LITEON LTV852M-V Property of lite-on only Datasheet

! " # $
% & " '
%( " & " '
%)
# " & " '
))
% & ""'
))
* + # # + , " .-/0'11/2
+ ')
)
- + '/103
" .-/0'11/2$
%4 " + " '/ 5 &$
% + " '2/// 5 &$
%5 ' " -//'113/0$
%6 ! 7 $'3/## .$
%6 " ! 7 $'3/## .$
%. & 7 '/0## .$
%)
,# + 6 .$'0//# $
57 5$'3//#( 5 $
# $'36
. & , 8 +
& 7 ,# + 7 9# %.
-/0 + :
5 ' 8)8)8)$
: + & " 5 " '
%; %" 7&7 &
%*< , # & # & =' 7 8;' $
5 8)8)8)$
5 " %; %" 7&7 &
%*< , # & # & =' 7 8;' $
5 8)8)8)$
5 " * %; %" 7&7 &
%*< , # & # & =' 7 8;' $
5 8)8)8)$
5 " 0 5 8)8)8)$
± ± ! ± "#
"± !#
"± !"
5 " >°6$
&,-
0--
1
!
$%
&
'
()*+
*
!
$./*+
*
/.$*+
*
*
*
*
$$%
&
'
$
"
&*+
* 2
*
0+%
. 34
°$
5+%
.34 "
°$
1" 5+%
°$
"
%6< 8?@>0/A2/B
. + " # " 7"# $) 7 # , 7 # , $ + " 7 C *$ 7 + # + " 7 + %</) 5 8)8)8)$
5 " 2 >°6$
&,-
0--
" " #" !
*+
*
6
"
()$%
&
6
6
$
$
6
$$%
&
6
% 6? =
&7
µ'
*7*
"
*7 27 89:
6
"
'
*7"
6
6
*
&7
&7
'
&7
&7
µ'
;*
/.$
;*+
;*
6
6
*
&
'
1 $%(
$(
$./
5%*+
* &(
( +$
$
2
2
6
×
2
×
!
((
6
( 6
*2&7
&7 '
*7"*
*
&7" '
&7
'
6
Ω
$ *
3 <( 9
*7 27 =9:
6
"
'
"
6
<
6
$%.0 >%?
9:
µ
µ
*7"*2&7" '
Ω2.;
(7
*7"*2&7" '
Ω
(7
.
× //B
.
5 8)8)8)$
*
$./
;*+
$$%
(',5 /(
$9'('$/(&5&$5
$
5 " 3 $)
.
&,&/$ @
%
.
&,*/
=B%0+
&*+
*
+ +
*+;
&%0%%
+"
=B%0).)+
.
7
2>C$
A
.
A"
"
.
@
*
"!
*
#
*
(
+ 2"
*
7 2>C$
*
7
!
*
5?=B%(+
$%
&7 27
"&%$%
&
7
'
/0%%
&
.
!
&(
*+;
&%0%%E$
5
*
(
!
$
7
=&,
7='D =&,
7"$
=&,
(
+% 2
Ω
#" %5 " # -/0'11/2
" %5 D , $+ 8 , " ,""+ "
E$ , " " + " $
5 5 " Method (A) for type testing and random testing.
V
VINTIAL
Vpr
VIORM
tp
tb
t3
t1 tini t2
t4
t1, t2
= 1 to 10s
t3, t4
= 1s
tp (Partial Discharge Measuring Time)= 60s
tb
= 62s
tini
= 10s
t
Method (B) for routine testing.
V
Vpr
VIORM
t3
tp
tb
t4
t3, t4
= 0.1s
tp (Partial Discharge Measuring Time)= 1s
tb
= 1.2s
t
" + E 6" " # " #
+ 7 + 5 5 " 1 Fig.1 Forward Current vs.
Ambient Temperature
Fig.2 Collector Power Dissipation vs.
Ambient Temperature
Collector power dissipation Pc (mW)
Forward current I F (mA)
60
50
40
30
20
10
0
-30
0
25
50
75
100
125
200
150
100
50
0
-30
o
4
3
2.5
2
1.5
100
1
100 C
o
o
80 C
40 C
o
20 C
o
60 C
10
0.5
1
0
1
2
3
4
5
0.5 0.7 0.9 1.1
Fig.5 Current Transfer Ratio vs. Forward
Current
Fig.6 Collector Current vs.
Collector-emitter Voltage
7000
100
VCE= 2V
Collector current Ic (mA)
6000
5000
4000
3000
2000
2.5mA
10mA
5mA
80
3mA
2mA
1.5mA
60
1mA
PC (MAX.)
40
20
1000
0
0.1
1.3 1.5 1.7 1.9
Forward voltage (V)
Forward current IF (mA)
Current transfer ratio CTR (%)
80
o
0
I F= 0.5mA
0
1
10
Forward current (mA)
5 8)8)8)$
60
100
Ic= 5mA
10mA
30mA
50mA
70mA
100mA
3.5
40
Fig.4 Forward Current vs. Forward
Voltage
Forward current (mA)
Collector-emitter saturation voltage
V (sat) (V)
5
20
Ambient temperature Ta ( C)
Fig.3 Collector-emitter saturation
Voltage vs. Forward current
4.5
0
o
Ambient temperature Ta ( C)
0
1
2
3
4
5
Collector-emitter voltage VCE(V)
5 " / Fig.7 Relative Current Transfer Ratio
vs. Ambient Temperature
Fig.8 Collector-emitter Saturation Voltage
vs. Ambient Temperature
1.0
Relative current transfer ratio (%)
0.8
0.6
0.4
0.2
Collector-emitter saturation voltage
VCE (sat) (V)
1.20
IF= 1mA
VCE= 2V
0
1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
20
40
60
80
20
100
O
60
100
Fig.10 Response Time vs. Load
Resistance
1000
VCE = 200V
Response time ( s)
500
100
VCE= 2V
I C= 20mA
tr
200
100
tf
50
td
ts
20
10
5
2
10
20
40
60
80
1
100
O
Ambient temperature Ta ( C)
0.1
Test Circuit for Response Time
Vcc
0
10
1
Load resistance RL (k )
Fig.11 Frequency Response
Voltage gain Av (dB)
80
Ambient temperature Ta ( C)
Fig.9 Collector Dark Current vs.
Temperature
1000
40
O
Ambient temperature Ta ( C)
Collector dark current ICEO (nA)
I F= 20mA
Ic= 100mA
1.10
VCE= 2V
I C= 20mA
Input
RD
RL
Input
Output
Output
10%
-5
90%
td
-10
ts
tr
-15
RL= 1k
100
tf
Test Circuit for Frequency Response
10
Vcc
-20
RD
-25
0.1
1
10
100
RL
Output
500
Frequency f (kHz)
5 8)8)8)$
5 " 
Similar pages