Cypress CY7C1444AV25-250BZXI 36-mbit (1m x 36/2m x 18) pipelined dcd sync sram Datasheet

CY7C1444AV25
CY7C1445AV25
36-Mbit (1M x 36/2M x 18) Pipelined
DCD Sync SRAM
Functional Description[1]
Features
• Supports bus operation up to 250 MHz
• Available speed grades are 250, 200 and 167 MHz
• Registered inputs and outputs for pipelined operation
• Optimal for performance (Double-Cycle deselect)
• Depth expansion without wait state
• 2.5V core power supply
• 2.5V/1.8V I/O power supply
• Fast clock-to-output times
— 2.6 ns (for 250-MHz device)
The CY7C1444AV25/CY7C1445AV25 SRAM integrates 1M x
36/2M x 18 SRAM cells with advanced synchronous
peripheral circuitry and a two-bit counter for internal burst
operation. All synchronous inputs are gated by registers
controlled by a positive-edge-triggered Clock Input (CLK). The
synchronous inputs include all addresses, all data inputs,
address-pipelining Chip Enable (CE1), depth- expansion Chip
Enables (CE2 and CE3), Burst Control inputs (ADSC, ADSP,
and ADV), Write Enables (BWX, and BWE), and Global Write
(GW). Asynchronous inputs include the Output Enable (OE)
and the ZZ pin.
Addresses and chip enables are registered at rising edge of
clock when either Address Strobe Processor (ADSP) or
Address Strobe Controller (ADSC) are active. Subsequent
burst addresses can be internally generated as controlled by
the Advance pin (ADV).
• Provide high-performance 3-1-1-1 access rate
• User-selectable burst counter supporting Intel®
Pentium® interleaved or linear burst sequences
• Separate processor and controller address strobes
Address, data inputs, and write controls are registered on-chip
to initiate a self-timed Write cycle.This part supports Byte Write
operations (see Pin Descriptions and Truth Table for further
details). Write cycles can be one to four bytes wide as
controlled by the byte write control inputs. GW active LOW
causes all bytes to be written. This device incorporates an
additional pipelined enable register which delays turning off
the output buffers an additional cycle when a deselect is
executed.This feature allows depth expansion without penalizing system performance.
• Synchronous self-timed writes
• Asynchronous output enable
• CY7C1444AV25, CY7C1445AV25 available in
JEDEC-standard lead-free 100-pin TQFP package,
lead-free and non-lead-free 165-ball FBGA package
• IEEE 1149.1 JTAG-Compatible Boundary Scan
• “ZZ” Sleep Mode Option
The CY7C1444AV25/CY7C1445AV25 operates from a +2.5V
core power supply while all outputs operate with a +2.5V or
1.8V supply. All inputs and outputs are JEDEC-standard
JESD8-5-compatible.
Selection Guide
250 MHz
200 MHz
167 MHz
Unit
Maximum Access Time
2.6
3.2
3.4
ns
Maximum Operating Current
435
385
335
mA
Maximum CMOS Standby Current
120
120
120
mA
Note:
1. For best-practices recommendations, please refer to the Cypress application note System Design Guidelines on www.cypress.com.
Cypress Semiconductor Corporation
Document #: 38-05351 Rev. *E
•
198 Champion Court
•
San Jose, CA 95134-1709
•
408-943-2600
Revised June 22, 2006
CY7C1444AV25
CY7C1445AV25
1
Logic Block Diagram – CY7C1444AV25 (1M x 36)
ADDRESS
REGISTER
A0,A1,A
2 A[1:0]
MODE
ADV
CLK
BURST
Q1
COUNTER AND
LOGIC
CLR
Q0
ADSC
ADSP
BWD
DQD,DQPD
BYTE
WRITE REGISTER
DQD,DQPD
BYTE
WRITE DRIVER
BWC
DQc,DQPC
BYTE
WRITE REGISTER
DQc,DQPC
BYTE
WRITE DRIVER
DQB,DQPB
BYTE
WRITE REGISTER
DQB,DQPB
BYTE
WRITE DRIVER
BWB
GW
CE1
CE2
CE3
OE
ENABLE
REGISTER
SENSE
AMPS
OUTPUT
REGISTERS
OUTPUT
BUFFERS
DQs
DQPA
DQPB
DQPC
DQPD
E
DQA,DQPA
BYTE
WRITE DRIVER
DQA,DQPA
BYTE
WRITE REGISTER
BWA
BWE
MEMORY
ARRAY
INPUT
REGISTERS
PIPELINED
ENABLE
SLEEP
ZZ
CONTROL
2
Logic Block Diagram – CY7C1445AV25 (2M x 18)
A0, A1, A
ADDRESS
REGISTER
2
MODE
ADV
CLK
A[1:0]
Q1
BURST
COUNTER AND
LOGIC
CLR
Q0
ADSC
ADSP
BWB
BWA
BWE
GW
CE1
CE2
CE3
DQB , DQPB
BYTE
WRITE DRIVER
DQB, DQPB
BYTE
WRITE REGISTER
DQA, DQPA
BYTE
WRITE DRIVER
DQA , DQPA
BYTE
WRITE REGISTER
ENABLE
REGISTER
PIPELINED
ENABLE
MEMORY
ARRAY
SENSE
AMPS
OUTPUT
REGISTERS
OUTPUT
BUFFERS
DQs,
DQPA
DQPB
E
INPUT
REGISTERS
OE
ZZ
SLEEP
CONTROL
Document #: 38-05351 Rev. *E
Page 2 of 26
CY7C1444AV25
CY7C1445AV25
Pin Configurations
NC
NC
NC
VDDQ
VSSQ
NC
NC
DQB
DQB
VSSQ
VDDQ
DQB
DQB
NC
VDD
NC
VSS
DQB
DQB
VDDQ
VSSQ
DQB
DQB
DQPB
NC
VSSQ
VDDQ
NC
NC
NC
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
CY7C1445AV25
(2M x 18)
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
Document #: 38-05351 Rev. *E
A
NC
NC
VDDQ
VSSQ
NC
DQPA
DQA
DQA
VSSQ
VDDQ
DQA
DQA
VSS
NC
VDD
ZZ
DQA
DQA
VDDQ
VSSQ
DQA
DQA
NC
NC
VSSQ
VDDQ
NC
NC
NC
A
A
A
A
A
A
A
A
A
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
DQPB
DQB
DQB
VDDQ
VSSQ
DQB
DQB
DQB
DQB
VSSQ
VDDQ
DQB
DQB
VSS
NC
VDD
ZZ
DQA
DQA
VDDQ
VSSQ
DQA
DQA
DQA
DQA
VSSQ
VDDQ
DQA
DQA
DQPA
MODE
A
A
A
A
A1
A0
NC/72M
A
VSS
VDD
CY7C1444AV25
(1M X 36)
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
MODE
A
A
A
A
A1
A0
NC/72M
A
VSS
VDD
A
A
A
A
A
A
A
A
A
DQPC
DQC
DQC
VDDQ
VSSQ
DQC
DQC
DQC
DQC
VSSQ
VDDQ
DQC
DQC
NC
VDD
NC
VSS
DQD
DQD
VDDQ
VSSQ
DQD
DQD
DQD
DQD
VSSQ
VDDQ
DQD
DQD
DQPD
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
A
A
CE1
CE2
NC
NC
BWB
BWA
CE3
VDD
VSS
CLK
GW
BWE
OE
ADSC
ADSP
ADV
A
A
A
A
CE1
CE2
BWD
BWC
BWB
BWA
CE3
VDD
VSS
CLK
GW
BWE
OE
ADSC
ADSP
ADV
A
A
100-pin TQFP Pinout
Page 3 of 26
CY7C1444AV25
CY7C1445AV25
Pin Configurations (continued)
165-ball FBGA (15 x 17 x 1.4 mm) Pinout
CY7C1444AV25 (1M x 36)
1
2
3
4
5
6
7
8
9
10
11
A
B
C
D
E
F
G
H
J
K
L
M
N
P
NC/288M
A
CE1
BWC
BWB
CE3
BWE
ADSC
ADV
A
NC
R
NC/144M
A
CE2
BWD
BWA
CLK
NC/576M
VDDQ
VSS
VSS
VSS
VSS
VDDQ
VDDQ
VSS
VDD
OE
VSS
VDD
A
NC
DQC
GW
VSS
VSS
ADSP
DQPC
DQC
VDDQ
NC/1G
DQB
DQPB
DQB
DQC
DQC
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQB
DQB
DQC
DQC
VDDQ
VDD
VSS
VSS
VSS
VDD
DQB
DQB
DQC
NC
DQD
DQC
NC
DQD
VDDQ
NC
VDDQ
VDD
VDD
VDD
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VDD
VDD
VDD
VDDQ
VDDQ
NC
VDDQ
DQB
NC
DQA
DQB
ZZ
DQA
DQD
DQD
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQA
DQA
DQD
DQD
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQA
DQA
DQD
DQPD
DQD
NC
VDDQ
VDDQ
VDD
VSS
VSS
NC
VSS
A
VSS
NC
VDD
VSS
VDDQ
VDDQ
DQA
NC
DQA
DQPA
NC
NC/72M
A
A
TDI
A1
TDO
A
A
A
A
MODE
A
A
A
TMS
A0
TCK
A
A
A
A
8
9
10
11
A
CY7C1445AV25 (2M x 18)
1
2
A
B
C
D
E
F
G
H
J
K
L
M
N
P
NC/288M
A
3
4
5
6
NC
CE3
A
CE1
CE2
BWB
NC/144M
NC
BWA
NC
NC
NC
DQB
VDDQ
VSS
VDD
VSS
VDDQ
NC
DQB
VDDQ
NC
DQB
VDDQ
NC
NC
DQB
DQB
NC
NC
VDDQ
NC
VDDQ
DQB
NC
R
7
CLK
BWE
GW
ADSC
OE
ADV
ADSP
A
VSS
VSS
VSS
VSS
VSS
VDD
VDDQ
VSS
VDDQ
NC/1G
NC
VDD
VSS
VSS
VSS
VDD
VDDQ
NC
DQA
VDD
VSS
VSS
VSS
VDD
VDDQ
NC
DQA
VDD
VDD
VDD
VSS
VSS
‘VSS
VSS
VSS
VSS
VSS
VSS
VSS
VDD
VDD
VDD
VDDQ
NC
VDDQ
NC
NC
DQA
DQA
ZZ
NC
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQA
NC
NC/576M
A
DQPA
DQA
DQB
NC
VDDQ
VDD
VSS
VSS
VSS
VDD
VDDQ
DQA
NC
DQB
DQPB
NC
NC
VDDQ
VDDQ
VDD
VSS
VSS
NC
VSS
A
VSS
NC
VDD
VSS
VDDQ
VDDQ
DQA
NC
NC
NC
NC
NC/72M
A
A
TDI
A1
TDO
A
A
A
A
MODE
A
A
A
TMS
A0
TCK
A
A
A
A
Document #: 38-05351 Rev. *E
Page 4 of 26
CY7C1444AV25
CY7C1445AV25
Pin Definitions
Name
I/O
Description
A0, A1, A
InputSynchronous
Address Inputs used to select one of the address locations. Sampled at the
rising edge of the CLK if ADSP or ADSC is active LOW, and CE1, CE2, and CE3 are
sampled active. A1: A0 are fed to the two-bit counter..
BWA, BWB
BWC, BWD
InputSynchronous
Byte Write Select Inputs, active LOW. Qualified with BWE to conduct byte writes
to the SRAM. Sampled on the rising edge of CLK.
GW
InputSynchronous
Global Write Enable Input, active LOW. When asserted LOW on the rising edge
of CLK, a global write is conducted (ALL bytes are written, regardless of the values
on BWX and BWE).
BWE
InputSynchronous
Byte Write Enable Input, active LOW. Sampled on the rising edge of CLK. This
signal must be asserted LOW to conduct a byte write.
CLK
InputClock
Clock Input. Used to capture all synchronous inputs to the device. Also used to
increment the burst counter when ADV is asserted LOW, during a burst operation.
CE1
InputSynchronous
Chip Enable 1 Input, active LOW. Sampled on the rising edge of CLK. Used in
conjunction with CE2 and CE3 to select/deselect the device. ADSP is ignored if CE1
is HIGH. CE1 is sampled only when a new external address is loaded.
CE2
InputSynchronous
Chip Enable 2 Input, active HIGH. Sampled on the rising edge of CLK. Used in
conjunction with CE1 and CE3 to select/deselect the device. CE2 is sampled only
when a new external address is loaded.
CE3
InputSynchronous
Chip Enable 3 Input, active LOW. Sampled on the rising edge of CLK. Used in
conjunction with CE1 and CE2 to select/deselect the device. Not connected for BGA.
Where referenced, CE3 is assumed active throughout this document for BGA. CE3
is sampled only when a new external address is loaded.
OE
InputAsynchronous
Output Enable, asynchronous input, active LOW. Controls the direction of the
I/O pins. When LOW, the I/O pins behave as outputs. When deasserted HIGH, DQ
pins are tri-stated, and act as input data pins. OE is masked during the first clock of
a read cycle when emerging from a deselected state.
ADV
InputSynchronous
Advance Input signal, sampled on the rising edge of CLK, active LOW. When
asserted, it automatically increments the address in a burst cycle.
ADSP
InputSynchronous
Address Strobe from Processor, sampled on the rising edge of CLK, active
LOW. When asserted LOW, addresses presented to the device are captured in the
address registers. A1: A0 are also loaded into the burst counter. When ADSP and
ADSC are both asserted, only ADSP is recognized. ASDP is ignored when CE1 is
deasserted HIGH.
ADSC
InputSynchronous
Address Strobe from Controller, sampled on the rising edge of CLK, active
LOW. When asserted LOW, addresses presented to the device are captured in the
address registers. A1: A0 are also loaded into the burst counter. When ADSP and
ADSC are both asserted, only ADSP is recognized.
ZZ
InputAsynchronous
ZZ “sleep” Input, active HIGH. When asserted HIGH places the device in a
non-time-critical “sleep” condition with data integrity preserved. For normal
operation, this pin has to be LOW or left floating. ZZ pin has an internal pull-down.
DQs, DQPs
I/OSynchronous
Bidirectional Data I/O lines. As inputs, they feed into an on-chip data register that
is triggered by the rising edge of CLK. As outputs, they deliver the data contained
in the memory location specified by the addresses presented during the previous
clock rise of the read cycle. The direction of the pins is controlled by OE. When OE
is asserted LOW, the pins behave as outputs. When HIGH, DQs and DQPX are
placed in a tri-state condition.
VDD
Power Supply
VSS
Ground
VSSQ
I/O Ground
VDDQ
I/O Power Supply
MODE
InputStatic
Document #: 38-05351 Rev. *E
Power supply inputs to the core of the device.
Ground for the core of the device.
Ground for the I/O circuitry.
Power supply for the I/O circuitry.
Selects Burst Order. When tied to GND selects linear burst sequence. When tied
to VDD or left floating selects interleaved burst sequence. This is a strap pin and
should remain static during device operation. Mode Pin has an internal pull-up.
Page 5 of 26
CY7C1444AV25
CY7C1445AV25
Pin Definitions (continued)
Name
I/O
Description
TDO
JTAG serial output
Synchronous
Serial data-out to the JTAG circuit. Delivers data on the negative edge of TCK. If
the JTAG feature is not being utilized, this pin should be disconnected. This pin is
not available on TQFP packages.
TDI
JTAG serial input
Synchronous
Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG
feature is not being utilized, this pin can be disconnected or connected to VDD. This
pin is not available on TQFP packages.
TMS
JTAG serial input
Synchronous
Serial data-In to the JTAG circuit. Sampled on the rising edge of TCK. If the JTAG
feature is not being utilized, this pin can be disconnected or connected to VDD. This
pin is not available on TQFP packages.
TCK
JTAG-Clock
Clock input to the JTAG circuitry. If the JTAG feature is not being utilized, this pin
must be connected to VSS. This pin is not available on TQFP packages.
NC
–
No Connects. Not internally connected to the die
NC/72M,NC/144M,
NC/288M,
NC/576M, NC/1G
–
No Connects. Not internally connected to the die. NC/72M, NC/144M,NC/288M,
NC/576M and NC/1G are address expansion pins are not internally connected to
the die.
Functional Overview
All synchronous inputs pass through input registers controlled
by the rising edge of the clock. All data outputs pass through
output registers controlled by the rising edge of the clock.
The CY7C1444AV25/CY7C1445AV25 supports secondary
cache in systems utilizing either a linear or interleaved burst
sequence. The interleaved burst order supports Pentium and
i486™ processors. The linear burst sequence is suited for
processors that utilize a linear burst sequence. The burst order
is user selectable, and is determined by sampling the MODE
input. Accesses can be initiated with either the Processor
Address Strobe (ADSP) or the Controller Address Strobe
(ADSC). Address advancement through the burst sequence is
controlled by the ADV input. A two-bit on-chip wraparound
burst counter captures the first address in a burst sequence
and automatically increments the address for the rest of the
burst access.
Byte write operations are qualified with the Byte Write Enable
(BWE) and Byte Write Select (BWX) inputs. A Global Write
Enable (GW) overrides all byte write inputs and writes data to
all four bytes. All writes are simplified with on-chip
synchronous self-timed write circuitry.
Synchronous Chip Selects CE1, CE2, CE3 and an
asynchronous Output Enable (OE) provide for easy bank
selection and output tri-state control. ADSP is ignored if CE1
is HIGH.
Single Read Accesses
This access is initiated when the following conditions are
satisfied at clock rise: (1) ADSP or ADSC is asserted LOW, (2)
chip selects are all asserted active, and (3) the write signals
(GW, BWE) are all deasserted HIGH. ADSP is ignored if CE1
is HIGH. The address presented to the address inputs is
stored into the address advancement logic and the Address
Register while being presented to the memory core. The corresponding data is allowed to propagate to the input of the
Output Registers. At the rising edge of the next clock the data
is allowed to propagate through the output register and onto
the data bus within tCO if OE is active LOW. The only exception
occurs when the SRAM is emerging from a deselected state
to a selected state, its outputs are always tri-stated during the
Document #: 38-05351 Rev. *E
first cycle of the access. After the first cycle of the access, the
outputs are controlled by the OE signal. Consecutive single
read cycles are supported.
The CY7C1444AV25/CY7C1445AV25 is a double-cycle
deselect part. Once the SRAM is deselected at clock rise by
the chip select and either ADSP or ADSC signals, its output
will tri-state immediately after the next clock rise.
Single Write Accesses Initiated by ADSP
This access is initiated when both of the following conditions
are satisfied at clock rise: (1) ADSP is asserted LOW, and
(2) chip select is asserted active. The address presented is
loaded into the address register and the address
advancement logic while being delivered to the memory core.
The write signals (GW, BWE, and BWX) and ADV inputs are
ignored during this first cycle.
ADSP triggered write accesses require two clock cycles to
complete. If GW is asserted LOW on the second clock rise, the
data presented to the DQx inputs is written into the corresponding address location in the memory core. If GW is HIGH,
then the write operation is controlled by BWE and BWX
signals. The CY7C1444AV25/CY7C1445AV25 provides byte
write capability that is described in the Write Cycle Description
table. Asserting the Byte Write Enable input (BWE) with the
selected Byte Write input will selectively write to only the
desired bytes. Bytes not selected during a byte write operation
will remain unaltered. A synchronous self-timed write
mechanism has been provided to simplify the write operations.
Because the CY7C1444AV25/CY7C1445AV25 is a common
I/O device, the Output Enable (OE) must be deasserted HIGH
before presenting data to the DQ inputs. Doing so will tri-state
the output drivers. As a safety precaution, DQ are automatically tri-stated whenever a write cycle is detected, regardless
of the state of OE.
Single Write Accesses Initiated by ADSC
ADSC write accesses are initiated when the following conditions are satisfied: (1) ADSC is asserted LOW, (2) ADSP is
deasserted HIGH, (3) chip select is asserted active, and (4)
the appropriate combination of the write inputs (GW, BWE,
and BWX) are asserted active to conduct a write to the desired
Page 6 of 26
CY7C1444AV25
CY7C1445AV25
byte(s). ADSC triggered write accesses require a single clock
cycle to complete. The address presented is loaded into the
address register and the address advancement logic while
being delivered to the memory core. The ADV input is ignored
during this cycle. If a global write is conducted, the data
presented to the DQX is written into the corresponding address
location in the memory core. If a byte write is conducted, only
the selected bytes are written. Bytes not selected during a byte
write operation will remain unaltered. A synchronous
self-timed write mechanism has been provided to simplify the
write operations.
Because the CY7C1444AV25/CY7C1445AV25 is a common
I/O device, the Output Enable (OE) must be deasserted HIGH
before presenting data to the DQX inputs. Doing so will tri-state
the output drivers. As a safety precaution, DQX are automatically tri-stated whenever a write cycle is detected, regardless
of the state of OE.
Sleep Mode
The ZZ input pin is an asynchronous input. Asserting ZZ
places the SRAM in a power conservation “sleep” mode. Two
clock cycles are required to enter into or exit from this “sleep”
mode. While in this mode, data integrity is guaranteed.
Accesses pending when entering the “sleep” mode are not
considered valid nor is the completion of the operation
guaranteed. The device must be deselected prior to entering
the “sleep” mode. CEs, ADSP, and ADSC must remain
inactive for the duration of tZZREC after the ZZ input returns
LOW.
Interleaved Burst Address Table
(MODE = Floating or VDD)
First
Address
A1: A0
Second
Address
A1: A0
Third
Address
A1: A0
Burst Sequences
00
01
10
11
The CY7C1444AV25/CY7C1445AV25 provides a two-bit
wraparound counter, fed by A[1:0], that implements either an
interleaved or linear burst sequence. The interleaved burst
sequence is designed specifically to support Intel Pentium
applications. The linear burst sequence is designed to support
processors that follow a linear burst sequence. The burst
sequence is user selectable through the MODE input. Both
read and write burst operations are supported.
01
00
11
10
10
11
00
01
11
10
01
00
Asserting ADV LOW at clock rise will automatically increment
the burst counter to the next address in the burst sequence.
Both read and write burst operations are supported.
Fourth
Address
A1: A0
Linear Burst Address Table (MODE = GND)
First
Address
A1: A0
Second
Address
A1: A0
Third
Address
A1: A0
Fourth
Address
A1: A0
00
01
10
11
01
10
11
00
10
11
00
01
11
00
01
10
ZZ Mode Electrical Characteristics
Parameter
Description
Test Conditions
IDDZZ
Sleep mode standby current
ZZ > VDD – 0.2V
tZZS
Device operation to ZZ
ZZ > VDD – 0.2V
tZZREC
ZZ recovery time
ZZ < 0.2V
tZZI
ZZ Active to sleep current
This parameter is sampled
tRZZI
ZZ Inactive to exit sleep current
This parameter is sampled
Document #: 38-05351 Rev. *E
Min.
Max.
Unit
100
mA
2tCYC
ns
2tCYC
ns
2tCYC
0
ns
ns
Page 7 of 26
CY7C1444AV25
CY7C1445AV25
Truth Table[2, 3, 4, 5, 6, 7]
Operation
Deselect Cycle, Power Down
Add. Used
None
CE1
H
Deselect Cycle, Power Down
None
L
Deselect Cycle, Power Down
None
L
Deselect Cycle, Power Down
None
L
Deselect Cycle, Power Down
None
L
Sleep Mode, Power Down
CE2
X
CE3
X
ZZ
L
ADSP
X
ADSC
L
ADV
X
WRITE OE CLK
DQ
X
X L-H Tri-State
L
X
L
L
X
X
X
X
L-H Tri-State
X
H
L
L
X
X
X
X
L-H Tri-State
L
X
L
H
L
X
X
X
L-H Tri-State
X
H
L
H
L
X
X
X
L-H Tri-State
None
X
X
X
H
X
X
X
X
X
X
Tri-State
Read Cycle, Begin Burst
External
L
H
L
L
L
X
X
X
L
L-H
Q
Read Cycle, Begin Burst
External
L
H
L
L
L
X
X
X
H
L-H Tri-State
Write Cycle, Begin Burst
External
L
H
L
L
H
L
X
L
X
L-H
D
Q
Read Cycle, Begin Burst
External
L
H
L
L
H
L
X
H
L
L-H
Read Cycle, Begin Burst
External
L
H
L
L
H
L
X
H
H
L-H Tri-State
Read Cycle, Continue Burst
Next
X
X
X
L
H
H
L
H
L
L-H
Read Cycle, Continue Burst
Next
X
X
X
L
H
H
L
H
H
L-H Tri-State
Read Cycle, Continue Burst
Next
H
X
X
L
X
H
L
H
L
L-H
Read Cycle, Continue Burst
Next
H
X
X
L
X
H
L
H
H
L-H Tri-State
Write Cycle, Continue Burst
Next
X
X
X
L
H
H
L
L
X
L-H
D
Write Cycle, Continue Burst
Next
H
X
X
L
X
H
L
L
X
L-H
D
Read Cycle, Suspend Burst
Current
X
X
X
L
H
H
H
H
L
L-H
Q
Read Cycle, Suspend Burst
Current
X
X
X
L
H
H
H
H
H
L-H Tri-State
Read Cycle, Suspend Burst
Current
H
X
X
L
X
H
H
H
L
L-H
Read Cycle, Suspend Burst
Current
H
X
X
L
X
H
H
H
H
L-H Tri-State
Write Cycle, Suspend Burst
Current
X
X
X
L
H
H
H
L
X
L-H
D
Write Cycle, Suspend Burst
Current
H
X
X
L
X
H
H
L
X
L-H
D
Q
Q
Q
Notes:
2. X = “Don't Care.” H = Logic HIGH, L = Logic LOW.
3. WRITE = L when any one or more Byte Write enable signals and BWE = L or GW = L. WRITE = H when all Byte write enable signals, BWE, GW = H.
4. The DQ pins are controlled by the current cycle and the OE signal. OE is asynchronous and is not sampled with the clock.
5. CE1, CE2, and CE3 are available only in the TQFP package. BGA package has only 2 chip selects CE1 and CE2.
6. The SRAM always initiates a read cycle when ADSP is asserted, regardless of the state of GW, BWE, or BWX. Writes may occur only on subsequent clocks
after the ADSP or with the assertion of ADSC. As a result, OE must be driven HIGH prior to the start of the write cycle to allow the outputs to tri-state. OE is a
don't care for the remainder of the write cycle.
7. OE is asynchronous and is not sampled with the clock rise. It is masked internally during write cycles. During a read cycle all data bits are Tri-State when OE is
inactive or when the device is deselected, and all data bits behave as output when OE is active (LOW).
Document #: 38-05351 Rev. *E
Page 8 of 26
CY7C1444AV25
CY7C1445AV25
Partial Truth Table for Read/Write[4, 8]
Read
Function (CY7C1444AV25)
GW
H
BWE
H
BWD
X
BWC
X
BWB
X
BWA
X
Read
H
L
H
H
H
H
Write Byte A – (DQA and DQPA)
Write Byte B – (DQB and DQPB)
H
L
H
H
H
L
H
L
H
H
L
H
Write Bytes B, A
H
L
H
H
L
L
Write Byte C – (DQC and DQPC)
H
L
H
L
H
H
Write Bytes C, A
H
L
H
L
H
L
Write Bytes C, B
H
L
H
L
L
H
Write Bytes C, B, A
H
L
H
L
L
L
Write Byte D – (DQD and DQPD)
H
L
L
H
H
H
Write Bytes D, A
H
L
L
H
H
L
Write Bytes D, B
H
L
L
H
L
H
Write Bytes D, B, A
H
L
L
H
L
L
Write Bytes D, C
H
L
L
L
H
H
Write Bytes D, C, A
H
L
L
L
H
L
Write Bytes D, C, B
H
L
L
L
L
H
Write All Bytes
H
L
L
L
L
L
Write All Bytes
L
X
X
X
X
X
Truth Table for Read/Write[4, 8]
GW
H
BWE
H
BWB
BWA
Read
X
X
Read
H
L
H
H
Write Byte A – (DQA and DQPA)
Write Byte B – (DQB and DQPB)
H
L
H
L
H
L
L
H
Write All Bytes
H
L
L
L
Write All Bytes
L
X
X
X
Function (CY7C1445AV25)
Note:
8. Table only lists a partial listing of the byte write combinations. Any Combination of BWX is valid. Appropriate write will be done based on which byte write is active.
Document #: 38-05351 Rev. *E
Page 9 of 26
CY7C1444AV25
CY7C1445AV25
IEEE 1149.1 Serial Boundary Scan (JTAG)
Test Data-In (TDI)
The CY7C1444AV25/CY7C1445AV25 contains a TAP
controller, instruction register, boundary scan register, bypass
register, and ID register.
The TDI ball is used to serially input information into the
registers and can be connected to the input of any of the
registers. The register between TDI and TDO is chosen by the
instruction that is loaded into the TAP instruction register. TDI
is internally pulled up and can be unconnected if the TAP is
unused in an application. TDI is connected to the most significant bit (MSB) of any register. (See Tap Controller Block
Diagram.)
Disabling the JTAG Feature
Test Data-Out (TDO)
It is possible to operate the SRAM without using the JTAG
feature. To disable the TAP controller, TCK must be tied LOW
(VSS) to prevent clocking of the device. TDI and TMS are internally pulled up and may be unconnected. They may alternately
be connected to VDD through a pull-up resistor. TDO should be
left unconnected. Upon power-up, the device will come up in
a reset state which will not interfere with the operation of the
device.
The TDO output ball is used to serially clock data-out from the
registers. The output is active depending upon the current
state of the TAP state machine. The output changes on the
falling edge of TCK. TDO is connected to the least significant
bit (LSB) of any register. (See Tap Controller State Diagram.)
The CY7C1444AV25/CY7C1445AV25 incorporates a serial
boundary scan test access port (TAP). This part is fully
compliant with IEEE Standard 1149.1. The TAP operates using
JEDEC-standard 2.5V/1.8V I/O logic level.
TAP Controller Block Diagram
0
TAP Controller State Diagram
1
Bypass Register
TEST-LOGIC
RESET
2 1 0
0
0
RUN-TEST/
IDLE
1
SELECT
DR-SCAN
1
SELECT
IR-SCAN
0
1
0
Selection
Circuitry
TDO
Identification Register
CAPTURE-IR
x . . . . . 2 1 0
Boundary Scan Register
SHIFT-IR
1
Instruction Register
31 30 29 . . . 2 1 0
0
SHIFT-DR
0
1
EXIT1-DR
1
EXIT1-IR
0
1
0
PAUSE-IR
1
TCK
TMS
0
PAUSE-DR
TAP CONTROLLER
0
1
EXIT2-DR
0
EXIT2-IR
1
1
UPDATE-DR
1
TDI
0
1
CAPTURE-DR
0
0
1
Selection
Circuitry
0
UPDATE-IR
1
0
Performing a TAP Reset
A RESET is performed by forcing TMS HIGH (VDD) for five
rising edges of TCK. This RESET does not affect the operation
of the SRAM and may be performed while the SRAM is
operating.
At power-up, the TAP is reset internally to ensure that TDO
comes up in a High-Z state.
The 0/1 next to each state represents the value of TMS at the
rising edge of TCK.
Test Access Port (TAP)
Test Clock (TCK)
The test clock is used only with the TAP controller. All inputs
are captured on the rising edge of TCK. All outputs are driven
from the falling edge of TCK.
Test MODE SELECT (TMS)
The TMS input is used to give commands to the TAP controller
and is sampled on the rising edge of TCK. It is allowable to
leave this ball unconnected if the TAP is not used. The ball is
pulled up internally, resulting in a logic HIGH level.
Document #: 38-05351 Rev. *E
TAP Registers
Registers are connected between the TDI and TDO balls and
allow data to be scanned into and out of the SRAM test
circuitry. Only one register can be selected at a time through
the instruction register. Data is serially loaded into the TDI ball
on the rising edge of TCK. Data is output on the TDO ball on
the falling edge of TCK.
Instruction Register
Three-bit instructions can be serially loaded into the instruction
register. This register is loaded when it is placed between the
TDI and TDO balls as shown in the Tap Controller Block
Diagram. Upon power-up, the instruction register is loaded
with the IDCODE instruction. It is also loaded with the IDCODE
instruction if the controller is placed in a reset state as
described in the previous section.
Page 10 of 26
CY7C1444AV25
CY7C1445AV25
When the TAP controller is in the Capture-IR state, the two
least significant bits are loaded with a binary “01” pattern to
allow for fault isolation of the board-level serial test data path.
Bypass Register
To save time when serially shifting data through registers, it is
sometimes advantageous to skip certain chips. The bypass
register is a single-bit register that can be placed between the
TDI and TDO balls. This allows data to be shifted through the
SRAM with minimal delay. The bypass register is set LOW
(VSS) when the BYPASS instruction is executed.
Boundary Scan Register
The boundary scan register is connected to all the input and
bidirectional balls on the SRAM.
The boundary scan register is loaded with the contents of the
RAM I/O ring when the TAP controller is in the Capture-DR
state and is then placed between the TDI and TDO balls when
the controller is moved to the Shift-DR state. The EXTEST,
SAMPLE/PRELOAD and SAMPLE Z instructions can be used
to capture the contents of the I/O ring.
The Boundary Scan Order tables show the order in which the
bits are connected. Each bit corresponds to one of the bumps
on the SRAM package. The MSB of the register is connected
to TDI, and the LSB is connected to TDO.
Identification (ID) Register
The ID register is loaded with a vendor-specific, 32-bit code
during the Capture-DR state when the IDCODE command is
loaded in the instruction register. The IDCODE is hardwired
into the SRAM and can be shifted out when the TAP controller
is in the Shift-DR state. The ID register has a vendor code and
other information described in the Identification Register
Definitions table.
TAP Instruction Set
Overview
SAMPLE Z
The SAMPLE Z instruction causes the boundary scan register
to be connected between the TDI and TDO pins when the TAP
controller is in a Shift-DR state. The SAMPLE Z command puts
the output bus into a High-Z state until the next command is
given during the “Update IR” state.
SAMPLE/PRELOAD
SAMPLE/PRELOAD is a 1149.1 mandatory instruction. When
the SAMPLE/PRELOAD instructions are loaded into the
instruction register and the TAP controller is in the Capture-DR
state, a snapshot of data on the inputs and output pins is
captured in the boundary scan register.
The user must be aware that the TAP controller clock can only
operate at a frequency up to 20 MHz, while the SRAM clock
operates more than an order of magnitude faster. Because
there is a large difference in the clock frequencies, it is
possible that during the Capture-DR state, an input or output
will undergo a transition. The TAP may then try to capture a
signal while in transition (metastable state). This will not harm
the device, but there is no guarantee as to the value that will
be captured. Repeatable results may not be possible.
To guarantee that the boundary scan register will capture the
correct value of a signal, the SRAM signal must be stabilized
long enough to meet the TAP controller's capture set-up plus
hold times (tCS and tCH). The SRAM clock input might not be
captured correctly if there is no way in a design to stop (or
slow) the clock during a SAMPLE/PRELOAD instruction. If this
is an issue, it is still possible to capture all other signals and
simply ignore the value of the CK and CK captured in the
boundary scan register.
Once the data is captured, it is possible to shift out the data by
putting the TAP into the Shift-DR state. This places the
boundary scan register between the TDI and TDO pins.
PRELOAD allows an initial data pattern to be placed at the
latched parallel outputs of the boundary scan register cells
prior to the selection of another boundary scan test operation.
Eight different instructions are possible with the three bit
instruction register. All combinations are listed in the
Instruction Codes table. Three of these instructions are listed
as RESERVED and should not be used. The other five instructions are described in detail below.
The shifting of data for the SAMPLE and PRELOAD phases
can occur concurrently when required—that is, while data
captured is shifted out, the preloaded data can be shifted in.
Instructions are loaded into the TAP controller during the
Shift-IR state when the instruction register is placed between
TDI and TDO. During this state, instructions are shifted
through the instruction register through the TDI and TDO balls.
To execute the instruction once it is shifted in, the TAP
controller needs to be moved into the Update-IR state.
When the BYPASS instruction is loaded in the instruction
register and the TAP is placed in a Shift-DR state, the bypass
register is placed between the TDI and TDO pins. The
advantage of the BYPASS instruction is that it shortens the
boundary scan path when multiple devices are connected
together on a board.
IDCODE
EXTEST
The IDCODE instruction causes a vendor-specific, 32-bit code
to be loaded into the instruction register. It also places the
instruction register between the TDI and TDO balls and allows
the IDCODE to be shifted out of the device when the TAP
controller enters the Shift-DR state.
The EXTEST instruction enables the preloaded data to be
driven out through the system output pins. This instruction also
selects the boundary scan register to be connected for serial
access between the TDI and TDO in the shift-DR controller
state.
The IDCODE instruction is loaded into the instruction register
upon power-up or whenever the TAP controller is given a test
logic reset state.
EXTEST OUTPUT BUS TRI-STATE
BYPASS
IEEE Standard 1149.1 mandates that the TAP controller be
able to put the output bus into a tri-state mode.
The boundary scan register has a special bit located at bit# 89
(for 165-FBGA packages).When this scan cell, called the
Document #: 38-05351 Rev. *E
Page 11 of 26
CY7C1444AV25
CY7C1445AV25
register. When the EXTEST instruction is entered, this bit will
directly control the output Q-bus pins. Note that this bit is
pre-set HIGH to enable the output when the device is
powered-up, and also when the TAP controller is in the
“Test-Logic-Reset” state.
“extest output bus tri-state”, is latched into the preload register
during the “Update-DR” state in the TAP controller, it will
directly control the state of the output (Q-bus) pins, when the
EXTEST is entered as the current instruction. When HIGH, it
will enable the output buffers to drive the output bus. When
LOW, this bit will place the output bus into a High-Z condition.
Reserved
This bit can be set by entering the SAMPLE/PRELOAD or
EXTEST command, and then shifting the desired bit into that
cell, during the “Shift-DR” state. During “Update-DR”, the value
loaded into that shift-register cell will latch into the preload
These instructions are not implemented but are reserved for
future use. Do not use these instructions.
TAP Timing
1
2
Test Clock
(TCK)
3
t TH
t TMSS
t TMSH
t TDIS
t TDIH
t
TL
4
5
6
t CYC
Test Mode Select
(TMS)
Test Data-In
(TDI)
t TDOV
t TDOX
Test Data-Out
(TDO)
DON’T CARE
UNDEFINED
TAP AC Switching Characteristics Over the Operating Range[9, 10]
Symbol
Parameter
Min.
Max.
Unit
20
MHz
Clock
tTCYC
TCK Clock Cycle Time
tTF
TCK Clock Frequency
tTH
TCK Clock HIGH time
20
ns
tTL
TCK Clock LOW time
20
ns
50
ns
Output Times
tTDOV
TCK Clock LOW to TDO Valid
tTDOX
TCK Clock LOW to TDO Invalid
10
ns
0
ns
Set-up Times
tTMSS
TMS Set-up to TCK Clock Rise
5
ns
tTDIS
TDI Set-up to TCK Clock Rise
5
ns
tCS
Capture Set-up to TCK Rise
5
ns
tTMSH
TMS Hold after TCK Clock Rise
5
ns
tTDIH
TDI Hold after Clock Rise
5
ns
tCH
Capture Hold after Clock Rise
5
ns
Hold Times
Notes:
9. tCS and tCH refer to the set-up and hold time requirements of latching data from the boundary scan register.
10. Test conditions are specified using the load in TAP AC test Conditions. tR/tF = 1 ns.
Document #: 38-05351 Rev. *E
Page 12 of 26
CY7C1444AV25
CY7C1445AV25
2.5V TAP AC Test Conditions
1.8V TAP AC Test Conditions
Input pulse levels ................................................ VSS to 2.5V
Input pulse levels......................................0.2V to VDDQ – 0.2
Input rise and fall time..................................................... 1 ns
Input rise and fall time .....................................................1 ns
Input timing reference levels .........................................1.25V
Input timing reference levels........................................... 0.9V
Output reference levels.................................................1.25V
Output reference levels .................................................. 0.9V
Test load termination supply voltage.............................1.25V
Test load termination supply voltage .............................. 0.9V
2.5V TAP AC Output Load Equivalent
1.8V TAP AC Output Load Equivalent
0.9V
1.25V
50Ω
50Ω
TDO
TDO
Z O= 50Ω
Z O= 50Ω
20pF
20pF
TAP DC Electrical Characteristics And Operating Conditions
(0°C < TA < +70°C; VDD = 2.5V ±0.125V unless otherwise noted)[11]
Parameter
Description
Test Conditions
Min.
Max.
Unit
VOH1
Output HIGH Voltage
IOH = –1.0 mA, VDDQ = 2.5V
2.0
V
VOH2
Output HIGH Voltage
IOH = –100 µA
VDDQ = 2.5V
2.1
V
VDDQ = 1.8V
1.6
VOL1
Output LOW Voltage
IOL = 1.0 mA
VDDQ = 2.5V
0.4
V
VOL2
Output LOW Voltage
IOL = 100 µA
VDDQ = 2.5V
0.2
V
VIH
Input HIGH Voltage
VDDQ = 1.8V
VIL
IX
Input LOW Voltage
Input Load Current
GND < VIN < VDDQ
V
0.2
V
VDDQ = 2.5V
1.7
VDD + 0.3
V
VDDQ = 1.8V
1.26
VDD + 0.3
V
VDDQ = 2.5V
–0.3
0.7
V
VDDQ = 1.8V
–0.3
0.36
V
–5
5
µA
Note:
11. All voltages referenced to VSS (GND).
Document #: 38-05351 Rev. *E
Page 13 of 26
CY7C1444AV25
CY7C1445AV25
Identification Register Definitions
Instruction Field
Revision Number (31:29)
CY7C1444AV25
CY7C1445AV25
000
000
Description
Describes the version number
Device Depth (28:24)
01011
01011
Reserved for Internal Use
Architecture/Memory Type(23:18)
000110
000110
Defines memory type and architecture
Defines width and density
Bus Width/Density(17:12)
Cypress JEDEC ID Code (11:1)
ID Register Presence Indicator (0)
100111
010111
00000110100
00000110100
1
1
Allows unique identification of SRAM vendor
Indicates the presence of an ID register
Scan Register Sizes
Register Name
Bit Size (x18)
Bit Size (x36)
Instruction
3
3
Bypass
1
1
ID
32
32
Boundary Scan Order (165-ball FBGA package)
89
89
Identification Codes
Instruction
Code
Description
EXTEST
000
Captures I/O ring contents. This instruction is 1149.1 compliant.
IDCODE
001
Loads the ID register with the vendor ID code and places the register between TDI and
TDO. This operation does not affect SRAM operations.
SAMPLE Z
010
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.
Forces all SRAM output drivers to a High-Z state.
RESERVED
011
Do Not Use: This instruction is reserved for future use.
SAMPLE/PRELOAD
100
Captures I/O ring contents. Places the boundary scan register between TDI and TDO.
Does not affect SRAM operation.
RESERVED
101
Do Not Use: This instruction is reserved for future use.
RESERVED
110
Do Not Use: This instruction is reserved for future use.
BYPASS
111
Places the bypass register between TDI and TDO. This operation does not affect SRAM
operations.
Document #: 38-05351 Rev. *E
Page 14 of 26
CY7C1444AV25
CY7C1445AV25
165-ball FBGA Boundary Scan Order[ 12,13]
CY7C1444AV25 (1M x 36), CY7C1445AV25 (2M x 18)
Bit #
Ball ID
Bit #
Ball ID
1
26
E11
N6
2
27
D11
N7
3
N10
28
G10
4
P11
29
F10
5
P8
30
E10
6
R8
31
D10
7
R9
32
C11
8
P9
33
A11
9
P10
34
B11
10
R10
35
A10
11
R11
36
B10
12
H11
37
A9
13
N11
38
B9
14
M11
39
C10
15
L11
40
A8
16
K11
41
B8
17
J11
42
A7
18
M10
43
B7
19
L10
44
B6
20
K10
45
A6
21
J10
46
B5
22
H9
47
A5
23
H10
48
A4
24
G11
49
B4
25
F11
50
B3
Bit #
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
Ball ID
A3
A2
B2
C2
B1
A1
C1
D1
E1
F1
G1
D2
E2
F2
G2
H1
H3
J1
K1
L1
M1
J2
K2
L2
M2
Bit #
76
77
78
79
80
81
82
83
84
85
86
87
88
89
Ball ID
N1
N2
P1
R1
R2
P3
R3
P2
R4
P4
N5
P6
R6
Internal
Notes:
12. Balls which are NC (No Connect) are Pre-Set LOW.
13. Bit# 89 is Pre-Set HIGH.
Document #: 38-05351 Rev. *E
Page 15 of 26
CY7C1444AV25
CY7C1445AV25
Maximum Ratings
DC Input Voltage ................................... –0.5V to VDD + 0.5V
(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature ................................. –65°C to +150°C
Ambient Temperature with
Power Applied............................................. –55°C to +125°C
Supply Voltage on VDD Relative to GND........ –0.5V to +3.6V
Current into Outputs (LOW)......................................... 20 mA
Static Discharge Voltage........................................... >2001V
(per MIL-STD-883, Method 3015)
Latch-up Current...................................................... >200 mA
Operating Range
Supply Voltage on VDDQ Relative to GND ..... –0.5V to + VDD
Range
DC Voltage Applied to Outputs
in Tri-State........................................... –0.5V to VDDQ + 0.5V
Commercial
Industrial
Ambient
Temperature
VDD
VDDQ
0°C to +70°C
2.5V + 5%
1.7V to VDD
–40°C to +85°C
Electrical Characteristics Over the Operating Range[14, 15]
DC Electrical Characteristics Over the Operating Range
Parameter
Description
VDD
Power Supply Voltage
VDDQ
I/O Supply Voltage
VOH
VOL
VIH
VIL
IX
Output HIGH Voltage
Output LOW Voltage
Input HIGH
Input LOW
Voltage[14]
Voltage[14]
Input Leakage Current
except ZZ and MODE
Test Conditions
Min.
Max.
Unit
2.375
2.625
V
for 2.5V I/O
2.375
2.625
V
for 1.8V I/O
1.7
1.9
V
for 2.5V I/O, IOH = –1.0 mA
2.0
V
for 1.8V I/O, IOH = –100 µA
1.6
V
for 2.5V I/O, IOL = 1.0 mA
0.4
V
for 1.8V I/O, IOL= 100 µA
0.2
V
for 2.5V I/O
1.7
VDD + 0.3V
V
for 1.8V I/O
1.26
VDD + 0.3V
V
for 2.5V I/O
–0.3
0.7
V
for 1.8V I/O
–0.3
0.36
V
–5
5
µA
5
µA
GND ≤ VI ≤ VDDQ
Input = VDD
Input Current of ZZ
Input = VSS
Output Leakage Current GND ≤ VI ≤ VDDQ, Output Disabled
IDD
VDD Operating Supply
Current
VDD = Max., IOUT = 0 mA,
f = fMAX = 1/tCYC
µA
–5
Input = VDD
IOZ
µA
–30
Input Current of MODE Input = VSS
30
µA
5
µA
4-ns cycle, 250 MHz
435
mA
5-ns cycle, 200 MHz
385
mA
6-ns cycle, 167 MHz
335
mA
All speeds
185
mA
–5
ISB1
Automatic CE
Power-down
Current—TTL Inputs
ISB2
Automatic CE
VDD = Max, Device Deselected, VIN ≤
Power-down
0.3V or VIN > VDDQ – 0.3V,
Current—CMOS Inputs f = 0
All speeds
120
mA
ISB3
VDD = Max, Device Deselected,
Automatic CE
Power-down
or VIN ≤ 0.3V or
Current—CMOS Inputs VIN > VDDQ – 0.3V f = fMAX = 1/tCYC
All speeds
160
mA
ISB4
Automatic CE
Power-down
Current—TTL Inputs
All Speeds
135
mA
VDD = Max, Device Deselected,
VIN ≥ VIH or VIN ≤ VIL
f = fMAX = 1/tCYC
VDD = Max, Device Deselected,
VIN ≥ VIH or VIN ≤ VIL, f = 0
Notes:
14. Overshoot: VIH(AC) < VDD +1.5V (Pulse width less than tCYC/2), undershoot: VIL(AC) > –2V (Pulse width less than tCYC/2).
15. TPower-up: Assumes a linear ramp from 0V to VDD(min.) within 200 ms. During this time VIH < VDD and VDDQ < VDD.
Document #: 38-05351 Rev. *E
Page 16 of 26
CY7C1444AV25
CY7C1445AV25
Capacitance[16]
Parameter
Description
100 TQFP
Max.
Test Conditions
CIN
Input Capacitance
CCLK
Clock Input Capacitance
CI/O
Input/Output Capacitance
TA = 25°C, f = 1 MHz,
VDD/VDDQ = 2.5V
165 FBGA
Max.
Unit
6.5
7
pF
3
7
pF
5.5
6
pF
100 TQFP
Package
165 FBGA
Package
Unit
25.21
20.8
°C/W
2.28
3.2
°C/W
Thermal Resistance[16]
Parameter
Description
ΘJA
Thermal Resistance
(Junction to Ambient)
ΘJC
Thermal Resistance
(Junction to Case)
Test Conditions
Test conditions follow standard
test methods and procedures for
measuring thermal impedance,
per EIA/JESD51.
AC Test Loads and Waveforms
2.5V I/O Test Load
R = 1667Ω
2.5V
OUTPUT
Z0 = 50Ω
10%
R = 1538Ω
VT = 1.25V
INCLUDING
JIG AND
SCOPE
90%
10%
90%
GND
5 pF
(a)
ALL INPUT PULSES
VDDQ
OUTPUT
RL = 50Ω
≤ 1 ns
≤ 1 ns
(c)
(b)
1.8V I/O Test Load
R = 14KΩ
1.8V
OUTPUT
VDDQ-0.2
OUTPUT
RL = 50Ω
Z0 = 50Ω
10%
90%
GND
5 pF
R = 14KΩ
90%
10%
≤ 1 ns
≤ 1 ns
VT = 1.25V
(a)
INCLUDING
JIG AND
SCOPE
(b)
(c)
Note:
16. Tested initially and after any design or process change that may affect these parameters.
Document #: 38-05351 Rev. *E
Page 17 of 26
CY7C1444AV25
CY7C1445AV25
Switching Characteristics Over the Operating Range[21, 22]
–250
Parameter
tPOWER
Description
Min.
[17]
VDD(Typical) to the first Access
–200
Max.
Min.
–167
Max.
Min.
Max.
Unit
1
1
1
ms
Clock
tCYC
Clock Cycle Time
4.0
5.0
6.0
ns
tCH
Clock HIGH
1.5
2.0
2.4
ns
tCL
Clock LOW
1.5
2.0
2.4
ns
Output Times
tCO
Data Output Valid After CLK Rise
tDOH
Data Output Hold After CLK Rise
[18, 19, 20]
tCLZ
Clock to Low-Z
tCHZ
Clock to High-Z[18, 19, 20]
tOEV
OE LOW to Output Valid
tOELZ
tOEHZ
1.0
OE LOW to Output Low-Z
3.4
1.5
1.3
ns
ns
1.5
ns
2.6
3.0
3.4
ns
2.6
3.0
3.4
ns
0
High-Z[18, 19, 20]
3.2
1.5
1.0
[18, 19, 20]
OE HIGH to Output
2.6
0
2.6
0
3.0
ns
3.4
ns
Set-up Times
tAS
Address Set-up Before CLK Rise
1.2
1.4
1.5
ns
tADS
ADSC, ADSP Set-up Before CLK Rise
1.2
1.4
1.5
ns
tADVS
ADV Set-up Before CLK Rise
1.2
1.4
1.5
ns
tWES
GW, BWE, BWX Set-up Before CLK Rise
1.2
1.4
1.5
ns
tDS
Data Input Set-up Before CLK Rise
1.2
1.4
1.5
ns
tCES
Chip Enable Set-Up Before CLK Rise
1.2
1.4
1.5
ns
tAH
Address Hold After CLK Rise
0.3
0.4
0.5
ns
tADH
ADSP, ADSC Hold After CLK Rise
0.3
0.4
0.5
ns
tADVH
ADV Hold After CLK Rise
0.3
0.4
0.5
ns
Hold Times
tWEH
GW, BWE, BWX Hold After CLK Rise
0.3
0.4
0.5
ns
tDH
Data Input Hold After CLK Rise
0.3
0.4
0.5
ns
tCEH
Chip Enable Hold After CLK Rise
0.3
0.4
0.5
ns
Notes:
17. This part has a voltage regulator internally; tPOWER is the time that the power needs to be supplied above VDD(minimum) initially before a read or write operation
can be initiated.
18. tCHZ, tCLZ,tOELZ, and tOEHZ are specified with AC test conditions shown in part (b) of AC Test Loads. Transition is measured ± 200 mV from steady-state voltage.
19. At any given voltage and temperature, tOEHZ is less than tOELZ and tCHZ is less than tCLZ to eliminate bus contention between SRAMs when sharing the same
data bus. These specifications do not imply a bus contention condition, but reflect parameters guaranteed over worst case user conditions. Device is designed
to achieve High-Z prior to Low-Z under the same system conditions.
20. This parameter is sampled and not 100% tested.
21. Timing reference level is 1.25V when VDDQ = 2.5V and 0.9V when VDDQ = 1.8V.
22. Test conditions shown in (a) of AC Test Loads unless otherwise noted.
Document #: 38-05351 Rev. *E
Page 18 of 26
CY7C1444AV25
CY7C1445AV25
Switching Waveforms
Read Cycle Timing[23]
tCYC
CLK
tCH
tADS
tCL
tADH
ADSP
tADS
tADH
ADSC
tAS
ADDRESS
tAH
A1
A2
tWES
A3
Burst continued with
new base address
tWEH
GW, BWE,BW
X
Deselect
cycle
tCES tCEH
CE
tADVS tADVH
ADV
ADV suspends burst
OE
t
Data Out (DQ)
High-Z
CLZ
t OEHZ
Q(A1)
tOEV
tCO
t OELZ
tDOH
Q(A2)
t CHZ
Q(A2 + 1)
Q(A2 + 2)
Q(A2 + 3)
Q(A2)
Q(A2 + 1)
Q(A3)
t CO
Single READ
BURST READ
DON’T CARE
Burst wraps around
to its initial state
UNDEFINED
Note:
23. On this diagram, when CE is LOW: CE1 is LOW, CE2 is HIGH and CE3 is LOW. When CE is HIGH: CE1 is HIGH or CE2 is LOW or CE3 is HIGH.
Document #: 38-05351 Rev. *E
Page 19 of 26
CY7C1444AV25
CY7C1445AV25
Switching Waveforms (continued)
Write Cycle Timing[23, 24]
t CYC
CLK
tCH
tADS
tCL
tADH
ADSP
tADS
ADSC extends burst
tADH
tADS
tADH
ADSC
tAS
tAH
A1
ADDRESS
A2
A3
Byte write signals are ignored for first cycle when
ADSP initiates burst
tWES tWEH
BWE,
BWX
tWES tWEH
GW
tCES
tCEH
CE
tADVS tADVH
ADV
ADV suspends burst
OE
t
DS
Data in (D)
High-Z
t
OEHZ
t
DH
D(A1)
D(A2)
D(A2 + 1)
D(A2 + 1)
D(A2 + 2)
D(A2 + 3)
D(A3)
D(A3 + 1)
D(A3 + 2)
Data Out (Q)
BURST READ
Single WRITE
BURST WRITE
DON’T CARE
Extended BURST WRITE
UNDEFINED
Note:
24. Full width write can be initiated by either GW LOW; or by GW HIGH, BWE LOW and BWX LOW.
Document #: 38-05351 Rev. *E
Page 20 of 26
CY7C1444AV25
CY7C1445AV25
Switching Waveforms (continued)
Read/Write Cycle Timing[23, 25, 26]
tCYC
CLK
tCL
tCH
tADS
tADH
tAS
tAH
ADSP
ADSC
ADDRESS
A1
A2
A3
A4
A5
A6
D(A5)
D(A6)
tWES tWEH
BWE, BWX
tCES
tCEH
CE
ADV
OE
tDS
tCO
Data In (D)
tOELZ
High-Z
tCLZ
Data Out (Q)
tDH
High-Z
Q(A1)
Back-to-Back READs
tOEHZ
D(A3)
Q(A2)
Q(A4)
Q(A4+2)
BURST READ
Single WRITE
DON’T CARE
Q(A4+1)
Q(A4+3)
Back-to-Back
WRITEs
UNDEFINED
Notes:
25. The data bus (Q) remains in high-Z following a Write cycle, unless a new read access is initiated by ADSP or ADSC.
26. GW is HIGH.
Document #: 38-05351 Rev. *E
Page 21 of 26
CY7C1444AV25
CY7C1445AV25
Switching Waveforms (continued)
ZZ Mode Timing[27, 28]
CLK
t ZZ
ZZ
I
t ZZREC
t ZZI
SUPPLY
I DDZZ
t RZZI
ALL INPUTS
(except ZZ)
Outputs (Q)
DESELECT or READ Only
High-Z
DON’T CARE
Notes:
27. Device must be deselected when entering ZZ mode. See Cycle Descriptions table for all possible signal conditions to deselect the device.
28. DQs are in high-Z when exiting ZZ sleep mode.
Document #: 38-05351 Rev. *E
Page 22 of 26
CY7C1444AV25
CY7C1445AV25
Ordering Information
Not all of the speed, package and temperature ranges are available. Please contact your local sales representative or
visit www.cypress.com for actual products offered.
Speed
(MHz)
167
Ordering Code
CY7C1444AV25-167AXC
Package
Diagram
Operating
Range
Part and Package Type
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free
Commercial
CY7C1445AV25-167AXC
CY7C1444AV25-167BZC
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)
CY7C1445AV25-167BZC
CY7C1444AV25-167BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Lead-Free
CY7C1445AV25-167BZXC
CY7C1444AV25-167AXI
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free
lndustrial
CY7C1445AV25-167AXI
CY7C1444AV25-167BZI
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)
CY7C1445AV25-167BZI
CY7C1444AV25-167BZXI
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Lead-Free
CY7C1445AV25-167BZXI
200
CY7C1444AV25-200AXC
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free
Commercial
CY7C1445AV25-200AXC
CY7C1444AV25-200BZC
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)
CY7C1445AV25-200BZC
CY7C1444AV25-200BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Lead-Free
CY7C1445AV25-200BZXC
CY7C1444AV25-200AXI
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free
lndustrial
CY7C1445AV25-200AXI
CY7C1444AV25-200BZI
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)
CY7C1445AV25-200BZI
CY7C1444AV25-200BZXI
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Lead-Free
CY7C1445AV25-200BZXI
250
CY7C1444AV25-250AXC
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free
Commercial
CY7C1445AV25-250AXC
CY7C1444AV25-250BZC
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)
CY7C1445AV25-250BZC
CY7C1444AV25-250BZXC 51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Lead-Free
CY7C1445AV25-250BZXC
CY7C1444AV25-250AXI
51-85050 100-Pin Thin Quad Flat Pack (14 x 20 x 1.4 mm) Lead-Free
Industrial
CY7C1445AV25-250AXI
CY7C1444AV25-250BZI
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm)
CY7C1445AV25-250BZI
CY7C1444AV25-250BZXI
51-85165 165-ball Fine-Pitch Ball Grid Array (15 x 17 x 1.4 mm) Lead-Free
CY7C1445AV25-250BZXI
Document #: 38-05351 Rev. *E
Page 23 of 26
CY7C1444AV25
CY7C1445AV25
Package Diagrams
100-pin TQFP (14 x 20 x 1.4 mm) (51-85050)
16.00±0.20
1.40±0.05
14.00±0.10
100
81
80
1
20.00±0.10
22.00±0.20
0.30±0.08
0.65
TYP.
30
12°±1°
(8X)
SEE DETAIL
A
51
31
50
0.20 MAX.
0.10
1.60 MAX.
R 0.08 MIN.
0.20 MAX.
0° MIN.
SEATING PLANE
STAND-OFF
0.05 MIN.
0.15 MAX.
0.25
NOTE:
1. JEDEC STD REF MS-026
GAUGE PLANE
0°-7°
R 0.08 MIN.
0.20 MAX.
2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH
MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE
BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH
3. DIMENSIONS IN MILLIMETERS
0.60±0.15
0.20 MIN.
51-85050-*B
1.00 REF.
DETAIL
Document #: 38-05351 Rev. *E
A
Page 24 of 26
CY7C1444AV25
CY7C1445AV25
Package Diagrams (continued)
165-ball FBGA (15 x 17 x 1.4 mm) (51-85165)
PIN 1 CORNER
BOTTOM VIEW
TOP VIEW
Ø0.05 M C
PIN 1 CORNER
Ø0.25 M C A B
Ø0.45±0.05(165X)
1
2
3
4
5
6
7
8
9
10
11
11
10
9
8
7
6
5
4
3
2
1
A
B
B
C
C
1.00
A
D
D
F
F
G
G
H
J
14.00
E
17.00±0.10
E
H
J
K
L
L
7.00
K
M
M
N
N
P
P
R
R
A
1.00
5.00
0.35
0.15 C
+0.05
-0.10
0.53±0.05
0.25 C
10.00
B
15.00±0.10
0.15(4X)
SEATING PLANE
1.40 MAX.
0.36
C
51-85165-*A
i486 is a trademark, and Intel and Pentium are registered trademarks of Intel Corporation. PowerPC is a trademark of IBM
Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.
Document #: 38-05351 Rev. *E
Page 25 of 26
© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use
of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be
used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
CY7C1444AV25
CY7C1445AV25
Document History Page
Document Title: CY7C1444AV25/CY7C1445AV25 36-Mbit (1M x 36/2M x 18) Pipelined DCD Sync SRAM
Document Number: 38-05351
REV.
ECN NO.
Issue Date
Orig. of
Change
Description of Change
**
124418
03/04/03
CGM
New data sheet
*A
254909
See ECN
SYT
Part number changed from previous revision. New and old part number differ by
the letter “A”
Modified Functional Block diagrams
Modified switching waveforms
Added Boundary scan information
Added IDD, IX and ISB values in the DC Electrical Characteristics
Added tPOWER specifications in Switching Characteristics table
Removed 119 PBGA package
Edited Ordering Information typo for 165-ball FBGA part and package name
*B
303533
See ECN
SYT
Changed the test condition from VDD = Min to VDD = Max for VOL in the Electrical
Characteristics table
Replaced ΘJA and ΘJC from TBD to respective Thermal Values for All Packages
on the Thermal Resistance Table
Changed IDD from 450, 400 & 350 mA to 435, 385 & 335 mA for 250, 200 and 167
Mhz respectively
Changed ISB1 from 190, 180 and 170 mA to 185 mA for 250, 200 and 167 MHz
respectively
Changed ISB2 from 80 mA to 100 mA for all frequencies
Changed ISB3 from 180, 170 & 160 mA to 160 mA for 250, 200 and 167 MHz
respectively
Changed ISB4 from 100 mA to 110 mA for all frequencies
Changed CIN, CCLK and CI/O from 5, 5 and 7 pF to 6.5, 3 and 5.5 pF respectively
for TQFP Package
Changed tCO from 3.0 to 3.2 ns and tDOH from 1.3 ns to 1.5 ns for 200 MHz Speed
Bin
Added lead-free information for 100-pin TQFP and 165 FBGA packages
*C
331778
See ECN
SYT
Modified Address Expansion balls in the pinouts for 165 FBGA Package as per
JEDEC standards and updated the Pin Definitions accordingly
Modified VOL, VOH test conditions
Changed CIN, CCLK and CI/O to 7, 7and 6 pF from 5, 5 and 7 pF for 165 FBGA
Package
Added Industrial Temperature Grade
Changed ISB2 and ISB4 from 100 and 110 mA to 120 and 135 mA respectively
Updated the Ordering Information by Shading and Unshading MPNs as per availability
*D
417509
See ECN
RXU
Converted from Preliminary to Final
Changed address of Cypress Semiconductor Corporation on Page# 1 from “3901
North First Street” to “198 Champion Court”
Changed IX current value in MODE from –5 & 30 µA to –30 & 5 µA respectively
and also Changed IX current value in ZZ from –30 & 5 µA to –5 & 30 µA respectively
on page# 16
Modified test condition from VIH < VDD to VIH < VDD
Modified “Input Load” to “Input Leakage Current except ZZ and MODE” in the
Electrical Characteristics Table
Replaced Package Name column with Package Diagram in the Ordering
Information table
Replaced Package Diagram of 51-85050 from *A to *B
*E
473229
See ECN
VKN
Added the Maximum Rating for Supply Voltage on VDDQ Relative to GND.
Changed tTH, tTL from 25 ns to 20 ns and tTDOV from 5 ns to 10 ns in TAP AC
Switching Characteristics table.
Updated the Ordering Information table.
Document #: 38-05351 Rev. *E
Page 26 of 26
Similar pages