Micro Linear ML6696CH 100base-x fiber physical layer Datasheet

December 1998
ML6696*
100BASE-X Fiber Physical Layer
GENERAL DESCRIPTION
FEATURES
The ML6696 implements the complete physical layer of
the Fast Ethernet 100BASE-X standard for fiber media. The
device provides the MII (Media Independent Interface) for
interface to upper-layer silicon. The ML6696 integrates the
data quantizer and the LED driver, allowing the use of
low cost optical PMD components.
■
100BASE-FX physical layer with MII
■
Optimal 100BASE-SX solution (draft standard)
■
Integrated data quantizer (post-amplifier)
■
Integrated LED driver
■
125MHz clock generation and recovery
■
4B/5B encoding/decoding
■
Power-down mode
The ML6696 includes 4B/5B encoder/decoder, 125MHz
clock recovery/clock generation, LED driver, and a data
quantizer. The device also offers a power down mode
which results in total power consumption of less than 20mA.
The ML6696 is suitable for the current 100BASE-FX IEEE
803.2u standard defined using 1300nm optics, as well as
for the proposed 100BASE-SX standard defined using lower
cost 820nm optics
* Some Packages Are Obsolete
BLOCK DIAGRAM
CLKREF
CLOCK
SYNTHESIZER
TXCLK
TXER
TXEN
TXD3
TXD2
TXD1
IOUT
PCS
TRANSMIT
STATE
MACHINE
AND
4B/5B ENCODER
IOUT
SERIALIZER
LED
DRIVER
NRZ TO NRZI
ENCODER
RTSET
TXD0
MDC
MII SERIAL
MANAGEMENT
INTERFACE
MDIO
COL
CRS
ECLK
CARRIER & COLLISION
LOGIC
EDIN
INITIALIZATION
INTERFACE
EDOUT
RXCLK
RXER
RXDV
RXD3
RXD2
RXD1
PCS
RECEIVE
STATE
MACHINE
AND
4B/5B DECODER
DESERIALIZER
CLOCK & DATA
RECOVERY
NRZI TO NRZ
ENCODER
DATA QUANTIZER
VIN+
(POST AMPLIFIER)
VIN–
LINK100
RXD0
CAPB
CAPDC
1
ML6696
PIN CONFIGURATION
TXEN
TXD0
TXD1
TXD2
TXD3
AGND1
CLKREF
AVCC1
EDIN
ECLK
EDOUT
AVCC2
AGND2
ML6696
52-Pin PLCC (Q52)
7 6 5 4 3 2 1 52 51 50 49 48 47
TXER
TXCLK
RXD3
DGND1
RXD2
DVCC1
RXD1
DGND2
RXD0
RXCLK
CRS
COL
DGND3
8
9
10
11
12
13
14
15
16
17
18
19
20
46
45
44
43
42
41
40
39
38
37
36
35
34
IOUT
IOUT
AGND3
RTSET
AVCC3A
AVCC3B
AVCC4A
AGND4A
LINK100
AVCC4B
AVCC4B
VIN+
VIN–
RXDV
DVCC2
RXER
MDC
MDIO
DGND4
DVCC5
DGND5
NC
NC
CAPDC
CAPB
AGND4B
21 22 23 24 25 26 27 28 29 30 31 32 33
TOP VIEW
AGND2
AGND2
AGND2
AVCC2
EDOUT
ECLK
AVCC1
EDIN
CLKREF
AGND1
TXD3
TXD2
TXD1
TXD0
TXEN
TXER
ML6696
64-Pin TQFP (H64-10)
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
TXCLK
1
48
IOUT
RXD3
2
47
IOUT
DGND1
3
46
IOUT
DGND1
4
45
IOUT
DGND1
5
44
AGND3
RXD2
6
43
AGND3
DVCC1
7
42
RTSET
RXD1
8
41
DGND2
9
40
AVCC3A
AVCC3B
DGND2
10
39
DGND2
11
38
AVCC4A
AGND4A
RXD0
12
37
LINK100
RXCLK
13
36
CRS
14
35
AVCC4B
AVCC4B
COL
15
34
VIN+
DGND3
16
33
VIN–
TOP VIEW
2
AGND4B
AGND4B
CAPB
CAPDC
NC
NC
DGND5
DGND5
DVCC5
DGND4
MDC
MDIO
RXER
DVCC2
RXDV
DGND3
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
ML6696
PIN DESCRIPTION
(Pin Number in Parentheses is for PLCC Version)
PIN
NAME
FUNCTION
PIN
1 (9)
TXCLK
Transmit clock TTL output. This
25MHz clock is phase-aligned
with the internal 125MHz TX bit
clock. Data appearing at
TXD<3:0> are clocked into the
ML6696 on the rising edge of this
clock.
16, 17
(20)
DGND3
2 (10)
RXD3
3, 4,
5, (11) DGND1
Receive data TTL output. Output
is valid on RXCLK’s rising edge.
RXD2
Receive data TTL output. Output
is valid on RXCLK’s rising edge.
7 (13)
DVCC1
Digital positive power supply
8 (14)
RXD1
Receive data TTL output. Output
is valid on RXCLK’s rising edge.
12 (16) RXD0
13 (17) RXCLK
14 (18) CRS
15 (19) COL
Recovered receive clock TTL
output. This 25MHz clock is
phase-aligned with the internal
125MHz bit clock recovered from
the signal received at VIN+/-.
Receive data are clocked out at
RXD<3:0> on the falling edges of
this clock, and should be sampled
on rising edges. RXCLK is phasealigned to CLKREF in the absence
of a 100BASE-FX signal at VIN+/–.
Carrier Sense TTL output. CRS
goes high in the presence of nonidle signals at VIN+/-, or when the
ML6696 is transmitting. CRS goes
low when there is no transmit
activity and receive is idle. In
repeater or full-duplex mode, CRS
goes high in the presence of nonidle signals at VIN+/– only.
Collision Detected TTL output.
COL goes high upon detection of
a collision on the network, and
remains high as long as the
collision condition persists. COL is
low when the ML6696 operates in
full-duplex, repeater, or loopback
modes.
Digital ground
Receive data valid TTL output.
This output is high when the
ML6696 is receiving a data
packet. RXDV is valid on RXCLK’s
rising edge.
19 (22) DVCC2
Digital positive power supply
20 (23) RXER
Receive error TTL output. This
output goes high to indicate error
or invalid symbols within a
packet, or corrupted idle between
packets. RXER is valid on RXCLK’s
rising edge.
21 (24) MDC
MII Serial Management Interface
clock TTL input. A clock at this
pin clocks serial data into or out
of the ML6696’s MII management
registers through the MDIO pin.
The maximum clock frequency at
MDC is 2.5MHz.
22 (25) MDIO
MII Serial Management Interface
data TTL input/output. Serial data
are written to and read from the
management registers through this
I/O pin. Input data is sampled on
the rising edge of MDC. Output
data is valid on MDC's rising edge
23 (26) DGND4
Digital ground
24 (27) DVCC5
Digital positive power supply
25, 26
(28)
DGND5
Digital ground
27, 28
(29, 30) NC
No connect
Digital ground
Receive data TTL output. Output
is valid on RXCLK’s rising edge.
FUNCTION
18 (21) RXDV
Digital ground
6 (12)
9, 10,
11 (15) DGND2
NAME
29 (31) CAPDC
Data quantizer offset-correction
loop, offset-storage capacitor input
pin. The capacitor tied between
this pin and AVCC stores the
amplified data quantizer offset
voltage and also sets the dominant
pole in the offset-correction loop.
A 0.1µF surface mount is
recommended.
3
ML6696
PIN DESCRIPTION
PIN
NAME
30 (32) CAPB
31, 32
(33)
AGND4B
(Pin Number in Parentheses is for PLCC Version) (Continued)
FUNCTION
PIN
Data quantizer input bias bypass
capacitor input. The capacitor tied
between this pin and AVCC filters
the quantizer’s internal input bias
reference. A 0.1µF surface-mount
capacitor is recommended.
47, 48
(46)
IOUT
Receive quantizer negative input.
This input should be tied to
AVCCQ through an AC coupling
capacitor. (0.01µF recommended)
34 (35) V IN+
Receive quantizer positive input.
This input receives 100BASE-FX
signals from the network optical
receiver through an AC coupling
capacitor. (0.01µF recommended).
Analog positive power supply
37 (38) LINK100
100BASE-FX link activity opendrain output. LINK100 pulls low
when there is 100BASE-FX activity
at VIN+/–. This output is capable
of sinking sufficient current to
directly drive a status LED in
series with a current limiting
resistor.
38 (39) AGND4A
Analog ground
39 (40) AVCC4A
Analog positive power supply
40 (41) AVCC3B
Analog positive power supply
41 (42) AVCC3A
Analog positive power supply
42 (43) RTSET
Transmit level bias resistor. For
100BASE-FX, an external 2.32kW,
1% resistor connected between
RTSET and AGND3 sets a
precision constant bias current
that gives a nominal output "on"
current of 75mA at IOUT.
43, 44
(44)
AGND3
45, 46
(45)
IOUT
4
FUNCTION
Transmit LED output. This opencollector current output drives
NRZI waveforms into a network
LED.
49, 50,
51 (47) AGND2
Analog ground
52 (48) AVCC2
Analog positive power supply
53 (49) EDOUT
Initialization Interface data out
CMOS input. With EDIN low at
power up, EDOUT has no
function. With EDIN floating at
power up, EDOUT is the serial
data input for configuration data
from an EEPROM. With EDIN high
at power up, EDOUT is the input
for configuration data from an
external microcontroller. (Table 1)
54 (50) ECLK
Initialization Interface clock
CMOS input/output. With EDIN
low at power up, ECLK is inactive.
With EDIN floating at power up,
ECLK is the ML6696’s clock
output for timing the configuration
data from an external EEPROM.
With EDIN high at power up,
ECLK is the clock input for timing
configuration data from an
external microcontroller. (Table 1)
55 (51) EDIN
Initialization Interface mode
select and EEPROM interface data
in CMOS input/output. EDIN
selects one of three possible
interface modes at power up. See
the Initialization Interface section
for more information. (Table 1)
56 (52) AVCC1
Analog positive power supply
57 (1)
CLKREF
Transmit clock TTL input. This
25MHz clock is the frequency
reference for the internal TX PLL
clock synthesizer and logic. This
pin should be driven by an
external 25MHz clock at TTL
levels.
58 (2)
AGND1
Analog ground
59 (3)
TXD3
Transmit data TTL input. TXD<3:0>
inputs accept TX data symbols from
the MII. Data appearing at TXD<3:0>
are clocked into the ML6696 on the
rising edge of TXCLK.
Analog ground
33 (34) V IN–
35, 36
(36, 37) AVCC4B
NAME
Analog ground
Transmit LED output. This pin
connects through an external 15W
resistor to AVCC when the part is
used to drive a network LED.
ML6696
PIN DESCRIPTION
(Pin Number in Parentheses is for PLCC Version) (Continued)
PIN
NAME
FUNCTION
PIN
NAME
FUNCTION
60 (4)
TXD2
Transmit data TTL input. TXD<3:0>
inputs accept TX data symbols
from the MII. Data appearing at
TXD<3:0> are clocked into the
ML6696 on the rising edge of
TXCLK.
63 (7)
TXEN
Transmit enable TTL input. Driving
this input high indicates to the
ML6696 that transmit data are
present at TXD<3:0>. TXEN edges
should be synchronous with
TXCLK.
61 (5)
TXD1
Transmit data TTL input. TXD<3:0>
inputs accept TX data symbols
from the MII. Data appearing at
TXD<3:0> are clocked into the
ML6696 on the rising edge of
TXCLK.
64 (8)
TXER
Transmit error TTL input. Driving
this pin high with TXEN also high
causes the part to continuously
transmit an H symbol (00100).
When TXEN is low, TXER has no
effect.
62 (6)
TXD0
Transmit data TTL input. TXD<3:0>
inputs accept TX data symbols
from the MII. Data appearing at
TXD<3:0> are clocked into the
ML6696 on the rising edge of
TXCLK.
5
ML6696
ABSOLUTE MAXIMUM RATINGS
Absolute maximum ratings are those values beyond which
the device could be permanently damaged. Absolute
maximum ratings are stress ratings only and functional
device operation is not implied.
Storage Temperature ................................. –65ºC to 150ºC
Lead Temperature (Soldering, 10 sec) ..................... 260ºC
Thermal Resistance (qJA)
TQFP ............................................................... 52°C/W
PLCC ............................................................... 40°C/W
VCC Supply Voltage Range ............................ –0.3V to 6V
Input Voltage Range
Digital Inputs ........................................... –0.3V to VCC
VIN+, VIN-, CLKREF, CAPB, CAPDC ........ –0.3V to VCC
Output Current
IOUT, IOUT ........................................................ 90mA
All Other Outputs ............................................... 10mA
Junction Temperature .................................... 0ºC to 125ºC
OPERATING CONDITIONS
Temperature Range ....................................... 0ºC to 70ºC
RTSET .......................................................... 2.32kW ±1%
VCC Supply Voltage .............................. ........... 5V ±5%
All VCC supply pins must be within 0.1V of each other.
All GND pins must be within 0.1V of each other.
DC ELECTRICAL CHARACTERISTICS
Unless otherwise specified, VCC = 5V ±5%, TA = Operating Temperature Range (Note 1)
SYMBOL
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
TTL INPUTS (TXD<3:0>, CLKREF, MDC, MDIO, TXEN, TXER)
VIL
Input Low Voltage
IIL = –400µA
-0.3
0.8
V
VIH
Input High Voltage
IIH = 100µA
2.0
VCC+0.3
V
IIL
Input Low Current
VIN = 0.4V
-200
IIH
Input High Current
VIN = 2.4V
µA
100
µA
0.4
V
TTL OUTPUTS (RXD<3:0>, RXCLK, RXDV, RXER, CRS, COL, MDIO, TXCLK)
VOL
Output Low Voltage
IOL = 4mA
VOH
Output High Voltage
IOH = –4mA
2.4
V
CMOS INPUTS (EDIN, EDOUT, ECLK)
V ILC
Input Low Voltage
V IHC
Input High Voltage
0.2 ´ VCC
0.8 ´ VCC
V
V
CMOS OUTPUTS (ECLK)
VOLC
Output Low Voltage
IOL = 2mA
V OHC
Output High Voltage
IOL = –2mA
0.1 ´ VCC
0.9 ´ VCC
V
V
RECEIVER (VIN+, VIN–)
6
V ICM
Input Common-Mode Voltage
VCC = 5V
VID
Differential Input Voltage Range
3.5
1600
mVP-P
RIDR
Differential Input Resistance
500
1000
W
V SDA
Signal Detect Assertion Threshold
8
12
mVP-P
AHYST
Input Hysteresis
1.5
2
dB
Peak-to-Peak Non-idle Signal
Level at VIN+/-
2.5
V
ML6696
DC ELECTRICAL CHARACTERISTICS
SYMBOL
(Continued)
PARAMETER
CONDITIONS
MIN
TYP
MAX
UNITS
67.5
75
82.5
mA
0.1
mA
540
594
µA
200
295
mA
20
mA
MAX
UNITS
11
ns
TRANSMITTER (IOUT, IOUT)
ILEDH
IOUT High Output Current
RTSET = 2.32kW ±1%
ILEDL
Low Output Current
RTSET = 2.32kW ±1%
IRT
RTSET Input Current
RTSET = 2.32kW ±1%
486
POWER SUPPLY CURRENT
ICC
I CCPD
Supply Current, 100BASE-FX, Transmitting
Current into All VCC Pins
Supply Current, Power-Down Mode
Current into All VCC Pins
AC ELECTRICAL CHARACTERISTICS
Unless otherwise specified, VCC = 5V ±5%, TA = Operating Temperature Range (Note 1)
SYMBOL
PARAMETER
CONDITIONS
MIN
TYP
TRANSMITTER
tCLK
CLKREF – TXCLK Delay
5
tTXP
Transmit Bit Delay
Note 2
10.5
bit times
tTR/F
IOUT Rise /Fall Time
Note 3
2
ns
t TDC
IOUT Output Duty Cycle Disotrtion
Note 3
0.5
ns
tRXDC
Receive Bit Delay (CRS)
Note 3
15.5
bit times
tRXDR
Receive Bit Delay (RXDV)
Note 4
25.5
bit times
50
ppm
–0.5
RECEIVER
MII INTERFACE
XNTOL
CLKREF Input Clock Frequency Tolerance
25MHz Frequency
–50
t TPWH
TXCLK Pulse Width High
14
ns
t TPWL
TXCLK Pulse Width Low
14
ns
tRPWH
RXCLK Pulse Width High
14
ns
tRPWL
RXCLK Pulse Width Low
14
ns
t TPS
Setup Time, TXD<3:0> Data Valid to
TXCLK Rising Edge
Note 5
5
ns
t TPH
Hold time, TXD<3:0> Data Valid
After TXCLK Rising Edge
Note 5
0
ns
tRCS
Time That RXD<3:0> Data are Valid
Before RXCLK Rising Edge
Note 6, 7
10
ns
tRCH
Time That RXD<3:0> Data are Valid
After RXCLK Rising Edge
Note 6, 7
10
ns
tRPCR
RXCLK 10%-90% Rise Time
6
ns
tRPCF
RXCLK 90%-10% Fall Time
6
ns
7
ML6696
AC ELECTRICAL CHARACTERISTICS
SYMBOL
PARAMETER
(Continued)
CONDITIONS
MIN
TYP
MAX
UNITS
MII MANAGEMENT INTERFACE (MDC, MDIO)
tSPWS
Write Setup Time, MDIO Data Valid
to MDC Rising Edge (1.4V Point)
10
ns
tSPWH
Write Hold Time, MDIO Data Valid
After MDC Rising Edge (1.4V Point)
10
ns
tSPRS
Read Setup Time, MDIO Data Valid
to MDC Rising Edge (1.4V Point)
100
ns
tSPRH
Read Hold Time, MDIO Data Valid
After MDC Rising Edge (1.4V Point)
0
ns
tCPER
Period of MDC
400
ns
t CPW
Pulsewidth of MDC
Positive or Negative Pulses
160
ns
EEPROM INTERFACE (ECLK, EDIN, EDOUT)
t PW1
ECLK Positive Pulsewidth
EDIN Floating (EEPROM Mode)
900
ns
t PW2
ECLK Negative Pulsewidth
EDIN Floating (EEPROM Mode)
900
ns
tPER1
ECLK Period
EDIN Floating (EEPROM Mode)
1800
ns
t DV1
EDOUT Data Valid Time
After ECLK Rising Edge
EDIN Floating (EEPROM Mode)
tPER2
ECLK Period
EDIN High (Microcontroller Mode)
5000
ns
t PW3
ECLK Positive Pulsewidth
EDIN High (Microcontroller Mode)
2000
ns
t PW4
ECLK Negative Pulsewidth
EDIN High (Microcontroller Mode)
2000
ns
tS1
ECLK Data Setup Time
EDIN High (Microcontroller Mode)
10
ns
t H1
ECLK Data Hold Time
EDIN High (Microcontroller Mode)
10
ns
900
Note 1: Limits are guaranteed by 100% testing, sampling, or correlation with worst case test conditions.
Note 2: From first rising edge of TXCLK after TXEN goes high, to first bit of J at the MDI.
Note 3: From first bit of J at the MDI, to CRS.
Note 4: From first bit of J at the MDI, to first rising edge of RXCLK after RXDV goes high.
Note 5: Measured between the time that TXD0-3 transition above or below the region 0.8V–2.0V, and the time that TXCLK rises above 0.8V.
Note 6: Measured between the time that RXD0-3 transition above or below the region 0.8V–2.0V, and the time that RXCLK rises above 0.8V.
Note 7: Measured using a 15pF load to ground.
8
ns
ML6696
TXCLKIN
tTPWH
tTPWL
TXCLK
TXD<3:0>
TXER
TXEN
tTPS
tTPH
Figure 1. MII Transmit Timing
tRPCR
tRPCF
RXCLK
RXD<3:0>
RXER
RXDV
tRCS
tRCH
Figure 2. MII Receive Timing
MDC
MDIO
tSPWS
tSPWH
Figure 3. MII Management Interface Write Timing
9
ML6696
tCPER
MDC
tSPRH
tSPRS
tCPW
tCPW
MDIO
Figure 4. MII Management Interface Read Timing
tPW1
ECLK
(DRIVEN BY ML6696)
EDIN
(DRIVEN BY ML6696)
01
SB
1
02
OP1
1
03
OP0
0
tPW2
04
A5
0
05
A4
0
06
tPER1
07
A3
0
08
A2
0
A1
0
09
10
11
12
13
26
A0
0
EDOUT
(DRIVEN BY EEPROM)
D0
D1
D2
D3
D14
tDV1
16 BITS DATA ADDRESS
Figure 5. EEPROM Interface Timing
tPW3
01
tPER2
02
16
ECLK
(INPUT TO ML6696)
tS1
tPW4
EDOUT
(INPUT TO ML6696)
H
Figure 6. MII Management Interface Read Timing
10
D15
ML6696
FUNCTIONAL DESCRIPTION
FIBER OPTIC TRANSMITTER
ML6696 PHY MANAGEMENT FUNCTIONS
The on-chip transmit PLL converts a 25MHz TTL-level
clock at CLKREF to an internal 125MHz bit clock. TXCLK
from the ML6696 clocks transmit data from the MAC into
the ML6696’s TXD<3:0> input pins upon assertion of
TXEN. Data from the TXD<3:0> inputs are 5-bit encoded
and converted from parallel to serial form at the 125MHz
clock rate. The ML6696 drives corresponding NRZI data
out from its LED driver. The LED driver at IOUT is a
current mode switch which develops the output light by
sinking current through the network LED into IOUT.
RTSET’s value determines the output current:
The ML6696 has management functions controlled by the
register locations given in Table 3 (page 12). There are
two 16-bit management registers, with several unused
locations. Register 0 is the basic control register (read/
write). Register 1 is the basic status register (read-only).
The ML6696 powers on with all management register bits
set to their default values.
RTSET =
. V
125
IOUT ´ 140W
(1)
where IOUT is the desired output current.
Driving TXEN low will cause the ML6696’s transmitter to
enter the idle state and output 62.5MHz idle signal.
Driving TXER high when TXEN is high causes the H
symbol (00100) to appear in the transmitted data stream.
The media access controller asserts TXER synchronously
with TXCLK’s rising edge, and the H symbol appears in
place of valid symbols in the current frame.
FIBER OPTIC RECEIVER
The data quantizer accepts data at the VIN+/– pins that is
above the internally-set 10mVpp threshold (typical).
The ML6696’s status and control register addresses and
functions match those described for the MII in IEEE
802.3u section 22. IEEE 802.3u specifies the management
data frame structure in section 22.2.4.4.
See IEEE 802.3u section 22.2.4 for a discussion of MII
management functions and status/control register
definitions.
INITIALIZATION INTERFACE
The ML6696 has an Initialization Interface to allow
register programming that is not supported by the MII
Management Interface. The intitialization data is loaded
at power-up and cannot be changed afterwards. The pin
EDIN selects one of three possible programming modes.
The Initialization Register bit assignment is shown in
Table 2.
EEPROM PROGRAMMING
The receiver will assert RXER high if it detects errors in
the receive data or idle stream.
With EDIN floating (set to a high impedance), the
ML6696 reads the 16 configuration bits from an external
serial EEPROM (93LC46 or similar) using the industrystandard 3-wire serial I/O protocol. After power up, the
ML6696 automatically generates the address at EDIN and
the clock at ECLK to read out the 16 configuration bits.
The EEPROM generates the configuration bit stream at
EDOUT, synchronized with ECLK. Interface timing is
shown in Figure 5. It is important to note that the ML6696
expects LSBs first, whereas the 93LC46 shifts MSBs out
first. Therefore, the data pattern must be reversed before
programming it into the EEPROM.
COLLISION AND CRS
MICROCONTROLLER PROGRAMMING
COL goes high to indicate simultaneous 100BASE-FX
receive and transmit activity (a collision). CRS goes high
whenever there is either receive or transmit activity in
default mode, or only when there is receive activity in
repeater or full-duplex mode.
With EDIN high, the ML6696 expects the 16
configuration bits transfered directly at EDOUT,
synchronized with the first 16 clock rising edges provided
externally at ECLK after power-up. This mode is useful
with a small microcontroller; one controller can program
several ML6696 parts by selectively toggling their ECLK
pins. Interface timing is shown in Figure 6.
The receive PLL extracts clock from the quantizer’s
output, providing jitter attenuation, and clocks the signal
through the serial-to-parallel converter. The resulting 5-bit
symbols are aligned and decoded, and appear at
RXD<3:0>. The ML6696 asserts RXDV when it’s ready to
present properly decoded receive data at RXD<3:0>. The
extracted clock appears at RXCLK. The receiver strips out
62.5MHz idle between data packets.
CLOCK INPUT
The ML6696 requires an accurate 25MHz reference at
CLKREF for internal clock generation (±50ppm, see
parameter XNTOL).
ML6696 HARD-WIRED DEFAULT
With EDIN low, the ML6692 responds to MII PHYAD
00000 only. "ISODIS" bit and "REPEATER" bit are 0.
11
ML6696
FUNCTION OF RELATED PINS
EDIN
Floating (EEPROM ADDR)
High
MODE
EEPROM
Microcontroller
Low
Hardwired
ECLK
EDOUT
ECLK (Output clock to EEPROM) EDOUT (Input data from EEPROM)
ECLK
EDOUT
(Input clock from Microcontroller) (Input data from Microcontroller)
No Effect
No Effect
Table 1. ML6696 Pin Function
BIT(S)
NAME
DESCRIPTION
i.15
i.14
PHY A4
PHY A3
PHY address bit 4
PHY address bit 3
0
0
i.13
PHY A2
PHY address bit 2
0
i.12
PHY A1
PHY address bit 1
0
i.11
PHY A0
PHY address bit 0
0
i.10 - i.8
Not Used
i.7
ISODIS
i.6
REPEATER
i.5 - i.0
Isolate bit disable (bit 0.10)
0
Repeater mode: when set to 1, CRS is only asserted when receiving
non-idle signal at IN+/–, and ML6696 is forced to half duplex mode.
0
Not Used
Table 2. Initialization Interface Register
12
DEFAULT
ML6696
BIT(S)
NAME
1.14
100BASE-X
Full Duplex
100BASE-X
Half Duplex
1.13
1.12-1.3
1.2
Link Status
1.1 - 1.0
0.15
Reset
0.14
Loopback
0.13
Manual
Speed Select
0.12
0.11
Power down
0.10
Isolate
0.9
0.8
Duplex mode
0.7
Collision Test
0.6 - 0.0
DESCRIPTION
R/W
DEFAULT
1=Full duplex 100BASE-X capability
0=No full duplex 100BASE-X capability
1=Half duplex 100BASE-X capability
0=No half duplex 100BASE-X capability
Not used
1=One and only one PHY-specific link is up
0=Link is down
Not used
1=Reset registers 0 and 1 to default values
0=Normal operation
1=PMD loopback mode
0=Normal operation
1=100Mb/s
0=10Mb/s
Not used
RO
i.6
RO
1
RO
RO,LL
0
0
RO
R/W, SC
0
0
R/W
0
R/W
1
RO
0
R/W
0
R/W
i.7
Not used
RO
0
1=Full duplex select
0=Half duplex select
1=Enable COL signal test
0=Normal operation
R/W
i.6
R/W
0
Not Used
RO
0
1=Power down
0=Normal operation
1=Electrically isolate the ML6696 from MII
0=Normal operation
Table 3. Management Register Function Bit Locations (Registers 0, 1)
13
ML6696
C3
0.1µF
5V VCC
U2
EC1400SJ-TS-25MHz
25MHz OSC
1
4
NC
VCC
2
3
GND OUT
P1
MII CONNECTOR
DGND
VCC
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
GND
VCC
VCC
CRS
COL
TXD3
TXD2
TXD1
TXD0
TXEN
TXCK
TXER
RXER
RXCK
RXDV
RXD0
RXD1
RXD2
RXD3
MDC
MDIO
VCC
DVCC
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
U6 93LC46B
1
CS
VCC
2
SK
NC
3
DI
NC
4
D0
DGND
AVCC
8
7
6
5
C9
0.1µF
R6
15Ω
C13
0.1µF
C10
0.1µF
C6, 0.1µF
C29, 0.001µF
C26, 10µF
TXEN
TXD0
TXD1
TXD2
TXD3
AGND1
CLKREF
AVCC1
EDIN
ECLK
EDOUT
AVCC2
AGND2
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
DVCC
TXER
TXCLK
RXD3
DGND1
RXD2
DVCC1
RXD1
DGND2
RXD0
RXCLK
CRS
COL
DGND3
C17
0.1µF
5V VCC
C16
0.1µF
DVCC
DVCC
D3
FX_RCVLED
D2
FX_TXLED
U3
ML6696CQ
C15
0.1µF
R7, 3kΩ
AGND
IOUT
IOUT
AGND3
RTSET
AVCC3A
AVCC3B
AVCC4A
AGND4A
LINK100
AVCC4B
AVCC4B
VIN+
VIN–
RXDV
DVCC2
RXER
MDC
MDIO
DGND4
DVCC5
DGND5
NC
NC
CAPDC
CAPB
AGND4B
DVCC
C4
0.1µF
C12
0.1µF
R8*
AGND
C13
0.1µF
C30
0.01µF
AGNDQ
C5
0.1µF
AVCCQ
DVCC
U4*
1
NC CATHODE
4
NC
NC
5
NC
ANODE1
8
NC
ANODE2
R1
500Ω
C14
0.1µF
C31
0.01µF
U5*
1
2
NC ASIGOUT
4
3
NC
GND
5
7
NC
GND
8
6
NC
VCC
R4
470Ω
DVCC
R4
470Ω
R4
100kΩ
1 2 3 4 5 6 7
0.1µF
D5
14 13 12 11 10 9 8
U1 74HC04
AVCC
AVCCQ
D1
LED
VCC
AGNDQ
D4
3
7
2
6
C2
22nF
R5
100kΩ
C2
22nF
AVCCQ
FB4
C25
10µF
C28
0.01µF
C22
0.1µF
C20
0.1µF
C8
0.1µF
FB3
FB1
C25
10µF
DGND
C28
0.01µF
C22
0.1µF
C20
0.1µF
FB2
AVCC
C24
10µF
AGND
C8
0.1µF
U4*
U5*
R8*
AVCCQ
C24
10µF
850nm
HFBR-1414
HFBR-2416
2.87kW
AGNDQ
1300nm
HFBR-1312T
HFBR-2316T
2.32kW
Figure 7. ML6696 Typical Application Schematic
14
ML6696
PHYSICAL DIMENSIONS
inches (millimeters)
Package: Q52
52-Pin PLCC
0.785 - 0.795
(19.94 - 20.19)
0.042 - 0.056
(1.07 - 1.42)
0.750 - 0.754
(19.05 - 19.15)
0.025 - 0.045
(0.63 - 1.14)
(RADIUS)
1
PIN 1 ID
0.042 - 0.048
(1.07 - 1.22)
14
40
0.750 - 0.754 0.785 - 0.795
(19.05 - 19.15) (19.94 - 20.19)
0.600 BSC
(15.24 BSC)
0.690 - 0.730
(17.53 - 18.54)
27
0.009 - 0.011
(0.23 - 0.28)
0.050 BSC
(1.27 BSC)
0.026 - 0.032
(0.66 - 0.81)
0.013 - 0.021
(0.33 - 0.53)
0.165 - 0.180
(4.06 - 4.57)
0.100 - 0.110
(2.54 - 2.79)
0.148 - 0.156
(3.76 - 3.96)
SEATING PLANE
Package: H64-10
64-Pin (10 x 10 x 1mm) TQFP
0.472 BSC
(12.00 BSC)
0º - 8º
0.394 BSC
(10.00 BSC)
0.003 - 0.008
(0.09 - 0.20)
49
1
PIN 1 ID
0.394 BSC
(10.00 BSC)
0.472 BSC
(12.00 BSC)
33
0.018 - 0.030
(0.45 - 0.75)
17
0.020 BSC
(0.50 BSC)
0.007 - 0.011
(0.17 - 0.27)
0.048 MAX
(1.20 MAX)
SEATING PLANE
0.037 - 0.041
(0.95 - 1.05)
15
ML6696
ORDERING INFORMATION
PART NUMBER
TEMPERATURE RANGE
PACKAGE
ML6696CH (Obsolete)
0°C to 70°C
64-Pin TQFP (H64-10)
ML6696CQ
0°C to 70°C
52-Pin PLCC (Q52)
© Micro Linear 2000. is a registered trademark of Micro Linear Corporation. All other trademarks are the property of their
respective owners.
Products described herein may be covered by one or more of the following U.S. patents: 4,897,611; 4,964,026; 5,027,116;
5,281,862; 5,283,483; 5,418,502; 5,508,570; 5,510,727; 5,523,940; 5,546,017; 5,559,470; 5,565,761; 5,592,128; 5,594,376;
5,652,479; 5,661,427; 5,663,874; 5,672,959; 5,689,167; 5,714,897; 5,717,798; 5,742,151; 5,747,977; 5,754,012; 5,757,174;
5,767,653; 5,777,514; 5,793,168; 5,798,635; 5,804,950; 5,808,455; 5,811,999; 5,818,207; 5,818,669; 5,825,165; 5,825,223;
5,838,723; 5.844,378; 5,844,941. Japan: 2,598,946; 2,619,299; 2,704,176; 2,821,714. Other patents are pending.
2092 Concourse Drive
San Jose, CA 95131
Tel: (408) 433-5200
Fax: (408) 432-0295
www.microlinear.com
16
DS6696-01
Similar pages