V 7.0V 6.0V 0 10 20 30 40 50 60 ID, Drain Current (A) Fig 9. Typical On-Resistance vs. Drain Current www.irf.com IRF6662PbF 1000 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) VGS = 0V OPERATION IN THIS AREA LIMITED BY R DS(on) 100 100 T J = 150°C T J = 25°C 10 T J = -40°C 1 100µsec 10 1msec T A = 25°C Tj = 150°C Single Pulse 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1 10 100 1000 VDS, Drain-to-Source Voltage (V) VSD, Source-to-Drain Voltage (V) Fig11. Maximum Safe Operating Area Fig 10. Typical Source-Drain Diode Forward Voltage 10 Typical VGS(th) Gate threshold Voltage (V) 7.0 8 ID, Drain Current (A) 10msec 1 6 4 2 0 25 50 75 100 125 ID = 100µA ID = 250µA 6.0 ID = 1.0mA ID = 1.0A 5.0 4.0 3.0 2.0 -75 -50 -25 150 0 25 50 75 100 125 150 T J , Temperature ( °C ) T A , Ambient Temperature (°C) Fig 13. Typical Threshold Voltage vs. Junction Temperature Fig 12. Maximum Drain Current vs. Ambient Temperature EAS , Single Pulse Avalanche Energy (mJ) 160 ID 1.6A 1.9A BOTTOM 4.9A 140 TOP 120 100 80 60 40 20 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 14. Maximum Avalanche Energy vs. Drain Current www.irf.com 5 IRF6662PbF Current Regulator Same Type as D.U.T. Id Vds 50KΩ Vgs .2µF 12V .3µF D.U.T. + V - DS Vgs(th) VGS 3mA IG ID Qgs1 Qgs2 Current Sampling Resistors Fig 15a. Gate Charge Test Circuit Qgd Qgodr Fig 15b. Gate Charge Waveform V(BR)DSS 15V DRIVER L VDS tp D.U.T RG + V - DD IAS VGS 20V A I AS 0.01Ω tp Fig 16b. Unclamped Inductive Waveforms Fig 16a. Unclamped Inductive Test Circuit RD VDS VDS 90% VGS D.U.T. RG + - VDD 10V Pulse Width ≤ 1 µs 10% VGS td(on) tr td(off) tf Duty Factor ≤ 0.1 % Fig 17a. Switching Time Test Circuit 6 Fig 17b. Switching Time Waveforms www.irf.com IRF6662PbF D.U.T Driver Gate Drive + - - - RG • • • • * D.U.T. ISD Waveform Reverse Recovery Current + di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + - Re-Applied Voltage Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Body Diode VDD Forward Drop Inductor Current Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs DirectFET™ Substrate and PCB Layout, MZ Outline (Medium Size Can, Z-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. www.irf.com 7 IRF6662PbF DirectFET™ Outline Dimension, MZ Outline (Medium Size Can, Z-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS METRIC CODE MIN MAX A 6.25 6.35 B 4.80 5.05 C 3.95 3.85 D 0.35 0.45 E 0.72 0.68 F 0.68 0.72 G 0.97 0.93 H 0.63 0.67 J 0.32 0.28 K 1.26 1.13 L 2.66 2.53 M 0.616 0.676 R 0.020 0.080 P 0.17 0.08 IMPERIAL MAX MAX 0.246 0.250 0.189 0.201 0.152 0.156 0.014 0.018 0.027 0.028 0.027 0.028 0.037 0.038 0.025 0.026 0.011 0.013 0.044 0.050 0.100 0.105 0.0235 0.0274 0.0008 0.0031 0.003 0.007 DirectFET™ Part Marking 8 www.irf.com IRF6662PbF DirectFET™ Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6662TRPBF). For 1000 parts on 7" reel, order IRF6662TR1PBF STANDARD OPTION METRIC CODE MIN MAX A 330.0 N.C B 20.2 N.C C 12.8 13.2 D 1.5 N.C E 100.0 N.C F N.C 18.4 G 12.4 14.4 H 11.9 15.4 REEL DIMENSIONS (QTY 4800) TR1 OPTION IMPERIAL METRIC MIN MAX MIN MAX 12.992 N.C 177.77 N.C 0.795 19.06 N.C N.C 0.504 13.5 0.520 12.8 0.059 1.5 N.C N.C 3.937 58.72 N.C N.C N.C N.C 0.724 13.50 0.488 11.9 0.567 12.01 0.469 11.9 0.606 12.01 (QTY 1000) IMPERIAL MAX MIN 6.9 N.C 0.75 N.C 0.53 0.50 0.059 N.C 2.31 N.C N.C 0.53 0.47 N.C 0.47 N.C LOADED TAPE FEED DIRECTION CODE A B C D E F G H DIMENSIONS IMPERIAL METRIC MIN MAX MIN MAX 0.311 0.319 7.90 8.10 0.154 0.161 3.90 4.10 0.469 0.484 11.90 12.30 0.215 0.219 5.45 5.55 0.201 0.209 5.10 5.30 0.256 0.264 6.50 6.70 0.059 N.C 1.50 N.C 0.059 0.063 1.50 1.60 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.08/06 www.irf.com 9 Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/