IRF IRG4BC20UDPBF Ultra fast copack igbt Datasheet

PD - 94909A
IRG4BC20UDPbF
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST
SOFT RECOVERY DIODE
Features
• UltraFast: optimized for high operating
frequencies 8-40 kHz in hard switching, >200
kHz in resonant mode
• Generation 4 IGBT design provides tighter
parameter distribution and higher efficiency than
Generation 3
• IGBT co-packaged with HEXFREDâ ultrafast,
ultra-soft-recovery anti-parallel diodes for use in
bridge configurations
• Industry standard TO-220AB package
• Lead-Free
UltraFast CoPack IGBT
C
VCES = 600V
VCE(on) typ. = 1.85V
G
@VGE = 15V, IC = 6.5A
E
n-channel
Benefits
• Generation -4 IGBTs offer highest efficiencies
available
• IGBTs optimized for specific application conditions
• HEXFRED diodes optimized for performance with
IGBTs. Minimized recovery characteristics require
less/no snubbing
• Designed to be a "drop-in" replacement for equivalent
industry-standard Generation 3 IR IGBTs
TO-220AB
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
IF @ TC = 100°C
IFM
VGE
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current 
Clamped Inductive Load Current ‚
Diode Continuous Forward Current
Diode Maximum Forward Current
Gate-to-Emitter Voltage
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting Torque, 6-32 or M3 Screw.
Max.
Units
600
13
6.5
52
52
7.0
52
± 20
60
24
-55 to +150
V
A
V
W
°C
300 (0.063 in. (1.6mm) from case)
10 lbf•in (1.1 N•m)
Thermal Resistance
Parameter
RθJC
RθJC
RθCS
RθJA
Wt
www.irf.com
Junction-to-Case - IGBT
Junction-to-Case - Diode
Case-to-Sink, flat, greased surface
Junction-to-Ambient, typical socket mount
Weight
Min.
Typ.
Max.
-------------------------
----------0.50
----2 (0.07)
2.1
3.5
-----80
------
Units
°C/W
g (oz)
1
01/22/10
IRG4BC20UDPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Collector-to-Emitter Breakdown Voltageƒ 600
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage ---VCE(on)
Collector-to-Emitter Saturation Voltage
---------Gate Threshold Voltage
3.0
VGE(th)
∆VGE(th)/∆TJ Temperature Coeff. of Threshold Voltage ---gfe
Forward Transconductance „
1.4
Zero Gate Voltage Collector Current
---ICES
---VFM
Diode Forward Voltage Drop
------IGES
Gate-to-Emitter Leakage Current
---V(BR)CES
Typ. Max. Units
------V
0.69 ---- V/°C
1.85 2.1
2.27 ---V
1.87 ------- 6.0
-11 ---- mV/°C
4.3 ---S
---- 250
µA
---- 1700
1.4 1.7
V
1.3 1.6
---- ±100 nA
Conditions
VGE = 0V, IC = 250µA
VGE = 0V, IC = 1.0mA
IC = 6.5A
VGE = 15V
IC = 13A
See Fig. 2, 5
IC = 6.5A, TJ = 150°C
VCE = VGE, IC = 250µA
VCE = VGE, IC = 250µA
VCE = 100V, IC = 6.5A
VGE = 0V, VCE = 600V
VGE = 0V, VCE = 600V, TJ = 150°C
IC = 8.0A
See Fig. 13
IC = 8.0A, TJ = 150°C
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
t d(on)
tr
td(off)
tf
Eon
Eoff
Ets
td(on)
tr
td(off)
tf
E ts
LE
Cies
Coes
Cres
trr
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Diode Reverse Recovery Time
I rr
Diode Peak Reverse Recovery Current
Qrr
Diode Reverse Recovery Charge
di(rec)M/dt
Diode Peak Rate of Fall of Recovery
During tb
2
Min.
----------------------------------------------------------------------------------
Typ. Max. Units
Conditions
27
41
IC = 6.5A
4.5 6.8
nC
VCC = 400V
See Fig. 8
10
16
VGE = 15V
39
---TJ = 25°C
15
---ns
IC = 6.5A, VCC = 480V
93 140
VGE = 15V, RG = 50Ω
110 170
Energy losses include "tail" and
0.16 ---diode reverse recovery.
0.13 ---mJ See Fig. 9, 10, 11, 18
0.29 0.3
38
---TJ = 150°C,
See Fig. 9, 10, 11, 18
17
---ns
IC = 6.5A, VCC = 480V
100 ---VGE = 15V, RG = 50Ω
220 ---Energy losses include "tail" and
0.49 ---mJ diode reverse recovery.
7.5 ---nH
Measured 5mm from package
530 ---VGE = 0V
39
---pF
VCC = 30V
See Fig. 7
7.4 ---ƒ = 1.0MHz
37
55
ns
TJ = 25°C See Fig.
55
90
TJ = 125°C
14
IF = 8.0A
3.5 5.0
A
TJ = 25°C See Fig.
4.5 8.0
TJ = 125°C
15
VR = 200V
65 138
nC
TJ = 25°C
See Fig.
124 360
TJ = 125°C
16
di/dt 200A/µs
240 ---A/µs TJ = 25°C
See Fig.
210 ---TJ = 125°C
17
www.irf.com
IRG4BC20UDPbF
12
Duty cycle: 50%
TJ = 125°C
Tsink = 90°C
Gate drive as specified
Turn-on losses include
effects of reverse recovery
Power Dissipation = 13W
Load Current (A)
10
8
60% of rated
voltage
6
4
2
A
0
0.1
1
10
100
f, Frequency (kHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
TJ = 25°C
TJ = 150°C
10
1
VGE = 15V
20µs PULSE WIDTH
0.1
0.1
1
10
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
A
IC , Collector-to-Emitter Current (A)
IC , Collector-to-Emitter Current (A)
100
TJ = 150°C
10
TJ = 25°C
1
V CC = 10V
5µs PULSE WIDTH A
0.1
4
6
8
10
12
VGE, Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
IRG4BC20UDPbF
VGE = 15V
12
10
8
6
4
2
2.6
VCE , Collector-to-Emitter Voltage (V)
Maximum DC Collector Current (A)
14
V GE = 15V
80µs PULSE WIDTH
IC = 13A
2.2
1.8
IC = 6.5A
1.4
I C = 3.3A
A
1.0
0
25
50
75
100
125
-60
150
-40
-20
0
20
40
60
80
100 120 140 160
TJ , Junction Temperature (°C)
TC , Case Temperature (°C)
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Fig. 4 - Maximum Collector Current vs.
Case Temperature
Thermal Response (Z thJC )
10
1
D = 0.50
0.20
0.10
PDM
0.05
0.1
0.02
0.01
t
SINGLE PULSE
(THERMAL RESPONSE)
Notes:
1. Duty factor D = t
0.01
0.00001
1
/t
1
t2
2
2. Peak TJ = P DM x Z thJC + T C
0.0001
0.001
0.01
0.1
1
10
t 1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum IGBT Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4BC20UDPbF
800
Cies
20
V GE = 0V,
f = 1MHz
C ies = C ge + C gc , Cce SHORTED
C res = C gc
C oes = C ce + C gc
VGE , Gate-to-Emitter Voltage (V)
C, Capacitance (pF)
1000
600
Coes
400
Cres
200
A
0
1
10
VCE = 400V
I C = 6.5A
16
12
8
4
A
0
0
100
5
VCE, Collector-to-Emitter Voltage (V)
10
= 480V
= 15V
= 25°C
= 6.5A
0.31
0.30
A
0.29
0
10
20
30
40
50
R G , Gate Resistance ( Ω)
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
www.irf.com
20
25
30
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
Total Switching Losses (mJ)
Total Switching Losses (mJ)
VCC
VGE
TJ
IC
15
Qg , Total Gate Charge (nC)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
0.32
10
60
R G = 50 Ω
V GE = 15V
V CC = 480V
IC = 13A
1
IC = 6.5A
I C = 3.3A
A
0.1
-60
-40
-20
0
20
40
60
80
100 120 140 160
TJ , Junction Temperature (°C)
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
IRG4BC20UDPbF
RG
TJ
V CC
V GE
1000
= 50 Ω
= 150°C
= 480V
= 15V
I C , Collector-to-Emitter Current (A)
Total Switching Losses (mJ)
1.2
0.9
0.6
0.3
A
0.0
0
2
4
6
8
10
12
VGE
= 20V
GE
TJ = 125°C
100
SAFE OPERATING AREA
10
1
0.1
1
14
10
100
1000
VCE , Collector-to-Emitter Voltage (V)
IC , Collector-to-Emitter Current (A)
Fig. 12 - Turn-Off SOA
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
Instantaneous Forward Current - I F (A)
100
10
TJ = 150°C
TJ = 125°C
TJ = 25°C
1
0.1
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
Forward Voltage Drop - V FM (V)
Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current
6
www.irf.com
IRG4BC20UDPbF
100
100
VR = 200V
TJ = 125°C
TJ = 25°C
VR = 200V
TJ = 125°C
TJ = 25°C
80
I F = 8.0A
I IRRM - (A)
t rr - (ns)
IF = 16A
60
I F = 16A
10
IF = 8.0A
40
I F = 4.0A
I F = 4.0A
20
0
100
1
100
1000
di f /dt - (A/µs)
Fig. 14 - Typical Reverse Recovery vs. dif/dt
di f /dt - (A/µs)
1000
Fig. 15 - Typical Recovery Current vs. dif/dt
10000
500
VR = 200V
TJ = 125°C
TJ = 25°C
VR = 200V
TJ = 125°C
TJ = 25°C
di(rec)M/dt - (A/µs)
Q RR - (nC)
400
300
I F = 16A
200
I F = 8.0A
1000
IF = 4.0A
IF = 8.0A
I F = 16A
100
IF = 4.0A
0
100
di f /dt - (A/µs)
Fig. 16 - Typical Stored Charge vs. dif/dt
www.irf.com
1000
100
100
di f /dt - (A/µs)
1000
Fig. 17 - Typical di(rec)M/dt vs. dif/dt
7
IRG4BC20UDPbF
90% Vge
+Vge
Same type
device as
D.U.T.
Vce
Ic
90% Ic
10% Vce
Ic
5% Ic
430µF
80%
of Vce
D.U.T.
td(off)
tf
Eoff =
∫
t1+5µS
Vce ic dt
t1
Fig. 18a - Test Circuit for Measurement of
ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf
t1
t2
Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining
Eoff, td(off), tf
GATE VOLTAGE D.U.T.
10% +Vg
trr
Ic
Qrr =
tx
DUT VOLTAGE
AND CURRENT
Vce
10% Ic
90% Ic
tr
td(on)
10% Irr
Ipk
Vpk
Vcc
Irr
Ic
DIODE RECOVERY
WAVEFORMS
5% Vce
t1
∫
t2
Eon = Vce ie dt
t1
t2
DIODE REVERSE
RECOVERY ENERGY
t3
Fig. 18c - Test Waveforms for Circuit of Fig. 18a,
Defining Eon, td(on), tr
8
∫
+Vg
10% Vcc
Vcc
trr
id dt
tx
∫
t4
Erec = Vd id dt
t3
t4
Fig. 18d - Test Waveforms for Circuit of Fig. 18a,
Defining Erec, trr, Qrr, Irr
www.irf.com
IRG4BC20UDPbF
Vg GATE SIGNAL
DEVICE UNDER TEST
CURRENT D.U.T.
VOLTAGE IN D.U.T.
CURRENT IN D1
t0
t1
t2
Figure 18e. Macro Waveforms for Figure 18a's Test Circuit
RL = VCC
ICM
D.U.T.
L
1000V
Vc*
0 - VCC
50V
480µF
6000µF
100V
Pulsed Collector Current
Test Circuit
Figure 19. Clamped Inductive Load Test Circuit
www.irf.com
Figure 20. Pulsed Collector Current
Test Circuit
9
IRG4BC20UDPbF
Notes:
Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature
(figure 20)
‚VCC=80%(VCES), VGE=20V, L=10µH, RG = 50Ω (figure 19)
ƒPulse width ≤ 80µs; duty factor ≤ 0.1%.
„Pulse width 5.0µs, single shot.
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))
TO-220AB Part Marking Information
(;$03/( 7+,6,6$1,5)
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(&
Note: "P" in assembly line
position indicates "Lead-Free"
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
'$7(&2'(
<($5 :((.
/,1(&
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.01/2010
10
www.irf.com
Similar pages