Maxim MAX5388MAUB+ Dual, 256-tap, volatile, low-voltage linear taper digital potentiometer Datasheet

19-4599; Rev 2; 1/10
TION KIT
EVALUA BLE
IL
AVA A
Dual, 256-Tap, Volatile, Low-Voltage
Linear Taper Digital Potentiometers
The MAX5386/MAX5388 dual, 256-tap, volatile, low-voltage
linear taper digital potentiometers offer three end-to-end
resistance values of 10kI, 50kI, and 100kI. Operating
from a single +2.6V to +5.5V power supply these devices
provide a low 35ppm/NC end-to-end temperature
coefficient. The devices feature an SPIK interface.
The small package size, low supply voltage, low supply current, and automotive temperature range of the
MAX5386/MAX5388 make the devices uniquely suitable
for the portable consumer market, battery backup industrial applications, and the automotive market.
The MAX5386 includes two digital potentiometers in a
voltage-divider configuration. The MAX5388 includes
one digital potentiometer in a voltage-divider configuration and one digital potentiometer in a variable-resistor
configuration. The MAX5386/MAX5388 are specified
over an extended -40NC to +125NC temperature range
and are available in 16-pin, 3mm x 3mm TQFN or 10-pin,
3mm x 5mm FMAXM packages, respectively.
Applications
Low-Voltage Battery Applications
Portable Electronics
Features
S Dual, 256-Tap, Linear Taper Positions
S Single +2.6V to +5.5V Supply Operation
S Low (< 1µA) Quiescent Supply Current
S 10kI, 50kI, 100kI End-to-End Resistance Values
S SPI-Compatible Interface
S Power-On Sets Wiper to Midscale
S -40NC to +125NC Operating Temperature Range
Ordering Information
PINPACKAGE
PART
END-TO-END
RESISTANCE (kI)
MAX5386LATE+
16 TQFN-EP*
MAX5386MATE+
16 TQFN-EP*
10
50
MAX5386NATE+
16 TQFN-EP*
100
MAX5388LAUB+
10 FMAX
10
MAX5388MAUB+
10 FMAX
50
MAX5388NAUB+
10 FMAX
100
Mechanical Potentiometer Replacement
Note: All devices are specified over the -40°C to +125°C
operating temperature range.
Offset and Gain Control
+Denotes a lead(Pb)-free/RoHS-compliant package.
Adjustable Voltage References/Linear Regulators
*EP = Exposed pad.
Automotive Electronics
Functional Diagrams appear at end of data sheet.
SPI is a trademark of Motorola, Inc.
µMAX is a registered trademark of Maxim Integrated Products, Inc.
N.C.
SCLK
DIN
TOP VIEW
VDD
Pin Configurations
12
11
10
9
N.C. 13
8
HA 14
MAX5386
WA 15
*EP
1
2
3
4
WB
LB
I.C.
+
HB
LA 16
TOP VIEW
CS
7
N.C.
6
N.C.
5
GND
GND 1
LB
2
+
10 LA
9
WA
HB
3
8
VDD
WB
4
7
SCLK
CS
5
6
DIN
MAX5388
µMAX
TQFN
*EP = EXPOSED PAD.
________________________________________________________________ Maxim Integrated Products 1
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
MAX5386/MAX5388
General Description
MAX5386/MAX5388
Dual, 256-Tap, Volatile, Low-Voltage
Linear Taper Digital Potentiometers
ABSOLUTE MAXIMUM RATINGS
VDD to GND..............................................................-0.3V to +6V
H_, W_, L_ to GND.....-0.3V to the lower of (VDD + 0.3V) and +6V
All Other Pins to GND..............................................-0.3V to +6V
Continuous Current in to H_, W_, and L_
MAX5386L/MAX5388L.................................................... ±5mA
MAX5386M/MAX5388M.................................................. Q2mA
MAX5386N/MAX5388N.................................................. Q1mA
Continuous Power Dissipation (TA = +70NC)
16 TQFN (derate 14.7mW/NC above +70NC)..........1176.5mW
10 FMAX (derate 8.8mW/NC above +70NC)..............707.3mW
Operating Temperature Range......................... -40NC to +125NC
Junction Temperature......................................................+150NC
Storage Temperature Range............................. -65NC to +150NC
Lead Temperature (soldering, 10s).................................+300NC
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may
affect device reliability.
ELECTRICAL CHARACTERISTICS
(VDD = +2.6V to +5.5V, VH_ = VDD, VL_ = GND, TA = TMIN to TMAX, unless otherwise noted. Typical values are at VDD = +5V, TA
= +25˚C. ) (Note 1)
PARAMETER
Resolution
SYMBOL
CONDITIONS
N
MIN
TYP
MAX
256
UNITS
Tap
DC PERFORMANCE (VOLTAGE-DIVIDER MODE)
Integral Nonlinearity
INL
(Note 2)
-0.5
+0.5
LSB
Differential Nonlinearity
DNL
(Note 2)
-0.5
+0.5
LSB
Dual Code Matching
Register A = register B
-0.5
+0.5
Ratiometric Resistor Tempco
(DVW/VW)/DT no load
Full-Scale Error
Code = FFH
MAX5386L/MAX5388L
-3.0
MAX5386M/MAX5388M
-1.0
-0.5
MAX5386N/MAX5388N
-0.5
-0.25
MAX5386L/MAX5388L
Zero-Scale Error
Code = 00H
LSB
ppm/NC
Q5
-2.5
LSB
2.5
3.0
MAX5386M/MAX5388M
+0.5
+1.0
MAX5386N/MAX5388N
+0.25
+0.5
MAX5386L/MAX5388L
Q1.0
Q2.5
MAX5386M/MAX5388M
Q0.5
Q1.0
MAX5386N/MAX5388N
Q0.25
Q0.8
MAX5386L/MAX5388L
Q0.4
Q1.5
MAX5386M/MAX5388M
Q0.3
Q0.75
MAX5386N/MAX5388N
Q0.25
Q0.5
LSB
DC PERFORMANCE (VARIABLE-RESISTOR MODE) (Note 3)
VDD > +2.6V
Integral Nonlinearity
R-INL
VDD > +4.75V
Differential Nonlinearity
R-DNL
-0.5
VDD R 2.6V
+0.5
LSB
LSB
DC PERFORMANCE (RESISTOR CHARACTERISTICS)
Wiper Resistance (Note 4)
Terminal Capacitance
RW
VDD R 2.6V
250
600
VDD > 4.75V
150
200
I
CH_, CL_
Measured to GND
10
Wiper Capacitance
CW_
Measured to GND
50
pF
End-to-End Resistor Tempco
TCR
No load
35
ppm/NC
End-to-End Resistor Tolerance
DRHL
Wiper not connected
-25
pF
+25
%
AC PERFORMANCE
Crosstalk
-3dB Bandwidth
(Note 5)
BW
Code = 80H,
10pF load,
VDD = +2.6V
-90
MAX5386L/MAX5388L
600
MAX5386M/MAX5388M
150
MAX5386N/MAX5388N
75
2 _______________________________________________________________________________________
dB
kHz
Dual, 256-Tap, Volatile, Low-Voltage
Linear Taper Digital Potentiometers
(VDD = +2.6V to +5.5V, VH_ = VDD, VL_ = GND, TA = TMIN to TMAX, unless otherwise noted. Typical values are at VDD = +5V, TA
= +25˚C. ) (Note 1)
PARAMETER
Total Harmonic Distortion
Plus Noise
SYMBOL
THD+N
Wiper Settling Time (Note 6)
tS
CONDITIONS
MIN
Measured at W, VH_ = 1VRMS at 1kHz
TYP
MAX
0.015
MAX5386L/MAX5388L
300
MAX5386M/MAX5388M
1000
MAX5386N/MAX5388N
2000
UNITS
%
ns
POWER SUPPLIES
Supply Voltage Range
VDD
Standby Current
2.6
Digital inputs = VDD or GND
5.5
1
V
FA
DIGITAL INPUTS
Minimum Input High Voltage
VIH
Maximum Input Low Voltage
VIL
Input Leakage Current
70
%VDD
-1
Input Capacitance
30
%VDD
+1
FA
5
pF
TIMING CHARACTERISTICS (Note 7)
Maximum SCLK Frequency
fMAX
10
MHz
SCLK Clock Period
tCP
100
ns
SCLK Pulse-Width High
tCH
40
ns
SCLK Pulse-Width Low
tCL
40
ns
CS Fall to SCLK Rise Setup Time
tCSS
40
ns
SCLK Rise to CS Rise Hold Time
DIN Setup Time
tCSH
0
ns
tDS
40
ns
DIN Hold Time
tDH
0
ns
SCLK Rise to CS Fall Delay
tCS0
10
ns
SCLK Rise to SCLK Rise Hold
Time
tCS1
40
ns
CS Pulse-Width High
tCSW
100
ns
Note 1: All devices are 100% production tested at TA = +25°C. Specifications over temperature limits are guaranteed by design
and characterization.
Note 2: DNL and INL are measured with the potentiometer configured as a voltage-divider (Figure 1) with H = VDD and L = GND.
The wiper terminal is unloaded and measured with an ideal voltmeter.
Note 3: R-DNL and R-INL are measured with the potentiometer configured as a variable resistor (Figure 1). DNL and INL are measured with the potentiometer configured as a variable resistor. H_ is unconnected and L_ = GND. For VDD = +5V, the wiper
terminal is driven with a source current of 400µA for the 10kI configuration, 80µA for the 50kI configuration, and 40µA for
the 100kI configuration. For VDD = +2.6V, the wiper terminal is driven with a source current of 200µA for the 10kI configuration, 40µA for the 50kI configuration, and 20µA for the 100kI configuration.
Note 4: The wiper resistance is the worst value measured by injecting the currents given in Note 3 in to W with L = GND. RW = (VW
- VH)/IW.
Note 5: Drive HA with a 1kHz GND to VDD amplitude tone. LA = LB = GND. No load. WB is at midscale with a 10pF load. Measure
WB.
Note 6: The wiper-settling time is the worst case 0 to 50% rise time, measured between tap 0 and tap 127. H = VDD, L = GND, and
the wiper terminal is loaded with 10pF capacitance to ground.
Note 7: Digital timing is guaranteed by design and characterization, not production tested.
_______________________________________________________________________________________ 3
MAX5386/MAX5388
ELECTRICAL CHARACTERISTICS (continued)
Typical Operating Characteristics
(VDD = 5V, TA = +25°C, unless otherwise noted.)
SUPPLY CURRENT
vs. DIGITAL INPUT VOLTAGE
0.2
VDD = 2.6V
0.001
0.0001
-40 -25 -10 0 20 35 50 65 80 95 110 125
TEMPERATURE (°C)
0
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
DIGITAL INPUT VOLTAGE (V)
RESISTANCE (W TO L)
vs. TAP POSITION (10kΩ)
55,000
50,000
W-TO-L RESISTANCE (kΩ)
9000
8000
7000
6000
5000
4000
3000
45,000
40,000
35,000
30,000
25,000
20,000
15,000
60k
50k
40k
30k
10k
0
0
150
130
VDD = 5V
110
90
70
102
153
TAP POSITION
204
0
255
0.10
153
204
IWIPER = 400µA
0.08
0.06
255
0.04
-0.1
50kI
100kI
-0.3
0.02
0
-0.02
-0.04
-0.06
-0.4
-0.08
-0.10
-0.5
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
WIPER VOLTAGE
102
VARIABLE-RESISTOR DNL
vs. TAP POSITION (10kI)
MAX5386 toc08
10kI
0
-0.2
51
TAP POSITION
DNL (LSB)
WIPER RESISTANCE (Ω)
170
0.1
END-TO-END RESISTANCE % CHANGE
VDD = 2.6V
190
51
END-TO-END RESISTANCE % CHANGE
vs. TEMPERATURE
MAX5386 toc07
210
0
0
WIPER RESISTANCE
vs. WIPER VOLTAGE (10kΩ)
5.5
70k
20k
255
5.0
80k
5000
204
4.5
90k
1000
102
153
TAP POSITION
4.0
VDD (V)
100k
10,000
51
3.5
110k
2000
0
3.0
RESISTANCE (W-TO-L)
vs. TAP POSITION (100kI)
MAX5386 toc05
10,000
2.5
RESISTANCE (W TO L)
vs. TAP POSITION (50kΩ)
MAX5386 toc04
11,000
0.25
MAX5386 toc06
0
0.50
0.01
MAX5386 toc09
VDD = 2.6V
0.1
RESISTANCE (W-TO-L) (kI)
0.4
0.75
IDD (µA)
0.6
VDD = 5V
1
SUPPLY CURRENT (mA)
VDD = 5V
1.00
MAX5386 toc02
0.8
SUPPLY CURRENT (µA)
10
MAX5386 toc01
1.0
SUPPLY CURRENT
vs. SUPPLY VOLTAGE
MAX5386 toc03
SUPPLY CURRENT
vs. TEMPERATURE
W-TO-L RESISTANCE (kΩ)
MAX5386/MAX5388
Dual, 256-Tap, Volatile, Low-Voltage
Linear Taper Digital Potentiometers
-40 -25 -10 5 20 35 50 65 80 95 110 125
TEMPERATURE (NC)
0
51
102
153
TAP POSITION
4 _______________________________________________________________________________________
204
255
Dual, 256-Tap, Volatile, Low-Voltage
Linear Taper Digital Potentiometers
0.6
0.2
0
-0.02
INL (LSB)
0.02
DNL (LSB)
0.4
0.02
0
-0.02
0
-0.2
-0.04
-0.04
-0.4
-0.06
-0.06
-0.6
-0.08
-0.08
-0.8
-0.10
-0.10
51
102
153
204
-1.0
0
51
102
153
204
255
0
153
204
TAP POSITION
VARIABLE-RESISTOR INL
vs. TAP POSITION (50kI)
VARIABLE-RESISTOR INL
vs. TAP POSITION (100kI)
VOLTAGE-DIVIDER DNL
vs. TAP POSITION (10kI)
IWIPER = 400µA
0.4
0.10
0.3
0.08
0.06
0.1
0.02
0
-0.1
DNL (LSB)
0.04
0.1
INL (LSB)
0.2
0
-0.1
0
-0.02
-0.2
-0.2
-0.04
-0.3
-0.3
-0.06
-0.4
-0.4
-0.08
-0.5
-0.5
51
102
153
204
255
-0.10
0
51
102
153
204
255
0
51
102
153
204
TAP POSITION
TAP POSITION
TAP POSITION
VOLTAGE-DIVIDER DNL
vs. TAP POSITION (50kI)
VOLTAGE-DIVIDER DNL
vs. TAP POSITION (100kI)
VOLTAGE-DIVIDER INL
vs. TAP POSITION (10kI)
0.06
0.08
0.5
0.06
0.4
0.3
0.2
0.02
0.1
0
-0.02
INL (LSB)
0.04
0.02
DNL (LSB)
0.04
0
-0.02
0
-0.1
-0.04
-0.04
-0.2
-0.06
-0.06
-0.3
-0.08
-0.08
-0.4
-0.10
-0.10
51
102
153
TAP POSITION
204
255
255
MAX5386 toc18
0.08
MAX5386 toc17
0.10
MAX5386 toc16
0.10
255
MAX5386 toc15
0.5
0.2
0
102
TAP POSITION
0.3
0
51
TAP POSITION
IWIPER = 80µA
0.4
255
MAX5386 toc14
0.5
INL (LSB)
0.06
IWIPER = 400µA
0.8
0.04
0
DNL (LSB)
1.0
0.04
MAX5386 toc13
DNL (LSB)
0.06
IWIPER = 400µA
0.08
VARIABLE-RESISTOR INL
vs. TAP POSITION (10kI)
MAX5386 toc12
IWIPER = 80µA
0.08
0.10
MAX5386 toc10
0.10
VARIABLE-RESISTOR DNL
vs. TAP POSITION (100kI)
MAX5386 toc11
VARIABLE-RESISTOR DNL
vs. TAP POSITION (50kI)
-0.5
0
51
102
153
TAP POSITION
204
255
0
51
102
153
204
255
TAP POSITION
_______________________________________________________________________________________ 5
MAX5386/MAX5388
Typical Operating Characteristics (continued)
(VDD = 5V, TA = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(VDD = 5V, TA = +25°C, unless otherwise noted.)
VOLTAGE-DIVIDER INL
vs. TAP POSITION (50kI)
0.3
0.2
0.2
0.1
0.1
VW-L
20mV/div
0
-0.1
-0.2
-0.2
-0.3
-0.3
-0.4
-0.4
-0.5
CS
5V/div
-0.5
51
0
102
153
204
255
51
0
102
153
204
TAP POSITION
TAP-TO-TAP SWITCHING TRANSIENT
(CODE 128 TO 128) (MAX5386M)
TAP-TO-TAP SWITCHING TRANSIENT
(CODE 127 TO 128) (MAX5386N)
MAX5386 toc22
MAX5386 POWER-ON WIPER TRANSIENT
CODE 0 TO 128
MAX5386 toc23
MAX5386 toc24
VW-L
20mV/div
VW-L
20mV/div
CS
5V/div
CS
5V/div
400ns/div
CROSSTALK vs. FREQUENCY
MAX5386M
MAX5386N
MAX5386 toc26
-80
MAX5386N
MAX5386M
-140
1
10
100
FREQUENCY (kHz)
1,000 10,000
MAX5386M
0.10
-60
-120
-30
0.12
MAX5386L
-40
-100
-20
0.14
THD+N (%)
CROSSTALK (dB)
MAX5386L
THD+N vs. FREQUENCY
-20
0
0.1
VDD
2V/div
2µs/div
0
MAX5386 toc25
VIN = 1VP-P
CW = 10pF
0.01
OUTPUT W
2V/div
1µs/div
MIDSCALE FREQUENCY RESPONSE
-10
200ns/div
255
TAP POSITION
MAX5386 toc27
0
-0.1
MAX5386 toc20
0.4
INL (LSB)
INL (LSB)
0.3
MAX5386 toc21
0.5
MAX5386 toc19
0.4
10
TAP-TO-TAP SWITCHING TRANSIENT
(CODE 127 TO 128) (MAX5386L)
VOLTAGE-DIVIDER INL
vs. TAP POSITION (100kI)
0.5
GAIN (dB)
MAX5386/MAX5388
Dual, 256-Tap, Volatile, Low-Voltage
Linear Taper Digital Potentiometers
0.08
MAX5386N
0.06
0.04
MAX5386L
0.02
0
0.01
0.1
1
10
FREQUENCY (kHz)
100
1000
0.01
0.10
1
FREQUENCY (kHz)
6 _______________________________________________________________________________________
10
100
Dual, 256-Tap, Volatile, Low-Voltage
Linear Taper Digital Potentiometers
PIN
NAME
FUNCTION
3
HB
Resistor B High Terminal. The voltage at HB can be higher or lower than the voltage
at LB. Current can flow in to or out of HB.
2
4
WB
Resistor B Wiper Terminal
3
2
LB
Resistor B Low Terminal. The voltage at LB can be higher or lower than the voltage
at HB. Current can flow in to or out of LB.
4
—
I.C.
Internally Connected. Connect to GND.
5
1
GND
Ground. Both pins must be grounded.
6, 7, 11, 13
—
N.C.
No Connection. Not internally connected.
8
5
Active-Low Chip-Select Input
MAX5386
MAX5388
1
9
6
CS
DIN
10
7
SCLK
12
8
VDD
Power-Supply Input. Bypass VDD to GND with a 0.1µF capacitor close to the device.
14
—
HA
Resistor A High Terminal. The voltage at HA can be higher or lower than the voltage
at LA. Current can flow in to or out of HA.
15
9
WA
Resistor A Wiper Terminal
16
10
LA
Resistor A Low Terminal. The voltage at LA can be higher or lower than the voltage
at HA. Current can flow in to or out of LA.
—
—
EP
Exposed Pad (TQFN Only). Internally connected to GND. Connect to ground.
Serial-Interface Data Input
Serial-Interface Clock Input
VOLTAGE-DIVIDER
CONFIGURATION
H
VARIABLE-RESISTOR
CONFIGURATION
N.C.
W
W
L
L
Figure 1. Voltage-Divider/Variable-Resistor Configurations
_______________________________________________________________________________________ 7
MAX5386/MAX5388
Pin Description
MAX5386/MAX5388
Dual, 256-Tap, Volatile, Low-Voltage
Linear Taper Digital Potentiometers
Detailed Description
The MAX5386/MAX5388 dual, 256-tap, volatile low-voltage linear taper digital potentiometers offer three end-toend resistance values of 10kI, 50kI, and 100kI. Each
potentiometer consists of 255 fixed resistors in series
between terminals H and L. The potentiometer wiper, W,
is programmable to access anyone of the 256 tap points
on the resistor string.
The potentiometers in each device are programmable
independently of each other. The MAX5386/MAX5388
have an SPI interface.
SPI Digital Interface
The MAX5386/MAX5388 include an SPI interface, which
provides a 3-wire write-only serial data interface to control the wiper tap position through inputs chip select
(CS), data in (DIN), and data clock (SCLK). Drive CS
low to load data from DIN synchronously into the serial
shift register on the rising edge of each SCLK pulse.
The MAX5386/MAX5388 load the last 9 bits of clocked
data once CS transitions high. See Figures 2 and 3.
After all the data bits are shifted in, data are latched into
the appropriate potentiometer control register when CS
goes from low to high. Data written to a memory register
immediately updates the wiper position. Keep CS low
during the entire data stream to prevent the data from
being terminated.
The first bit A0 (address bit) addresses one of the two
potentiometers; writing a zero in A0 addresses control
register A and writing a one in A0 addresses control register B. See Table 1. The power-on reset (POR) circuitry
sets the wiper to midscale (D[7:0] 1000 0000).
The 8 data bits (D7–D0) indicate the position of the
wiper. For D[7:0] = 0000 0000, the wiper moves to the
position closest to L. For D[7:0] = 1111 1111, the wiper
moves closest to H. D[7:0] is 1000 0000 following poweron for both registers A and B.
Register A: The data byte writes to register A, and the
wiper of potentiometer A moves to the appropriate position at the rising edge of CS. D[7:0] indicates the position of the wiper. D[7:0] = 0000 0000 moves the wiper to
the position closest to L. D[7:0] = 1111 1111 moves the
wiper to the position closest to H. D[7:0] is 1000 0000
following power-on.
Register B: The data byte writes to register B, and the
wiper of potentiometer B moves to the appropriate position at the rising edge of CS. D[7:0] indicates the position of the wiper. D[7:0] = 0000 0000 moves the wiper to
the position closest to L. D[7:0] = 1111 1111 moves the
wiper to the position closest to H. D[7:0] is 1000 0000
following power-on.
Table 1. SPI Register Map
Bit Number
1
2
3
4
5
6
7
8
9
A0
D7
D6
D5
D4
D3
D2
D1
D0
Write Wiper Register A
0
D7
D6
D5
D4
D3
D2
D1
D0
Write Wiper Register B
1
D7
D6
D5
D4
D3
D2
D1
D0
Bit Name
8 _______________________________________________________________________________________
Dual, 256-Tap, Volatile, Low-Voltage
Linear Taper Digital Potentiometers
WIPER REGISTER
LOADED
CS
SCLK
DIN
A0
D7
D6
D5
D4
D3
D2
D0
D1
Figure 2. SPI Digital Interface Format
tCSW
CS
tCS1
tCSO
tCH
tCSS
tCL
tCP
tCSH
tDH
SCLK
tDS
DIN
Figure 3. SPI Timing Diagram
_______________________________________________________________________________________ 9
MAX5386/MAX5388
COMMAND
STARTED 9 BITS
MAX5386/MAX5388
Dual, 256-Tap, Volatile, Low-Voltage
Linear Taper Digital Potentiometers
Applications Information
Variable-Gain Amplifier
Figure 4 shows a potentiometer adjusting the gain of a
noninverting amplifier. Figure 5 shows a potentiometer
adjusting the gain of an inverting amplifier.
Adjustable Dual Linear Regulator
Figure 6 shows an adjustable dual linear regulator using
a dual potentiometer as two variable resistors.
Adjustable Voltage Reference
Figure 7 shows an adjustable voltage reference circuit
using a potentiometer as a voltage-divider.
VOUT1
OUT1
VOUT2
OUT2
VIN
VOUT
MAX8866
V+
IN
H
H
L
L
W
W
L
H
W
SET1
SET2
Figure 4. Variable-Gain Noninverting Amplifier
Figure 6. Adjustable Dual Linear Regulator
+5V
H
IN
L
VREF
OUT
W
MAX6160
VIN
H
W
VOUT
GND
Figure 5. Variable-Gain Inverting Amplifier
L
Figure 7. Adjustable Voltage Reference
10 �������������������������������������������������������������������������������������
Dual, 256-Tap, Volatile, Low-Voltage
Linear Taper Digital Potentiometers
LCD Bias Control
Figure 9 shows a positive LCD bias control circuit using
a potentiometer as a voltage-divider.
Programmable Filter
Figure 10 shows a programmable filter using a dual
potentiometer.
Offset Voltage Adjustment Circuit
Figure 11 shows an offset voltage adjustment circuit
using a dual potentiometer.
WB
R3
VIN
H
W
IS
LB
HB
VOUT
R3
R2
R1
R1
HA
L
VOUT
R2
WA
LA
VOUT = IS x ((R3 x (1 + R2/R1)) + R2)
Figure 8. Variable Gain I-to-V Converter
Figure 10. Programmable Filter
+5V
WA
+5V
LA
HA
H
W
+30V
VOUT
VOUT
L
HB
WB
LB
Figure 9. Positive LCD Bias Control Using a Voltage-Divider
Figure 11. Offset Voltage Adjustment Circuit
______________________________________________________________________________________ 11
MAX5386/MAX5388
Variable Gain Current to Voltage Converter
Figure 8 shows a variable gain current-to-voltage converter using a potentiometer as a variable resistor.
Dual, 256-Tap, Volatile, Low-Voltage
Linear Taper Digital Potentiometers
MAX5386/MAX5388
Functional Diagrams
LA
WA
VDD
HA
MAX5386
256
DECODER
HB
SCLK
LATCH
SPI
POR
WB
256
DECODER
DIN
LATCH
LB
GND
LA
CS
VDD
WA
MAX5388
HB
256
DECODER
SCLK
LATCH
SPI
POR
WB
256
DECODER
DIN
LATCH
LB
GND
CS
Chip Information
PROCESS: BiCMOS
Package Information
For the latest package outline information and land patterns, go
to www.maxim-ic.com/packages.
PACKAGE TYPE
PACKAGE CODE
DOCUMENT NO.
10 µMAX
U10+2
21-0061
16 TQFN-EP
T1633-5
21-0136
12 �������������������������������������������������������������������������������������
Dual, 256-Tap, Volatile, Low-Voltage
Linear Taper Digital Potentiometers
REVISION
NUMBER
REVISION
DATE
0
4/09
Initial release
1
11/09
Released MAX5386LATE+ and MAX5386NATE+ in Ordering Information;
corrected specifications for Full-Scale Error, Zero-Scale Error, and Integral
Nonlinearity in Electrical Characteristics; added I.C. row to Pin Description;
corrected Figure 1
2
1/10
Released the MAX5388LAUB+, MAX5388MAUB+, MAX5388NAUB+ + in
Ordering Information.
DESCRIPTION
PAGES
CHANGED
—
1, 2, 7
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.
Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
©
2010 Maxim Integrated Products
13
Maxim is a registered trademark of Maxim Integrated Products, Inc.
MAX5386/MAX5388
Revision History
Similar pages