AMIC A29001TV-55F 128k x 8 bit cmos 5.0 volt-only, boot sector flash memory Datasheet

A29001/290011 Series
128K X 8 Bit CMOS 5.0 Volt-only,
Boot Sector Flash Memory
Document Title
128K X 8 Bit CMOS 5.0 Volt-only, Boot Sector Flash Memory
Revision History
Rev. No.
History
Issue Date
0.0
Initial issue
October 19, 2000
0.1
Change ILIT from 50µA to 100µA
January 3, 2001
Remark
Preliminary
Change typical byte programming time from 7µs to 35µs
0.2
Erase VCC supply voltage for ± 5% devices in Operation Ranges
0.3
Correct the Continuation ID command to hexadecimal
August 21, 2001
0.4
Error Correction:
December 24, 2002
February 6, 2001
Add the time limit tWPH max. = 50µs of command cycle sequence
P.8: Autoselect Command Sequence (line 15), XX11h → XX03h
1.0
Final version release
October 7, 2003
1.1
Add 32Pin Pb-Free TSOP package type for A290011UV-70(U)F &
February 16, 2004
Final
A290011TV-70(U)F
1.2
Add Pb-Free package type for all parts
August 5, 2004
1.3
Add sTSOP package type.
December 1, 2004
(December, 2004, Version 1.3)
AMIC Technology, Corp.
A29001/290011 Series
128K X 8 Bit CMOS 5.0 Volt-only,
Boot Sector Flash Memory
Features
5.0V ± 10% for read and write operations
Access times:
- 55/70/90 (max.)
Current:
- 20 mA typical active read current
- 30 mA typical program/erase current
- 1 µA typical CMOS standby
Flexible sector architecture
- 8 Kbyte/ 4 KbyteX2/ 16 Kbyte/ 32 KbyteX3 sectors
- Any combination of sectors can be erased
- Supports full chip erase
- Sector protection:
A hardware method of protecting sectors to prevent
any inadvertent program or erase operations within
that sector
Top or bottom boot block configurations available
Embedded Erase Algorithms
- Embedded Erase algorithm will automatically erase
the entire chip or any combination of designated
sectors and verify the erased sectors
- Embedded Program algorithm automatically writes
and verifies bytes at specified addresses
Typical 100,000 program/erase cycles per sector
20-year data retention at 125°C
- Reliable operation for the life of the system
Compatible with JEDEC-standards
- Pinout and software compatible with single-powersupply Flash memory standard
- Superior inadvertent write protection
Data Polling and toggle bits
- Provides a software method of detecting completion
of program or erase operations
Erase Suspend/Erase Resume
- Suspends a sector erase operation to read data
from, or program data to, a non-erasing sector, then
resumes the erase operation
Hardware reset pin ( RESET )
- Hardware method to reset the device to reading array
data (not available on A290011)
Industrial operating temperature range: -40°C to +85°C
for – U
Package options: 32-pin P-DIP, PLCC, TSOP or
sTSOP (Forward type)
General Description
The A29001 is entirely software command set compatible
with the JEDEC single-power-supply Flash standard.
Commands are written to the command register using
standard microprocessor write timings. Register contents
serve as input to an internal state-machine that controls the
erase and programming circuitry. Write cycles also
internally latch addresses and data needed for the
programming and erase operations. Reading data out of
the device is similar to reading from other Flash or EPROM
devices.
Device programming occurs by writing the proper program
command sequence. This initiates the Embedded Program
algorithm - an internal algorithm that automatically times
the program pulse widths and verifies proper program
margin.
Device erasure occurs by executing the proper erase
command sequence. This initiates the Embedded Erase
algorithm - an internal algorithm that automatically
preprograms the array (if it is not already programmed)
before executing the erase operation. During erase, the
device automatically times the erase pulse widths and
verifies proper erase margin.
The host system can detect whether a program or erase
operation is complete by reading the I/O7 ( Data Polling)
and I/O6 (toggle) status bits. After a program or erase
cycle has been completed, the device is ready to read
array data or accept another command.
The A29001 is a 5.0 volt-only Flash memory organized as
131,072 bytes of 8 bits each. The A29001 offers the
RESET function, but it is not available on A290011. The
128 Kbytes of data are further divided into seven sectors for
flexible sector erase capability. The 8 bits of data appear on
I/O0 - I/O7 while the addresses are input on A0 to A16. The
A29001 is offered in 32-pin PLCC, TSOP, sTSOP and PDIP
packages. This device is designed to be programmed insystem with the standard system 5.0 volt VCC supply.
Additional 12.0 volt VPP is not required for in-system write
or erase operations. However, the A29001 can also be
programmed in standard EPROM programmers.
The A29001 has the first toggle bit, I/O6, which indicates
whether an Embedded Program or Erase is in progress, or it
is in the Erase Suspend. Besides the I/O6 toggle bit, the
A29001 has a second toggle bit, I/O2, to indicate whether
the addressed sector is being selected for erase. The
A29001 also offers the ability to program in the Erase
Suspend mode. The standard A29001 offers access times
of 55, 70 and 90 ns allowing high-speed microprocessors to
operate without wait states. To eliminate bus contention the
device has separate chip enable ( CE ), write enable ( WE )
and output enable ( OE ) controls.
The device requires only a single 5.0 volt power supply for
both read and write functions. Internally generated and
regulated voltages are provided for the program and erase
operations.
(December, 2004, Version 1.3)
1
AMIC Technology, Corp.
A29001/A290011 Series
The Erase Suspend feature enables the user to put erase
on hold for any period of time to read data from, or
program data to, any other sector that is not selected for
erasure. True background erase can thus be achieved.
Power consumption is greatly reduced when the device is
placed in the standby mode.
The hardware RESET pin terminates any operation in
progress and resets the internal state machine to reading
array data (This feature is not available on the A290011).
The sector erase architecture allows memory sectors to
be erased and reprogrammed without affecting the data
contents of other sectors. The A29001 is fully erased
when shipped from the factory.
The hardware sector protection feature disables
operations for both program and erase in any
combination of the sectors of memory. This can be
achieved via programming equipment.
Pin Configurations
DIP
PLCC
NC on A290011
A12
A15
A16
RESET
4
3
2
1
NC on A290011
NC
A12
4
29
A14
A7
5
28
A13
A7
5
29
A14
27
A8
A6
6
28
A13
A9
A5
7
27
A8
A6
A5
6
7
A4
8
A3
9
A2
10
A1
11
26
25
A11
A4
8
24
OE
A3
9
23
A10
A2
10
22
CE
NC
30
WE
3
30
WE
VCC
2
A15
31
VCC
31
32
32
A29001/A290011
1
A16
RESET
26
A9
25
A11
24
OE
A1
11
23
A10
A29001L/
A290011L
17
I/O3
20
16
I/O6
I/O4
VSS
19
I/O5
18
I/O5
19
15
I/O4
14
I/O2
18
I/O7
I/O1
17
CE
21
16
22
13
I/O3
12
I/O0
VSS
A0
I/O6
15
I/O7
20
14
21
13
I/O2
12
I/O1
A0
I/O0
TSOP/sTSOP (Forward type)
A11
A9
A8
A13
A14
NC
WE
VCC
RESET
A16
A15
NC on A290011 A12
A7
A6
A5
A4
(December, 2004, Version 1.3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
A29001V/A290011V
A29001X/A290011X
2
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
OE
A10
CE
I/O7
I/O6
I/O5
I/O4
I/O3
VSS
I/O2
I/O1
I/O0
A0
A1
A2
A3
AMIC Technology, Corp.
A29001/A290011 Series
Block Diagram
I/O0 - I/O7
VCC
VSS
State
Control
WE
RESET
(N/A A290011)
Input/Output
Buffers
Erase Voltage
Generator
PGM Voltage
Generator
Command
Register
Chip Enable
Output Enable
Logic
CE
OE
STB
Data Latch
STB
VCC Detector
Timer
A0-A16
Address Latch
Y-Decoder
Y-Gating
X-decoder
Cell Matrix
Pin Descriptions
Pin No.
A0 - A16
Address Inputs
I/O0 - I/O7
Data Inputs/Outputs
CE
Chip Enable
WE
Write Enable
OE
Output Enable
RESET
(December, 2004, Version 1.3)
Description
Hardware Reset (N/A A290011)
VSS
Ground
VCC
Power Supply
3
AMIC Technology, Corp.
A29001/A290011 Series
Absolute Maximum Ratings*
*Comments
Ambient Operating Temperature . . . . .-55°C to + 125°C
Storage Temperature . . . . . . . . . . . . . . .-65°C to + 150°C
Ground to VCC . . . . . . . . . . . . . . . . . . . .. . . -2.0V to 7.0V
Output Voltage (Note 1) . . . . . . . . . . . . ……-2.0V to 7.0V
A9, OE & RESET (Note 2) . . . . . . . . . . . -2.0V to 12.5V
All other pins (Note 1) . . . . . . . . . . . . . . . . ..-2.0V to 7.0V
Output Short Circuit Current (Note 3) . .. . . . . . . . 200mA
Stresses above those listed under "Absolute Maximum
Ratings" may cause permanent damage to this device.
These are stress ratings only. Functional operation of
this device at these or any other conditions above
those indicated in the operational sections of these
specification is not implied or intended. Exposure to
the absolute maximum rating conditions for extended
periods may affect device reliability.
Notes:
Operating Ranges
1. Minimum DC voltage on input or I/O pins is -0.5V.
During voltage transitions, inputs may undershoot
VSS to -2.0V for periods of up to 20ns. Maximum DC
voltage on output and I/O pins is VCC +0.5V. During
voltage transitions, outputs may overshoot to VCC
+2.0V for periods up to 20ns.
2. Minimum DC input voltage on A9 pins is -0.5V. During
voltage transitions, A9, OE and RESET may
overshoot VSS to -2.0V for periods of up to 20ns.
Maximum DC input voltage on A9 and OE is +12.5V
which may overshoot to 13.5V for periods up to 20ns.
( RESET is N/A on A290011)
3. No more than one output is shorted at a time.
Duration of the short circuit should not be greater than
one second.
Commercial (C) Devices
Ambient Temperature (TA) . . . . . . . . . . . . . .0°C to +70°C
Extended Range Devices
Ambient Temperature (TA) . . . . . . . . . . . . -40°C to +85°C
VCC Supply Voltages
VCC for ± 10% devices . . . . . . . . . . . . . . +4.5V to +5.5V
Operating ranges define those limits between which the
functionally of the device is guaranteed.
Device Bus Operations
This section describes the requirements and use of the
device bus operations, which are initiated through the
internal command register. The command register itself
does not occupy any addressable memory location. The
register is composed of latches that store the commands,
along with the address and data information needed to
execute the command. The contents of the register serve
as inputs to the internal state machine. The state
machine outputs dictate the function of the device. The
appropriate device bus operations table lists the inputs
and control levels required, and the resulting output. The
following subsections describe each of these operations
in further detail.
Table 1. A29001/A290011 Device Bus Operations
Operation
CE
WE
OE
RESET
A0 – A16
I/O0 - I/O7
(N/A A290011)
Read
L
L
H
H
AIN
DOUT
Write
L
H
L
H
AIN
DIN
VCC ± 0.5 V
X
X
VCC ± 0.5 V
X
High-Z
H
X
X
VCC ± 0.5 V
X
High-Z
Output Disable
L
H
H
H
X
High-Z
Reset
X
X
X
L
X
High-Z
Temporary Sector Unprotect (Note)
X
X
X
VID
X
X
CMOS Standby
TTL Standby
Legend:
L = Logic Low = VIL, H = Logic High = VIH, VID = 12.0 ± 0.5V, X = Don't Care, DIN = Data In, DOUT = Data Out, AIN = Address In
Note: 1. See the "Sector Protection/Unprotection" section and Temporary Sector Unprotect for more information.
2. This function is not available on A290011.
(December, 2004, Version 1.3)
4
AMIC Technology, Corp.
A29001/A290011 Series
Requirements for Reading Array Data
Standby Mode
To read array data from the outputs, the system must drive
the CE and OE pins to VIL. CE is the power control and
When the system is not reading or writing to the device, it
can place the device in the standby mode. In this mode,
current consumption is greatly reduced, and the outputs
are placed in the high impedance state, independent of the
OE input.
selects the device. OE is the output control and gates
array data to the output pins. WE should remain at VIH all
the time during read operation. The internal state machine
is set for reading array data upon device power-up, or after
a hardware reset. This ensures that no spurious alteration
of the memory content occurs during the power transition.
No command is necessary in this mode to obtain array
data. Standard microprocessor read cycles that assert
valid addresses on the device address inputs produce valid
data on the device data outputs. The device remains
enabled for read access until the command register
contents are altered.
See "Reading Array Data" for more information. Refer to
the AC Read Operations table for timing specifications and
to the Read Operations Timings diagram for the timing
waveforms, lCC1 in the DC Characteristics table represents
the active current specification for reading array data.
The device enters the CMOS standby mode when the CE
& RESET pins ( CE only on A290011) are both held at
VCC ± 0.5V. (Note that this is a more restricted voltage
range than VIH.) The device enters the TTL standby mode
when CE is held at VIH, while RESET (Not available on
A290011) is held at VCC±0.5V. The device requires the
standard access time (tCE) before it is ready to read data.
If the device is deselected during erasure or programming,
the device draws active current until the operation is
completed.
ICC3 in the DC Characteristics tables represents the
standby current specification.
Output Disable Mode
Writing Commands/Command Sequences
When the OE input is at VIH, output from the device is
disabled. The output pins are placed in the high impedance
state.
To write a command or command sequence (which
includes programming data to the device and erasing
sectors of memory), the system must drive WE and CE
RESET : Hardware Reset Pin (N/A on A290011)
to VIL, and OE to VIH. An erase operation can erase one
sector, multiple sectors, or the entire device. The Sector
Address Tables indicate the address range that each
sector occupies. A "sector address" consists of the address
inputs required to uniquely select a sector. See the
"Command Definitions" section for details on erasing a
sector or the entire chip, or suspending/resuming the erase
operation.
After the system writes the autoselect command sequence,
the device enters the autoselect mode. The system can
then read autoselect codes from the internal register
(which is separate from the memory array) on I/O7 - I/O0.
Standard read cycle timings apply in this mode. Refer to
the "Autoselect Mode" and "Autoselect Command
Sequence" sections for more information.
ICC2 in the Characteristics table represents the active
current specification for the write mode. The "AC
Characteristics" section contains timing specification tables
and timing diagrams for write operations.
The RESET pin provides a hardware method of resetting
the device to reading array data. When the system drives
the RESET pin low for at least a period of tRP, the device
immediately terminates any operation in progress, tristates
all data output pins, and ignores all read/write attempts for
the duration of the RESET pulse. The device also resets
the internal state machine to reading array data. The
operation that was interrupted should be reinitiated once
the device is ready to accept another command sequence,
to ensure data integrity.
The RESET pin may be tied to the system reset circuitry.
A system reset would thus also reset the Flash memory,
enabling the system to read the boot-up firmware from the
Flash memory.
Refer to the AC Characteristics tables for RESET
parameters and diagram.
Program and Erase Operation Status
During an erase or program operation, the system may
check the status of the operation by reading the status bits
on I/O7 - I/O0. Standard read cycle timings and ICC read
specifications apply. Refer to "Write Operation Status" for
more information, and to each AC Characteristics section
for timing diagrams.
(December, 2004, Version 1.3)
5
AMIC Technology, Corp.
A29001/A290011 Series
Table 2. A29001/A290011 Top Boot Block Sector Address Table
Sector
A16
A15
A14
A13
A12
Sector Size
(Kbytes)
Address Range
SA0
0
0
X
X
X
32
00000h - 07FFFh
SA1
0
1
X
X
X
32
08000h - 0FFFFh
SA2
1
0
X
X
X
32
10000h - 17FFFh
SA3
1
1
0
X
X
16
18000h - 1BFFFh
SA4
1
1
1
0
0
4
1C000h - 1CFFFh
SA5
1
1
1
0
1
4
1D000h - 1DFFFh
SA6
1
1
1
1
X
8
1E000h - 1FFFFh
Table 3. A29001/A290011 Bottom Boot Block Sector Address Table
Sector
A16
A15
A14
A13
A12
Sector Size
(Kbytes)
Address Range
SA0
0
0
0
0
X
8
00000h - 01FFFh
SA1
0
0
0
1
0
4
02000h - 02FFFh
SA2
0
0
0
1
1
4
03000h - 03FFFh
SA3
0
0
1
X
X
16
04000h - 07FFFh
SA4
0
1
X
X
X
32
08000h - 0FFFFh
SA5
1
0
X
X
X
32
10000h - 17FFFh
SA6
1
1
X
X
X
32
18000h - 1FFFFh
Autoselect Mode
The autoselect mode provides manufacturer and device
identification, and sector protection verification, through
identifier codes output on I/O7 - I/O0. This mode is
primarily intended for programming equipment to
automatically match a device to be programmed with its
corresponding programming algorithm. However, the
autoselect codes can also be accessed in-system
through the command register.
When using programming equipment, the autoselect
mode requires VID (11.5V to 12.5 V) on address pinA9.
Address pins A6, A1, and AO must be as shown in
Autoselect Codes (High Voltage Method) table. In
addition, when verifying sector protection, the sector
address must appear on the appropriate highest order
address bits. Refer to the corresponding Sector Address
Tables. The Command Definitions table shows the
remaining address bits that are don't care. When all
necessary bits have been set as required, the
programming
equipment
may
then
read
the
corresponding identifier code on I/O7 - I/O0.To access the
autoselect codes in-system, the host system can issue
the autoselect command via the command register, as
shown in the Command Definitions table. This method
does not require VID. See "Command Definitions" for
details on using the autoselect mode.
Table 4. A29001/A290011 Autoselect Codes (High Voltage Method)
Description
A16 - A12 A11 - A10
A9
A8 - A7
A6
A5 - A2
A1
A0
Identifier Code on
I/O7 - I/O0
Manufacturer ID: AMIC
X
X
VID
X
VIL
X
VIL
VIL
Device ID: A29001/
A290011
X
X
VID
X
VIL
X
VIL
VIH
Sector Protection
Verification
37h
Top Boot Block: A1h
Bottom Boot Block: 4Ch
Sector
X
VID
X
VIL
X
VIH
VIL
Address
Continuation ID
X
01h (protected)
00h (unprotected)
X
VID
X
VIL
X
VIH
VIH
7Fh
Note: CE =VIL, OE =VIL and WE =VIH when Autoselect Mode
(December, 2004, Version 1.3)
6
AMIC Technology, Corp.
A29001/A290011 Series
Sector Protection/Unprotection
The hardware sector protection feature disables both
program and erase operations in any sector. The
hardware sector unprotection feature re-enables both
program and erase operations in previously protected
sectors.
Sector protection/unprotection must be implemented using
programming equipment. The procedure requires a high
voltage (VID) on address pin A9 and the control pins.
The device is shipped with all sectors unprotected.
It is possible to determine whether a sector is protected or
unprotected. See "Autoselect Mode" for details.
START
RESET = VID
(Note 1)
Hardware Data Protection
Perform Erase or
Program Operations
The requirement of command unlocking sequence for
programming or erasing provides data protection against
inadvertent writes (refer to the Command Definitions
table). In addition, the following hardware data protection
measures prevent accidental erasure or programming,
which might otherwise be caused by spurious system level
signals during VCC power-up transitions, or from system
noise. The device is powered up to read array data to
avoid accidentally writing data to the array.
RESET = VIH
Write Pulse "Glitch" Protection
Noise pulses of less than 5ns (typical) on OE , CE or
WE do not initiate a write cycle.
Temporary Sector
Unprotect
Completed (Note 2)
Logical Inhibit
Write cycles are inhibited by holding any one of OE =VIL,
CE = VIH or WE = VIH. To initiate a write cycle, CE and
Notes:
1. All protected sectors unprotected.
2. All previously protected sectors are protected once again.
WE must be a logical zero while OE is a logical one.
Power-Up Write Inhibit
If WE = CE = VIL and OE = VIH during power up, the
device does not accept commands on the rising edge of
WE . The internal state machine is automatically reset to
reading array data on the initial power-up.
Figure 1. Temporary Sector Unprotect Operation
Temporary Sector Unprotect (N/A A290011)
This feature allows temporary unprotection of previous
protected sectors to change data in-system. The Sector
Unprotect mode is activated by setting the RESET pin to
VID. During this mode, formerly protected sectors can be
programmed or erased by selecting the sector addresses.
Once VID is removed from the RESET pin, all the
previously protected sectors are protected again. Figure 1
shows the algorithm, and the Temporary Sector Unprotect
diagram shows the timing waveforms, for this feature.
(December, 2004, Version 1.3)
7
AMIC Technology, Corp.
A29001/A290011 Series
Command Definitions
Autoselect Command Sequence
Writing specific address and data commands or
sequences into the command register initiates device
operations. The Command Definitions table defines the
valid register command sequences. Writing incorrect
address and data values or writing them in the improper
sequence resets the device to reading array data.
All addresses are latched on the falling edge of WE or
CE , whichever happens later. All data is latched on the
The autoselect command sequence allows the host
system to access the manufacturer and devices codes,
and determine whether or not a sector is protected. The
Command Definitions table shows the address and data
requirements. This method is an alternative to that shown
in the Autoselect Codes (High Voltage Method) table,
which is intended for PROM programmers and requires
VID on address bit A9.
The autoselect command sequence is initiated by writing
two unlock cycles, followed by the autoselect command.
The device then enters the autoselect mode, and the
system may read at any address any number of times,
without initiating another command sequence.
A read cycle at address XX00h retrieves the manufacturer
code and another read cycle at XX03h retrieves the
continuation code. A read cycle at address XX01h returns
the device code. A read cycle containing a sector address
(SA) and the address 02h in returns 01h if that sector is
protected, or 00h if it is unprotected. Refer to the Sector
Address tables for valid sector addresses.
The system must write the reset command to exit the
autoselect mode and return to reading array data.
rising edge of WE or CE , whichever happens first. Refer
to the appropriate timing diagrams in the "AC
Characteristics" section.
Reading Array Data
The device is automatically set to reading array data after
device power-up. No commands are required to retrieve
data. The device is also ready to read array data after
completing an Embedded Program or Embedded Erase
algorithm. After the device accepts an Erase Suspend
command, the device enters the Erase Suspend mode.
The system can read array data using the standard read
timings, except that if it reads at an address within erasesuspended sectors, the device outputs status data. After
completing a programming operation in the Erase
Suspend mode, the system may once again read array
data with the same exception. See "Erase Suspend/Erase
Resume Commands" for more information on this mode.
The system must issue the reset command to re-enable
the device for reading array data if I/O5 goes high, or while
in the autoselect mode. See the "Reset Command"
section, next.
See also "Requirements for Reading Array Data" in the
"Device Bus Operations" section for more information. The
Read Operations table provides the read parameters, and
Read Operation Timings diagram shows the timing
diagram.
Byte Program Command Sequence
Programming is a four-bus-cycle operation. The program
command sequence is initiated by writing two unlock write
cycles, followed by the program set-up command. The
program address and data are written next, which in turn
initiate the Embedded Program algorithm. The system is
not required to provide further controls or timings. The
device automatically provides internally generated
program pulses and verify the programmed cell margin.
The Command Definitions table shows the address and
data requirements for the byte program command
sequence.
When the Embedded Program algorithm is complete, the
device then returns to reading array data and addresses
are no longer latched. The system can determine the
status of the program operation by using I/O7 or I/O6. See
"Write Operation Status" for information on these status
bits.
Any commands written to the device during the Embedded
Program Algorithm are ignored. Programming is allowed in
any sequence and across sector boundaries. A bit cannot
be programmed from a "0" back to a "1 ". Attempting to do
so may halt the operation and set I/O5 to "1", or cause the
Data Polling algorithm to indicate the operation was
successful. However, a succeeding read will show that the
data is still "0". Only erase operations can convert a "0" to
a "1".
Reset Command
Writing the reset command to the device resets the device
to reading array data. Address bits are don't care for this
command. The reset command may be written between
the sequence cycles in an erase command sequence
before erasing begins. This resets the device to reading
array data. Once erasure begins, however, the device
ignores reset commands until the operation is complete.
The reset command may be written between the
sequence cycles in a program command sequence before
programming begins. This resets the device to reading
array data (also applies to programming in Erase Suspend
mode). Once programming begins, however, the device
ignores reset commands until the operation is complete.
The reset command may be written between the
sequence cycles in an autoselect command sequence.
Once in the autoselect mode, the reset command must be
written to return to reading array data (also applies to
autoselect during Erase Suspend).
If I/O5 goes high during a program or erase operation,
writing the reset command returns the device to reading
array data (also applies during Erase Suspend).
(December, 2004, Version 1.3)
8
AMIC Technology, Corp.
A29001/A290011 Series
Figure 3 illustrates the algorithm for the erase operation.
See the Erase/Program Operations tables in "AC
Characteristics" for parameters, and to the Chip/Sector
Erase Operation Timings for timing waveforms.
START
Sector Erase Command Sequence
Write Program
Command
Sequence
Sector erase is a six-bus-cycle operation. The sector
erase command sequence is initiated by writing two
unlock cycles, followed by a set-up command. Two
additional unlock write cycles are then followed by the
address of the sector to be erased, and the sector erase
command. The Command Definitions table shows the
address and data requirements for the sector erase
command sequence.
The device does not require the system to preprogram the
memory prior to erase. The Embedded Erase algorithm
automatically programs and verifies the sector for an all
zero data pattern prior to electrical erase. The system is
not required to provide any controls or timings during
these operations.
After the command sequence is written, a sector erase
time-out of 50µs begins. During the time-out period,
additional sector addresses and sector erase commands
may be written. Loading the sector erase buffer may be
done in any sequence, and the number of sectors may be
from one sector to all sectors. The time between these
additional cycles must be less than 50µs, otherwise the
last address and command might not be accepted, and
erasure may begin. It is recommended that processor
interrupts be disabled during this time to ensure all
commands are accepted. The interrupts can be reenabled after the last Sector Erase command is written. If
the time between additional sector erase commands can
be assumed to be less than 50µs, the system need not
monitor I/O3. Any command other than Sector Erase or
Erase Suspend during the time-out period resets the
device to reading array data. The system must rewrite the
command sequence and any additional sector addresses
and commands.
The system can monitor I/O3 to determine if the sector
erase timer has timed out. (See the " I/O3: Sector Erase
Timer" section.) The time-out begins from the rising edge
of the final WE pulse in the command sequence.
Once the sector erase operation has begun, only the
Erase Suspend command is valid. All other commands are
ignored.
When the Embedded Erase algorithm is complete, the
device returns to reading array data and addresses are no
longer latched. The system can determine the status of
the erase operation by using I/O7, I/O6, or I/O2. Refer to
"Write Operation Status" for information on these status
bits. Figure 3 illustrates the algorithm for the erase
operation. Refer to the Erase/Program Operations tables
in the "AC Characteristics" section for parameters, and to
the Sector Erase Operations Timing diagram for timing
waveforms.
Data Poll
from System
Embedded
Program
algorithm in
progress
Verify Data ?
No
Yes
Increment Address
Last Address ?
Yes
Programming
Completed
Note : See the appropriate Command Definitions table for
program command sequence.
Figure 2. Program Operation
Chip Erase Command Sequence
Chip erase is a six-bus-cycle operation. The chip erase
command sequence is initiated by writing two unlock
cycles, followed by a set-up command. Two additional
unlock write cycles are then followed by the chip erase
command, which in turn invokes the Embedded Erase
algorithm. The device does not require the system to
preprogram prior to erase. The Embedded Erase
algorithm automatically preprograms and verifies the
entire memory for an all zero data pattern prior to electrical
erase. The system is not required to provide any controls
or timings during these operations. The Command
Definitions table shows the address and data
requirements for the chip erase command sequence.
Any commands written to the chip during the Embedded
Erase algorithm are ignored.
The system can determine the status of the erase
operation by using I/O7, I/O6, or I/O2. See "Write Operation
Status" for information on these status bits.
When the Embedded Erase algorithm is complete, the
device returns to reading array data and addresses are no
longer latched.
(December, 2004, Version 1.3)
Erase Suspend/Erase Resume Commands
The Erase Suspend command allows the system to
interrupt a sector erase operation and then read data from,
or program data to, any sector not selected for erasure.
This command is valid only during the sector erase
operation, including the 50µs time-out period during the
sector erase command sequence. The Erase Suspend
9
AMIC Technology, Corp.
A29001/A290011 Series
command is ignored if written during the chip erase
operation or Embedded Program algorithm. Writing the
Erase Suspend command during the Sector Erase timeout immediately terminates the time-out period and
suspends the erase operation. Addresses are "don't
cares" when writing the Erase Suspend command.
When the Erase Suspend command is written during a
sector erase operation, the device requires a maximum of
20µs to suspend the erase operation. However, when the
Erase Suspend command is written during the sector
erase time-out, the device immediately terminates the
time-out period and suspends the erase operation.
After the erase operation has been suspended, the system
can read array data from or program data to any sector
not selected for erasure. (The device "erase suspends" all
sectors selected for erasure.) Normal read and write
timings and command definitions apply. Reading at any
address within erase-suspended sectors produces status
data on I/O7 - I/O0. The system can use I/O7, or I/O6 and
I/O2 together, to determine if a sector is actively erasing or
is erase-suspended. See "Write Operation Status" for
information on these status bits.
After an erase-suspended program operation is complete,
the system can once again read array data within nonsuspended sectors. The system can determine the status
of the program operation using the I/O7 or I/O6 status bits,
just as in the standard program operation. See "Write
Operation Status" for more information.
The system may also write the autoselect command
sequence when the device is in the Erase Suspend mode.
The device allows reading autoselect codes even at
addresses within erasing sectors, since the codes are not
stored in the memory array. When the device exits the
autoselect mode, the device reverts to the Erase Suspend
mode, and is ready for another valid operation. See
"Autoselect Command Sequence" for more information.
The system must write the Erase Resume command
(address bits are "don't care") to exit the erase suspend
mode and continue the sector erase operation. Further
writes of the Resume command are ignored. Another
Erase Suspend command can be written after the device
has resumed erasing.
(December, 2004, Version 1.3)
START
Write Erase
Command
Sequence
Data Poll
from System
Embedded
Erase
algorithm in
progress
No
Data = FFh ?
Yes
Erasure Completed
Note :
1. See the appropriate Command Definitions table for erase
command sequences.
2. See "I/O3 : Sector Erase Timer" for more information.
Figure 3. Erase Operation
10
AMIC Technology, Corp.
A29001/A290011 Series
Table 5. A29001/A290011 Command Definitions
Command
Bus Cycles (Notes 2 - 4)
Cycles
Sequence
(Note 1)
First
Second
Addr Data
Addr Data
Third
Fourth
1
RA
RD
Reset (Note 6)
1
XXX
F0
4
555
AA
2AA
55
555
90
X00
37
4
555
AA
2AA
55
555
90
X01
A1
4
555
AA
2AA
55
555
90
X03
7F
Sector Protect Verify 4
555
AA
2AA
55
555
90
SA
00
(Note 7)
Device ID Top
Bottom
Continuation ID
Sixth
Addr Data Addr Data Addr Data Addr Data
Read (Note 5)
Autoselect Manufacturer ID
Fifth
4C
(Note 8)
X02
01
Program
4
555
AA
2AA
55
555
A0
PA
PD
Chip Erase
6
555
AA
2AA
55
555
80
555
AA
2AA
55
555
10
Sector Erase
6
555
AA
2AA
55
555
80
555
AA
2AA
55
SA
30
Erase Suspend (Note 9)
1
XXX
B0
Erase Resume (Note 10)
1
XXX
30
Legend:
X = Don't care
RA = Address of the memory location to be read.
RD = Data read from location RA during read operation.
PA = Address of the memory location to be programmed. Addresses latch on the falling edge of the WE or CE pulse,
whichever happens later.
PD = Data to be programmed at location PA. Data latches on the rising edge of WE or CE pulse, whichever happens first.
SA = Address of the sector to be verified (in autoselect mode) or erased. Address bits A16 - A12 select a unique sector.
Note:
1. See Table 1 for description of bus operations.
2. All values are in hexadecimal.
3. Except when reading array or autoselect data, all bus cycles are write operation.
4. Address bits A16 - A12 are don't cares for unlock and command cycles, unless SA or PA required.
5. No unlock or command cycles required when reading array data.
6. The Reset command is required to return to reading array data when device is in the autoselect mode, or if I/O5 goes high
(while the device is providing status data).
7. The fourth cycle of the autoselect command sequence is a read cycle.
8. The data is 00h for an unprotected sector and 01h for a protected sector. See "Autoselect Command Sequence" for more
information.
9. The system may read and program in non-erasing sectors, or enter the autoselect mode, when in the Erase Suspend
mode.
10. The Erase Resume command is valid only during the Erase Suspend mode.
11. The time between each command cycle has to be less than 50µs.
(December, 2004, Version 1.3)
11
AMIC Technology, Corp.
A29001/A290011 Series
Write Operation Status
Several bits, I/O2, I/O3, I/O5, I/O6, and I/O7, are provided in
the A29001/A290011 to determine the status of a write
operation. Table 6 and the following subsections describe
the functions of these status bits. I/O7, I/O6 and I/O2 each
offer a method for determining whether a program or erase
operation is complete or in progress. These three bits are
discussed first.
START
Read I/O7-I/O0
Address = VA
I/O7: Data Polling
The Data Polling bit, I/O7, indicates to the host system
whether an Embedded Algorithm is in progress or
completed, or whether the device is in Erase Suspend.
Data Polling is valid after the rising edge of the final WE
pulse in the program or erase command sequence.
During the Embedded Program algorithm, the device
outputs on I/O7 the complement of the datum programmed
to I/O7. This I/O7 status also applies to programming during
Erase Suspend. When the Embedded Program algorithm
is complete, the device outputs the datum programmed to
I/O7. The system must provide the program address to
read valid status information on I/O7. If a program address
falls within a protected sector, Data Polling on I/O7 is
active for approximately 2µs, then the device returns to
reading array data.
During the Embedded Erase algorithm, Data Polling
produces a "0" on I/O7. When the Embedded Erase
algorithm is complete, or if the device enters the Erase
Suspend mode, Data Polling produces a "1" on I/O7.This
is analogous to the complement/true datum output
described for the Embedded Program algorithm: the erase
function changes all the bits in a sector to "1"; prior to this,
the device outputs the "complement," or "0." The system
must provide an address within any of the sectors selected
for erasure to read valid status information on I/O7.
After an erase command sequence is written, if all sectors
selected for erasing are protected, Data Polling on I/O7 is
active for approximately 100µs, then the device returns to
reading array data. If not all selected sectors are
protected, the Embedded Erase algorithm erases the
unprotected sectors, and ignores the selected sectors that
are protected.
When the system detects I/O7 has changed from the
complement to true data, it can read valid data at I/O7 I/O0 on the following read cycles. This is because I/O7 may
change asynchronously with I/O0 - I/O6 while Output
Enable ( OE ) is asserted low. The Data Polling Timings
(During Embedded Algorithms) figure in the "AC
Characteristics" section illustrates this. Table 6 shows the
outputs for Data Polling on I/O7. Figure 4 shows the Data
Polling algorithm.
(December, 2004, Version 1.3)
Yes
I/O7 = Data ?
No
No
I/O5 = 1?
Yes
Read I/O7 - I/O0
Address = VA
Yes
I/O7 = Data ?
No
FAIL
PASS
Note :
1. VA = Valid address for programming. During a sector
erase operation, a valid address is an address within any
sector selected for erasure. During chip erase, a valid
address is any non-protected sector address.
2. I/O7 should be rechecked even if I/O5 = "1" because
I/O7 may change simultaneously with I/O5.
Figure 4. Data Polling Algorithm
12
AMIC Technology, Corp.
A29001/A290011 Series
The I/O2 vs. I/O6 figure shows the differences between I/O2
and I/O6 in graphical form.
I/O6: Toggle Bit I
Toggle Bit I on I/O6 indicates whether an Embedded
Program or Erase algorithm is in progress or complete, or
whether the device has entered the Erase Suspend mode.
Toggle Bit I may be read at any address, and is valid after
the rising edge of the final WE pulse in the command
sequence (prior to the program or erase operation), and
during the sector erase time-out.
During an Embedded Program or Erase algorithm
operation, successive read cycles to any address cause
I/O6 to toggle. (The system may use either OE or CE to
control the read cycles.) When the operation is complete,
I/O6 stops toggling.
After an erase command sequence is written, if all sectors
selected for erasing are protected, I/O6 toggles for
approximately 100µs, then returns to reading array data. If
not all selected sectors are protected, the Embedded
Erase algorithm erases the unprotected sectors, and
ignores the selected sectors that are protected.
The system can use I/O6 and I/O2 together to determine
whether a sector is actively erasing or is erase-suspended.
When the device is actively erasing (that is, the Embedded
Erase algorithm is in progress), I/O6 toggles. When the
device enters the Erase Suspend mode, I/O6 stops
toggling. However, the system must also use I/O2 to
determine which sectors are erasing or erase-suspended.
Alternatively, the system can use I/O7 (see the subsection
on " I/O7 : Data Polling").
If a program address falls within a protected sector, I/O6
toggles for approximately 2µs after the program command
sequence is written, then returns to reading array data.
I/O6 also toggles during the erase-suspend-program mode,
and stops toggling once the Embedded Program algorithm
is complete.
The Write Operation Status table shows the outputs for
Toggle Bit I on I/O6. Refer to Figure 5 for the toggle bit
algorithm, and to the Toggle Bit Timings figure in the "AC
Characteristics" section for the timing diagram. The I/O2
vs. I/O6 figure shows the differences between I/O2 and I/O6
in graphical form. See also the subsection on " I/O2:
Toggle Bit II".
Reading Toggle Bits I/O6, I/O2
Refer to Figure 5 for the following discussion. Whenever
the system initially begins reading toggle bit status, it must
read I/O7 - I/O0 at least twice in a row to determine whether
a toggle bit is toggling. Typically, a system would note and
store the value of the toggle bit after the first read. After
the second read, the system would compare the new value
of the toggle bit with the first. If the toggle bit is not
toggling, the device has completed the program or erase
operation. The system can read array data on I/O7 - I/O0
on the following read cycle.
However, if after the initial two read cycles, the system
determines that the toggle bit is still toggling, the system
also should note whether the value of I/O5 is high (see the
section on I/O5). If it is, the system should then determine
again whether the toggle bit is toggling, since the toggle bit
may have stopped toggling just as I/O5 went high. If the
toggle bit is no longer toggling, the device has successfully
completed the program or erase operation. If it is still
toggling, the device did not complete the operation
successfully, and the system must write the reset
command to return to reading array data.
The remaining scenario is that the system initially
determines that the toggle bit is toggling and I/O5 has not
gone high. The system may continue to monitor the toggle
bit and I/O5 through successive read cycles, determining
the status as described in the previous paragraph.
Alternatively, it may choose to perform other system tasks.
In this case, the system must start at the beginning of the
algorithm when it returns to determine the status of the
operation (top of Figure 5).
I/O5: Exceeded Timing Limits
I/O5 indicates whether the program or erase time has
exceeded a specified internal pulse count limit. Under
these conditions I/O5 produces a "1." This is a failure
condition that indicates the program or erase cycle was not
successfully completed.
The I/O5 failure condition may appear if the system tries to
program a "1 "to a location that is previously programmed
to "0." Only an erase operation can change a "0" back to a
"1." Under this condition, the device halts the operation,
and when the operation has exceeded the timing limits,
I/O5 produces a "1."
Under both these conditions, the system must issue the
reset command to return the device to reading array data.
I/O2: Toggle Bit II
The "Toggle Bit II" on I/O2, when used with I/O6, indicates
whether a particular sector is actively erasing (that is, the
Embedded Erase algorithm is in progress), or whether that
sector is erase-suspended. Toggle Bit II is valid after the
rising edge of the final WE pulse in the command
sequence.
I/O2 toggles when the system reads at addresses within
those sectors that have been selected for erasure. (The
system may use either OE or CE to control the read
cycles.) But I/O2 cannot distinguish whether the sector is
actively erasing or is erase-suspended. I/O6, by
comparison, indicates whether the device is actively
erasing, or is in Erase Suspend, but cannot distinguish
which sectors are selected for erasure. Thus, both status
bits are required for sector and mode information. Refer to
Table 6 to compare outputs for I/O2 and I/O6.
Figure 5 shows the toggle bit algorithm in flowchart form,
and the section " I/O2: Toggle Bit II" explains the algorithm.
See also the " I/O6: Toggle Bit I" subsection. Refer to the
Toggle Bit Timings figure for the toggle bit timing diagram.
(December, 2004, Version 1.3)
I/O3: Sector Erase Timer
After writing a sector erase command sequence, the
system may read I/O3 to determine whether or not an
erase operation has begun. (The sector erase timer does
not apply to the chip erase command.) If additional sectors
are selected for erasure, the entire time-out also applies
after each additional sector erase command. When the
time-out is complete, I/O3 switches from "0" to "1." The
system may ignore I/O3 if the system can guarantee that
the time between additional sector erase commands will
always be less than 50µs. See also the "Sector Erase
Command Sequence" section. After the sector erase
command sequence is written, the system should read the
status on I/O7 ( Data Polling) or I/O6 (Toggle Bit 1) to
ensure the device has accepted the command sequence,
13
AMIC Technology, Corp.
A29001/A290011 Series
and then read I/O3. If I/O3 is "1", the internally controlled
erase cycle has begun; all further commands (other than
Erase Suspend) are ignored until the erase operation is
complete. If I/O3 is "0", the device will accept additional
sector erase commands. To ensure the command has
been accepted, the system software should check the
status of I/O3 prior to and following each subsequent
sector erase command. If I/O3 is high on the second status
check, the last command might not have been accepted.
Table 6 shows the outputs for I/O3.
START
Read I/O7-I/O0
Read I/O7-I/O0
Toggle Bit
= Toggle ?
(Note 1)
No
Yes
No
I/O5 = 1?
Yes
Read I/O7 - I/O0
Twice
Toggle Bit
= Toggle ?
(Notes 1,2)
No
Yes
Program/Erase
Operation Not
Commplete, Write
Reset Command
Program/Erase
Operation Complete
Notes :
1. Read toggle bit twice to determine whether or not it is
toggling. See text.
2. Recheck toggle bit because it may stop toggling as I/O5
changes to "1". See text.
Figure 5. Toggle Bit Algorithm
(December, 2004, Version 1.3)
14
AMIC Technology, Corp.
A29001/A290011 Series
Table 6. Write Operation Status
Operation
I/O7
I/O6
I/O5
(Note 1)
Standard
Mode
Erase
Suspend
Mode
Embedded Program Algorithm
I/O3
(Note 2)
I/O7
I/O2
(Note 1)
Toggle
0
N/A
No toggle
Embedded Erase Algorithm
0
Toggle
0
1
Toggle
Reading within Erase
Suspended Sector
1
No toggle
0
N/A
Toggle
Data
Data
Data
Data
Data
Toggle
0
N/A
N/A
Reading within Non-Erase
Suspend Sector
Erase-Suspend-Program
I/O7
Notes:
1. I/O7 and I/O2 require a valid address when reading status information. Refer to the appropriate subsection for further
details.
2. I/O5 switches to “1” when an Embedded Program or Embedded Erase operation has exceeded the maximum timing limits.
See “I/O5: Exceeded Timing Limits” for more information.
Maximum Negative Input Overshoot
20ns
20ns
+0.8V
-0.5V
-2.0V
20ns
Maximum Positive Input Overshoot
20ns
VCC+2.0V
VCC+0.5V
2.0V
20ns
(December, 2004, Version 1.3)
20ns
15
AMIC Technology, Corp.
A29001/A290011 Series
DC Characteristics
TTL/NMOS Compatible
Parameter
Parameter Description
Test Description
Min.
Typ.
Max.
Unit
±1.0
µA
100
µA
±1.0
µA
Symbol
ILI
Input Load Current
VIN = VSS to VCC. VCC = VCC Max
ILIT
A9, OE & RESET Input Load Current VCC = VCC Max,
A9, OE & RESET =12.5V
ILO
ICC1
Output Leakage Current
VOUT = VSS to VCC. VCC = VCC Max
VCC Active Read Current
CE = VIL, OE = VIH
20
30
mA
CE = VIL, OE =VIH
30
40
mA
CE = VIH, RESET = VCC ± 0.5V
0.4
1.0
mA
(Notes 1, 2)
ICC2
VCC Active Write (Program/Erase)
ICC3
VCC Standby Current (Note 2)
VIL
Input Low Level
-0.5
0.8
V
VIH
Input High Level
2.0
VCC+0.5
V
VID
Voltage for Autoselect and
10.5
12.5
V
0.45
V
Current (Notes 2, 3, 4)
VCC = 5.25 V
Temporary Unprotect Sector
VOL
Output Low Voltage
IOL = 12mA, VCC = VCC Min
VOH
Output High Voltage
IOH = -2.5 mA, VCC = VCC Min
2.4
V
CMOS Compatible
Parameter
Parameter Description
Test Description
Min.
Typ.
Max.
Unit
±1.0
µA
100
µA
±1.0
µA
Symbol
ILI
Input Load Current
VIN = VSS to VCC, VCC = VCC Max
ILIT
A9, OE & RESET Input Load Current VCC = VCC Max,
A9, OE & RESET = 12.5V
ILO
Output Leakage Current
VOUT = VSS to VCC, VCC = VCC Max
ICC1
VCC Active Read Current
CE = VIL, OE = VIH
20
30
mA
CE = VIL, OE = VIH
30
40
mA
CE = RESET = VCC ± 0.5 V
1
5
µA
(Notes 1,2)
ICC2
VCC Active Program/Erase Current
(Notes 2,3,4)
ICC3
VCC Standby Current (Notes 2, 5)
VIL
Input Low Level
-0.5
0.8
V
VIH
Input High Level
0.7 x VCC
VCC+0.3
V
VID
Voltage for Autoselect and
10.5
12.5
V
0.45
V
VCC = 5.25 V
Temporary Sector Unprotect
VOL
Output Low Voltage
IOL = 12.0 mA, VCC = VCC Min
VOH1
Output High Voltage
IOH = -2.5 mA, VCC = VCC Min
0.85 x VCC
V
IOH = -100 µA. VCC = VCC Min
VCC-0.4
V
VOH2
Notes for DC characteristics (both tables):
1. The ICC current listed includes both the DC operation current and the frequency dependent component (at 6 MHz).
The frequency component typically is less than 2 mA/MHz, with OE at VIH.
2. Maximum ICC specifications are tested with VCC = VCC max.
3. ICC active while Embedded Algorithm (program or erase) is in progress.
4. Not 100% tested.
5. For CMOS mode only, ICC3 = 20µA max at extended temperatures (> +85°C).
6. RESET is not available on A290011.
(December, 2004, Version 1.3)
16
AMIC Technology, Corp.
A29001/A290011 Series
AC Characteristics
Read Only Operations
Parameter Symbols
Description
JEDEC
Std
tAVAV
tRC
Read Cycle Time (Note 2)
tAVQV
tACC
Address to Output Delay
Speed
Test Setup
CE = VIL
Unit
-55
-70
-90
Min.
55
70
90
ns
Max.
55
70
90
ns
Max.
55
70
90
ns
OE = VIL
tELQV
tCE
Chip Enable to Output Delay
tGLQV
tOE
Output Enable to Output Delay
Max.
30
30
35
ns
tOEH
Output Enable Hold
Read
Min.
0
0
0
ns
Toggle and
Min.
10
10
10
ns
Max.
18
20
20
ns
18
20
20
ns
0
0
0
ns
Time (Note 2)
OE = VIL
Data Polling
tEHQZ
tDF
Chip Enable to Output High Z
tGHQZ
tDF
Output Enable to Output High Z
tAXQX
tOH
Output Hold Time from Addresses,
CE or OE , Whichever Occurs First
Min.
Notes:
1. Output driver disable time.
2. Not 100% tested.
Timing Waveforms for Read Only Operation ( RESET =VIH on A29001)
tRC
Addresses
Addresses Stable
tACC
CE
tDF
tOE
OE
tOEH
WE
tCE
tOH
High-Z
Output
Output Valid
High-Z
0V
(December, 2004, Version 1.3)
17
AMIC Technology, Corp.
A29001/A290011 Series
Hardware Reset ( RESET )(N/A on A290011)
Parameter
JEDEC
Std
tREADY
Description
Test Setup
All Speed Options
Unit
Max
20
µs
RESET Pin Low (Not During Embedded
Algorithms) to Read or Write (See Note)
Max
500
ns
tRP
RESET Pulse Width
Min
500
ns
tRH
RESET High Time Before Read (See Note)
Min
50
ns
RESET Pin Low (During Embedded
Algorithms) to Read or Write (See Note)
tREADY
Note: Not 100% tested.
RESET Timings
CE, OE
tRH
RESET
tRP
tReady
Reset Timings NOT during Embedded Algorithms
Reset Timings during Embedded Algorithms
~
~
RESET
tRP
Temporary Sector Unprotect (N/A on A290011)
Parameter
JEDEC
Std
tVIDR
tRSP
Description
VID Rise and Fall Time (See Note)
All Speed Options
Unit
500
4
µs
Min
Min
RESET Setup Time for Temporary Sector
Unprotect
ns
Note: Not 100% tested.
Temporary Sector Unprotect Timing Diagram
~
~
12V
0 or 5V
RESET
0 or 5V
tVIDR
Program or Erase Command Sequence
tVIDR
CE
~
~
WE
(December, 2004, Version 1.3)
~
~
tRSP
18
AMIC Technology, Corp.
A29001/A290011 Series
AC Characteristics
Erase and Program Operations
Parameter Symbols
Speed
Description
Unit
-55
-70
-90
55
70
90
JEDEC
Std
tAVAV
tWC
Write Cycle Time (Note 1)
Min.
tAVWL
tAS
Address Setup Time
Min.
tWLAX
tAH
Address Hold Time
Min.
40
45
45
ns
tDVWH
tDS
Data Setup Time
Min.
25
30
45
ns
tWHDX
tDH
Data Hold Time
Min.
0
ns
tOES
Output Enable Setup Time
Min.
0
ns
Min.
0
ns
0
ns
ns
Read Recover Time Before Write
tGHWL
tGHWL
tELWL
tCS
CE Setup Time
Min.
0
ns
tWHEH
tCH
CE Hold Time
Min.
0
ns
tWLWH
tWP
Write Pulse Width
Min.
tWHWL
tWPH
Write Pulse Width High
( OE high to WE low)
30
35
45
ns
Min.
20
ns
Max.
50
µs
tWHWH1
tWHWH1
Byte Programming Operation (Note 2)
Typ.
7
µs
tWHWH2
tWHWH2
Sector Erase Operation (Note 2)
Typ.
1
sec
VCC Set Up Time (Note 1)
Min.
50
µs
tVCS
Notes:
1. Not 100% tested.
2. See the "Erase and Programming Performance" section for more information.
(December, 2004, Version 1.3)
19
AMIC Technology, Corp.
A29001/A290011 Series
Timing Waveforms for Program Operation
Read Status Data (last two cycles)
Program Command Sequence (last two cycles)
PA
555h
PA
PA
~
~ ~
~
Addresses
tAS
~
~
tWC
tAH
CE
tCH
~
~
tGHWL
OE
tWP
~
~
tWHWH1
WE
tCS
tWPH
A0h
Data
tDH
PD
~
~
tDS
Status
DOUT
~
~
tVCS
VCC
Note : PA = program addrss, PD = program data, Dout is the true data at the program address.
(December, 2004, Version 1.3)
20
AMIC Technology, Corp.
A29001/A290011 Series
Timing Waveforms for Chip/Sector Erase Operation
Erase Command Sequence (last two cycles)
tAS
~
~
tWC
VA
555h for chip erase
tAH
VA
~
~ ~
~
SA
2AAh
Addresses
Read Status Data
CE
~
~
tGHWL
tCH
OE
~
~
tWP
WE
tWPH
tWHWH2
tCS
Data
55h
30h
In
Progress
Complete
10h for chip erase
~
~
tVCS
tDH
~
~
tDS
VCC
Note : SA = Sector Address. VA = Valid Address for reading status data.
(December, 2004, Version 1.3)
21
AMIC Technology, Corp.
A29001/A290011 Series
Timing Waveforms for Data Polling (During Embedded Algorithms)
~
~
tRC
Addresses
VA
tACC
CE
VA
~
~ ~
~
VA
tCE
tCH
~
~
tOE
OE
tDF
~
~
tOEH
WE
tOH
I/O0 - I/O6
Status Data
~
~
Complement
Complement
True
Valid Data
~
~
High-Z
I/O7
Status Data
True
Valid Data
High-Z
Note : VA = Valid Address. Illustation shows first status cycle after command sequence, last status read cycle, and array data
read cycle.
(December, 2004, Version 1.3)
22
AMIC Technology, Corp.
A29001/A290011 Series
Timing Waveforms for Toggle Bit (During Embedded Algorithms)
~
~
tRC
Addresses
VA
~
~ ~
~
tACC
CE
VA
VA
VA
tCE
tCH
tOE
~
~
OE
tDF
~
~
tOEH
WE
I/O6 , I/O2
Valid Status
Valid Status
(first read)
(second read)
~
~
tOH
Valid Status
Valid Status
(stop togging)
Note: VA = Valid Address; not required for I/O6. Illustration shows first two status cycle after command sequence, last status
read cycle, and array data read cycle.
(December, 2004, Version 1.3)
23
AMIC Technology, Corp.
A29001/A290011 Series
Timing Waveforms for I/O2 vs. I/O6
~
~
Erase
Erase
Complete
~
~
~
~
~
~
Erase Suspend
Read
~
~
~
~
Erase
Suspend
Program
~
~
~
~
~
~
I/O2
~
~
I/O6
Erase Suspend
Read
~
~
Erase
Erase
Resume
~
~
WE
Enter Erase
Suspend Program
~
~
~
~
Erase
Suspend
~
~
Enter
Embedded
Erasing
I/O2 and I/O6 toggle with OE and CE
Note : Both I/O6 and I/O2 toggle with OE or CE. See the text on I/O6 and I/O2 in the section "Write Operation Statue" for
more information.
AC Characteristics
Erase and Program Operations
Alternate CE Controlled Writes
Parameter Symbols
Speed
Description
JEDEC
Std
tAVAV
tWC
Write Cycle Time (Note 1)
Min.
tAVEL
tAS
Address Setup Time
Min.
Unit
-55
-70
-90
55
70
90
0
ns
ns
tELAX
tAH
Address Hold Time
Min.
40
45
45
ns
tDVEH
tDS
Data Setup Time
Min.
25
30
45
ns
tEHDX
tDH
Data Hold Time
Min.
0
ns
tGHEL
tGHEL
Read Recover Time Before Write
Min.
0
ns
tWLEL
tWS
WE Setup Time
Min.
0
ns
tEHWH
tWH
WE Hold Time
Min.
0
ns
tELEH
tCP
Write Pulse Width
Min.
30
35
45
ns
tEHEL
tCPH
Write Pulse Width High
Min.
20
20
20
ns
tWHWH1
tWHWH1
Byte Programming Operation (Note 2)
Typ.
7
µs
tWHWH2
tWHWH2
Sector Erase Operation (Note 2)
Typ.
1
sec
Notes:
3. Not 100% tested.
4. See the "Erase and Programming Performance" section for more information.
(December, 2004, Version 1.3)
24
AMIC Technology, Corp.
A29001/A290011 Series
Timing Waveforms for Alternate CE Controlled Write Operation
555 for program
2AA for erase
PA for program
SA for sector erase
555 for chip erase
~
~
Data Polling
PA
~
~
Addresses
tWC
tAS
tAH
~
~
tWH
WE
~
~
tGHEL
OE
tWHWH1 or 2
~
~
tCP
tBUSY
tCPH
CE
tWS
tDS
~
~
tDH
Data
I/O7
DOUT
tRH
A0 for program
55 for erase
PD for program
30 for sector erase
10 for chip erase
Note :
1. PA = Program Address, PD = Program Data, SA = Sector Address, I/O7 = Complement of Data Input, DOUT = Array Data.
2. Figure indicates the last two bus cycles of the command sequence.
Erase and Programming Performance
Parameter
Typ. (Note 1)
Max. (Note 2)
Unit
Sector Erase Time
1
8
sec
Chip Erase Time
8
64
sec
Byte Programming Time
35
300
µs
Chip Programming Time (Note 3)
3.6
10.8
sec
Comments
Excludes 00h programming
prior to erasure (Note 4)
Excludes system-level
overhead (Note 5)
Notes:
1. Typical program and erase times assume the following conditions: 25°C, 5.0V VCC, 100,000 cycles. Additionally,
programming typically assumes checkerboard pattern.
2. Under worst case conditions of 90°C, VCC = 4.5V (4.75V for -55), 100,000 cycles.
3. The typical chip programming time is considerably less than the maximum chip programming time listed, since most bytes
program faster than the maximum byte program time listed. If the maximum byte program time given is exceeded, only
then does the device set I/O5 = 1. See the section on I/O5 for further information.
4. In the pre-programming step of the Embedded Erase algorithm, all bytes are programmed to 00h before erasure.
5. System-level overhead is the time required to execute the four-bus-cycle command sequence for programming. See Table
4 for further information on command definitions.
6. The device has a guaranteed minimum erase and program cycle endurance of 100,000 cycles.
(December, 2004, Version 1.3)
25
AMIC Technology, Corp.
A29001/A290011 Series
Latch-up Characteristics
Description
Input Voltage with respect to VSS on all I/O pins
VCC Current
Min.
Max.
-1.0V
VCC+1.0V
-100 mA
+100 mA
-1.0V
12.5V
Input voltage with respect to VSS on all pins except I/O pins
(including A9, OE and RESET )
Includes all pins except VCC. Test conditions: VCC = 5.0V, one pin at time. RESET N/A on A290011.
TSOP/sTSOP Pin Capacitance
Parameter Symbol
CIN
Parameter Description
Input Capacitance
COUT
Output Capacitance
CIN2
Control Pin Capacitance
Test Setup
Typ.
Max.
Unit
VIN=0
6
7.5
pF
VOUT=0
8.5
12
pF
VIN=0
7.5
9
pF
Test Setup
Typ.
Max.
Unit
VIN=0
4
6
pF
Notes:
1. Sampled, not 100% tested.
2. Test conditions TA = 25°C, f = 1.0MHz
PLCC and P-DIP Pin Capacitance
Parameter Symbol
CIN
Parameter Description
Input Capacitance
COUT
Output Capacitance
VOUT=0
8
12
pF
CIN2
Control Pin Capacitance
VPP=0
8
12
pF
Notes:
3. Sampled, not 100% tested.
4. Test conditions TA = 25°C, f = 1.0MHz
Data Retention
Parameter
Minimum Pattern Data Retention Time
(December, 2004, Version 1.3)
26
Test Conditions
Min
Unit
150°C
10
Years
125°C
20
Years
AMIC Technology, Corp.
A29001/A290011 Series
Test Conditions
Test Specifications
Test Condition
-55
All others
Output Load
Unit
1 TTL gate
Output Load Capacitance, CL(including jig capacitance)
30
100
pF
Input Rise and Fall Times
5
20
ns
Input Pulse Levels
0.0 - 3.0
0.45 - 2.4
V
Input timing measurement reference levels
1.5
0.8, 2.0
V
Output timing measurement reference levels
1.5
0.8, 2.0
V
Test Setup
5.0 V
2.7 KΩ
Device
Under
Test
CL
(December, 2004, Version 1.3)
Diodes = IN3064 or Equivalent
6.2 KΩ
27
AMIC Technology, Corp.
A29001/A290011 Series
Ordering Information
Top Boot Sector Flash
Part No.
Access Time
(ns)
Active Read
Current
Typ. (mA)
Program/Erase
Current
Typ. (mA)
Standby
Current
Typ. (µA)
A29001T-55
Package
32Pin DIP
A29001T-55F
32Pin Pb-Free DIP
A290011T-55
32Pin DIP
A290011T-55F
32Pin Pb-Free DIP
A29001TL-55
32Pin PLCC
A29001TL-55F
32Pin Pb-Free PLCC
A290011TL-55
32Pin PLCC
A290011TL-55F
32Pin Pb-Free PLCC
55
20
30
1
A29001TV-55
32Pin TSOP
A29001TV-55F
32Pin Pb-Free TSOP
A290011TV-55
32Pin TSOP
A290011TV-55F
32Pin Pb-Free TSOP
A29001TX-55
32Pin sTSOP
A29001TX-55F
32Pin Pb-Free sTSOP
A290011TX-55
32Pin sTSOP
A290011TX-55F
32Pin Pb-Free sTSOP
A29001T-70
32Pin DIP
A29001T-70F
32Pin Pb-Free DIP
A290011T-70
32Pin DIP
A290011T-70F
32Pin Pb-Free DIP
A29001TL-70
32Pin PLCC
A29001TL-70F
32Pin Pb-Free PLCC
A290011TL-70
32Pin PLCC
A290011TL-70F
32Pin Pb-Free PLCC
A29001TV-70
32Pin TSOP
70
20
30
1
A29001TV-70F
32Pin Pb-Free TSOP
A290011TV-70
32Pin TSOP
A290011TV-70F
32Pin Pb-Free TSOP
A290011TV-70UF
32Pin Pb-Free TSOP
A29001TX-70
32Pin sTSOP
A29001TX-70F
32Pin Pb-Free sTSOP
A290011TX-70
32Pin sTSOP
A290011TX-70F
32Pin Pb-Free sTSOP
A290011TX-70UF
32Pin Pb-Free sTSOP
(December, 2004, Version 1.3)
28
AMIC Technology, Corp.
A29001/A290011 Series
Ordering Information (continued)
Top Boot Sector Flash
Part No.
Access Time
(ns)
Active Read
Current
Typ. (mA)
Program/Erase
Current
Typ. (mA)
Standby
Current
Typ. (µA)
A29001T-90
Package
32Pin DIP
A29001T-90F
32Pin Pb-Free DIP
A290011T-90
32Pin DIP
A290011T-90F
32Pin Pb-Free DIP
A29001TL-90
32Pin PLCC
A29001TL-90F
32Pin Pb-Free PLCC
A290011TL-90
32Pin PLCC
A290011TL-90F
32Pin Pb-Free PLCC
90
20
30
A29001TV-90
1
32Pin TSOP
A29001TV-90F
32Pin Pb-Free TSOP
A290011TV-90
32Pin TSOP
A290011TV-90F
32Pin Pb-Free sSOP
A29001TX-90
32Pin sTSOP
A29001TX-90F
32Pin Pb-Free sTSOP
A290011TX-90
32Pin sTSOP
A290011TX-90F
32Pin Pb-Free sTSOP
Note: -U is for industrial operating temperature range
(December, 2004, Version 1.3)
29
AMIC Technology, Corp.
A29001/A290011 Series
Ordering Information (continued)
Bottom Boot Sector Flash
Part No.
Access Time
(ns)
Active Read
Current
Typ. (mA)
Program/Erase
Current
Typ.
(mA)
Standby
Current
Typ. (µA)
A29001U-55
Package
32Pin DIP
A29001U-55F
32Pin Pb-Free DIP
A290011U-55
32Pin DIP
A290011U-55F
32Pin Pb-Free DIP
A29001UL-55
32Pin PLCC
A29001UL-55F
32Pin Pb-Free PLCC
A290011UL-55
32Pin PLCC
A290011UL-55F
32Pin Pb-Free PLCC
55
20
30
1
A29001UV-55
32Pin TSOP
A29001UV-55F
32Pin Pb-Free TSOP
A290011UV-55
32Pin TSOP
A290011UV-55F
32Pin Pb-Free TSOP
A29001UX-55
32Pin sTSOP
A29001UX-55F
32Pin Pb-Free sTSOP
A290011UX-55
32Pin sTSOP
A290011UX-55F
32Pin Pb-Free sTSOP
A29001U-70
32Pin DIP
A29001U-70F
32Pin Pb-Free DIP
A290011U-70
32Pin DIP
A290011U-70F
32Pin Pb-Free DIP
A29001UL-70
32Pin PLCC
A29001UL-70F
32Pin Pb-Free PLCC
A290011UL-70
32Pin PLCC
A290011UL-70F
32Pin Pb-Free PLCC
A29001UV-70
32Pin TSOP
70
20
30
1
A29001UV-70F
32Pin Pb-Free TSOP
A290011UV-70
32Pin TSOP
A290011UV-70F
32Pin Pb-Free TSOP
A290011UV-70UF
32Pin Pb-Free TSOP
A29001UX-70
32Pin sTSOP
A29001UX-70F
32Pin Pb-Free sTSOP
A290011UX-70
32Pin sTSOP
A290011UX-70F
32Pin Pb-Free sTSOP
A290011UX-70UF
32Pin Pb-Free sTSOP
(December, 2004, Version 1.3)
30
AMIC Technology, Corp.
A29001/A290011 Series
Ordering Information (continued)
Bottom Boot Sector Flash
Part No.
Access Time
(ns)
Active Read
Current
Typ. (mA)
Program/Erase
Current
Typ.
(mA)
Standby
Current
Typ. (µA)
A29001U-90
Package
32Pin DIP
A29001U-90F
32Pin Pb-Free DIP
A290011U-90
32Pin DIP
A290011U-90F
32Pin Pb-Free DIP
A29001UL-90
32Pin PLCC
A29001UL-90F
32Pin Pb-Free PLCC
A290011UL-90
32Pin PLCC
A290011UL-90F
32Pin Pb-Free PLCC
90
20
30
A29001UV-90
1
32Pin TSOP
A29001UV-90F
32Pin Pb-Free TSOP
A290011UV-90
32Pin TSOP
A290011UV-90F
32Pin Pb-Free TSOP
A29001UX-90
32Pin sTSOP
A29001UX-90F
32Pin Pb-Free sTSOP
A290011UX-90
32Pin sTSOP
A290011UX-90F
32Pin Pb-Free sTSOP
Note: -U is for industrial operating temperature range
(December, 2004, Version 1.3)
31
AMIC Technology, Corp.
A29001/A290011 Series
Package Information
P-DIP 32L Outline Dimensions
unit: inches/mm
D
17
1
16
E
32
A1
A2
Base Plane
Seating Plane
L
A
C
E1
B
θ
e
B1
Symbol
Dimensions in inches
Min
Nom
Max
EA
Dimensions in mm
Min
Nom
Max
A
-
-
0.210
-
-
5.334
A1
0.015
-
-
0.381
-
-
A2
0.149
0.154
0.159
3.785
3.912
4.039
B
-
0.018
-
-
0.457
-
B1
-
0.050
-
-
1.270
-
C
D
1.645
0.010
1.650
1.655
41.783
0.254
41.91
42.037
E
0.537
0.542
0.547
13.64
13.767
13.894
E1
0.590
0.600
0.610
14.986
15.240
15.494
EA
0.630
0.650
0.670
16.002
16.510
17.018
e
-
0.100
-
-
2.540
-
L
0.120
0.130
0.140
3.048
3.302
3.556
θ
0°
-
15°
0°
-
15°
Notes:
1. The maximum value of dimension D includes end flash.
2. Dimension E does not include resin fins.
(December, 2004, Version 1.3)
32
AMIC Technology, Corp.
A29001/A290011 Series
Package Information
PLCC 32L Outline Dimension
unit: inches/mm
HD
D
13
5
E
1
HE
4
14
32
20
30
29
c
A1
b
e
L
A2
A
21
D
b1
GD
GE
y
θ
Dimensions in inches
Symbol
Min
Nom
Max
Dimensions in mm
Min
Nom
Max
3.40
A
-
-
0.134
-
-
A1
0.0185
-
-
0.47
-
-
A2
0.105
0.110
0.115
2.67
2.80
2.93
b1
0.026
0.028
0.032
0.66
0.71
0.81
b
0.016
0.018
0.021
0.41
0.46
0.54
C
0.008
0.010
0.014
0.20
0.254
0.35
D
0.547
0.550
0.553
13.89
13.97
14.05
E
0.447
0.450
0.453
11.35
11.43
11.51
e
0.044
0.050
0.056
1.12
1.27
1.42
GD
0.490
0.510
0.530
12.45
12.95
13.46
GE
0.390
0.410
0.430
9.91
10.41
10.92
HD
0.585
0.590
0.595
14.86
14.99
15.11
12.57
HE
0.485
0.490
0.495
12.32
12.45
L
0.075
0.090
0.095
1.91
2.29
2.41
y
-
-
0.003
-
-
0.075
θ
0°
-
10°
0°
-
10°
Notes:
1. Dimensions D and E do not include resin fins.
2. Dimensions GD & GE are for PC Board surface mount pad pitch
design reference only.
(December, 2004, Version 1.3)
33
AMIC Technology, Corp.
A29001/A290011 Series
Package Information
TSOP 32L TYPE I (8 X 20mm) Outline Dimensions
unit: inches/mm
A
A1
c
E
A2
e
D
θ
L
LE
HD
Detail "A"
D
Detail "A"
y
S
Dimensions in inches
Symbol
Min
Nom
Max
b
Dimensions in mm
Min
Nom
Max
A
-
-
0.047
-
-
1.20
A1
0.002
-
0.006
0.05
-
0.15
A2
0.037
0.039
0.041
0.95
1.00
1.05
b
0.007
0.009
0.011
0.18
0.22
0.27
c
0.004
-
0.008
0.11
-
0.20
D
0.720
0.724
0.728
18.30
18.40
18.50
E
-
0.315
0.319
-
8.00
8.10
e
0.020 BSC
0.50 BSC
HD
0.779
0.787
0.795
19.80
20.00
20.20
L
0.016
0.020
0.024
0.40
0.50
0.60
LE
-
0.032
-
-
0.80
-
S
-
-
0.020
-
-
0.50
y
-
-
0.003
-
-
0.08
θ
0°
-
5°
0°
-
5°
Notes:
1. The maximum value of dimension D includes end flash.
2. Dimension E does not include resin fins.
3. Dimension S includes end flash.
(December, 2004, Version 1.3)
34
AMIC Technology, Corp.
A29001/A290011 Series
Package Information
unit: inches/mm
A
A1
c
E
A2
e
sTSOP 32L TYPE I (8 X 13.4mm) Outline Dimensions
θ
L
LE
D1
D
Detail "A"
D
Detail "A"
0.076MM
S
b
SEATING PLANE
Dimensions in inches
Symbol
Dimensions in mm
Min
Nom
Max
Min
Nom
Max
A
-
-
0.049
-
-
1.25
A1
0.002
-
-
0.05
-
-
A2
0.037
0.039
0.041
0.95
1.00
1.05
b
0.007
0.008
0.009
0.17
0.20
0.23
c
0.0056
0.0059
0.0062
0.142
0.150
0.158
E
0.311
0.315
0.319
7.90
8.00
8.10
e
0.020 TYP
0.50 TYP
D
0.520
0.528
0.535
13.20
13.40
13.60
D1
0.461
0.465
0.469
11.70
11.80
11.90
L
0.012
0.020
0.028
0.30
0.50
0.70
LE
0.0275
0.0315
0.0355
0.700
0.800
0.900
5°
0°
S
θ
0.0109 TYP
0°
3°
0.278 TYP
3°
5°
Notes:
1. The maximum value of dimension D1 includes end flash.
2. Dimension E does not include resin fins.
3. Dimension S includes end flash.
(December, 2004, Version 1.3)
35
AMIC Technology, Corp.
Similar pages