MC14536B Programmable Timer The MC14536B programmable timer is a 24−stage binary ripple counter with 16 stages selectable by a binary code. Provisions for an on−chip RC oscillator or an external clock are provided. An on−chip monostable circuit incorporating a pulse−type output has been included. By selecting the appropriate counter stage in conjunction with the appropriate input clock frequency, a variety of timing can be achieved. http://onsemi.com MARKING DIAGRAMS Features • • • • • • • • • • • • 24 Flip−Flop Stages − Will Count From 20 to 224 Last 16 Stages Selectable By Four−Bit Select Code 8−Bypass Input Allows Bypassing of First Eight Stages Set and Reset Inputs Clock Inhibit and Oscillator Inhibit Inputs On−Chip RC Oscillator Provisions On−Chip Monostable Output Provisions Clock Conditioning Circuit Permits Operation with Very Long Rise and Fall Times Test Mode Allows Fast Test Sequence Supply Voltage Range = 3.0 Vdc to 18 Vdc Capable of Driving Two Low−Power TTL Loads or One Low−Power Schottky TTL Load over the Rated Temperature Range Pb−Free Packages are Available* MC14536BCP AWLYYWWG PDIP−16 1 P SUFFIX CASE 648 1 14536B AWLYWWG 1 SOIC−16 WB DW SUFFIX CASE 751G 1 MAXIMUM RATINGS (Voltages Referenced to VSS) Rating Symbol Value Unit DC Supply Voltage Range VDD −0.5 to +18.0 V Input or Output Voltage Range (DC or Transient) Vin, Vout −0.5 to VDD + 0.5 V Iin, Iout ± 10 mA Power Dissipation per Package (Note 1) PD 500 mW Ambient Temperature Range TA −55 to +125 °C Storage Temperature Range Tstg −65 to +150 °C Lead Temperature, (8−Second Soldering) TL 260 °C Input or Output Current (DC or Transient) per Pin Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Temperature Derating: Plastic “P and D/DW” Packages: – 7.0 mW/_C from 65_C to 125_C This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high−impedance circuit. For proper operation, Vin and Vout should be constrained to the range VSS v (Vin or Vout) v VDD. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open. MC14536B ALYWG 1 SOEIAJ−16 F SUFFIX CASE 966 A WL, L YY, Y WW, W G 1 = Assembly Location = Wafer Lot = Year = Work Week = Pb−Free Package ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 12 of this data sheet. *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. © Semiconductor Components Industries, LLC, 2006 April, 2006 − Rev. 9 1 Publication Order Number: MC14536B/D MC14536B SET 1 16 VDD RESET 2 15 MONO−IN IN 1 3 14 OSC INH OUT 1 4 13 DECODE 12 D OUT 2 5 8−BYPASS 6 11 C CLOCK INH 7 10 B VSS 8 9 A Figure 1. Pin Assignment CLOCK INH. 7 RESET SET 8 BYPASS 2 1 6 OSC. INHIBIT14 IN1 STAGES 9 THRU 24 Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 STAGES 1 THRU 8 3 4 OUT1 5 OUT2 A9 B10 C11 D12 VDD = PIN 16 VSS = PIN 8 DECODER MONO−IN15 MONOSTABLE MULTIVIBRATOR Figure 2. Block Diagram FUNCTION TABLE Set Reset Clock Inh OSC Inh 0 0 0 0 No Change 0 0 0 0 Advance to next state X 1 0 0 0 0 1 1 X 0 1 0 0 0 1 0 X 0 0 1 0 − − No Change X 0 0 0 1 0 1 No Change 0 0 0 0 X 0 1 No Change 1 0 0 0 In1 Out 1 Out 2 Decode Out Advance to next state X = Don’t Care http://onsemi.com 2 13 DECODE OUT MC14536B ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS) − 55_C 25_C 125_C Min Max Min Typ (Note 2) Max Min Max Unit “0” Level VOL 5.0 10 15 − − − 0.05 0.05 0.05 − − − 0 0 0 0.05 0.05 0.05 − − − 0.05 0.05 0.05 Vdc “1” Level VOH 5.0 10 15 4.95 9.95 14.95 − − − 4.95 9.95 14.95 5.0 10 15 − − − 4.95 9.95 14.95 − − − Vdc “0” Level VIL 5.0 10 15 − − − 1.5 3.0 4.0 − − − 2.25 4.50 6.75 1.5 3.0 4.0 − − − 1.5 3.0 4.0 5.0 10 15 3.5 7.0 11 − − − 3.5 7.0 11 2.75 5.50 8.25 − − − 3.5 7.0 11 − − − Source Pins 4 & 5 5.0 5.0 10 15 – 1.2 – 0.25 – 0.62 – 1.8 − − − − – 1.0 – 0.25 – 0.5 – 1.5 – 1.7 – 0.36 – 0.9 – 3.5 − − − − – 0.7 – 0.14 – 0.35 – 1.1 − − − − Source Pin 13 5.0 5.0 10 15 – 3.0 – 0.64 – 1.6 – 4.2 − − − − – 2.4 – 0.51 – 1.3 – 3.4 – 4.2 – 0.88 – 2.25 – 8.8 − − − − – 1.7 – 0.36 – 0.9 – 2.4 − − − − mAdc IOL 5.0 10 15 0.64 1.6 4.2 − − − 0.51 1.3 3.4 0.88 2.25 8.8 − − − 0.36 0.9 2.4 − − − mAdc Input Current Iin 15 − ± 0.1 − ± 0.00001 ± 0.1 − ± 1.0 mAdc Input Capacitance (Vin = 0) Cin − − − − 5.0 7.5 − − pF Quiescent Current (Per Package) IDD 5.0 10 15 − − − 5.0 10 20 − − − 0.010 0.020 0.030 5.0 10 20 − − − 150 300 600 mAdc IT 5.0 10 15 Characteristic Output Voltage Vin = VDD or 0 Symbol Vin = 0 or VDD Input Voltage (VO = 4.5 or 0.5 Vdc) (VO = 9.0 or 1.0 Vdc) (VO = 13.5 or 1.5 Vdc) “1” Level (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc) (VOL = 0.4 Vdc) (VOL = 0.5 Vdc) (VOL = 1.5 Vdc) Vdc VIH (VO = 0.5 or 4.5 Vdc) (VO = 1.0 or 9.0 Vdc) (VO = 1.5 or 13.5 Vdc) Output Drive Current (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc) VDD Vdc Vdc IOH Sink Total Supply Current (Note 3, 4) (Dynamic plus Quiescent, Per Package) (CL = 50 pF on all outputs, all buffers switching) mAdc IT = (1.50 mA/kHz) f + IDD IT = (2.30 mA/kHz) f + IDD IT = (3.55 mA/kHz) f + IDD 2. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance. 3. The formulas given are for the typical characteristics only at 25_C. 4. To calculate total supply current at loads other than 50 pF: IT(CL) = IT(50 pF) + (CL – 50) Vfk where: IT is in mA (per package), CL in pF, V = (VDD – VSS) in volts, f in kHz is input frequency, and k = 0.003. http://onsemi.com 3 mAdc MC14536B ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ SWITCHING CHARACTERISTICS (Note 5) (CL = 50 pF, TA = 25_C) Characteristic Symbol Output Rise and Fall Time (Pin 13) tTLH, tTHL = (1.5 ns/pF) CL + 25 ns tTLH, tTHL = (0.75 ns/pF) CL + 12.5 ns tTLH, tTHL = (0.55 ns/pF) CL + 9.5 ns tTLH, tTHL Propagation Delay Time Clock to Q1, 8−Bypass (Pin 6) High tPLH, tPHL = (1.7 ns/pF) CL + 1715 ns tPLH, tPHL = (0.66 ns/pF) CL + 617 ns tPLH, tPHL = (0.5 ns/pF) CL + 425 ns tPLH, tPHL 5.0 10 15 − − − 100 50 40 200 100 80 ns ns 5.0 10 15 − − − 3.8 1.5 1.1 7.6 3.0 2.3 5.0 10 15 − − − 7.0 3.0 2.2 14 6.0 4.5 5.0 10 15 − − − 1500 600 450 3000 1200 900 tWH 5.0 10 15 600 200 170 300 100 85 − − − ns fcl 5.0 10 15 − − − 1.2 3.0 5.0 0.4 1.5 2.0 MHz tTLH, tTHL 5.0 10 15 tWH 5.0 10 15 Reset to Qn tPHL = (1.7 ns/pF) CL + 1415 ns tPHL = (0.66 ns/pF) CL + 567 ns tPHL = (0.5 ns/pF) CL + 425 ns tPHL ms ms ns − No Limit 1000 400 300 500 200 150 − − − 5. The formulas given are for the typical characteristics only at 25_C. 6. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance. http://onsemi.com 4 Unit 3600 1300 1000 tPLH, tPHL Reset Pulse Width Max 1800 650 450 Clock to Q16 tPHL, tPLH = (1.7 ns/pF) CL + 6915 ns tPHL, tPLH = (0.66 ns/pF) CL + 2967 ns tPHL, tPLH = (0.5 ns/pF) CL + 2175 ns Clock Rise and Fall Time Typ (Note 6) − − − tPLH, tPHL Clock Pulse Frequency (50% Duty Cycle) Min 5.0 10 15 Clock to Q1, 8−Bypass (Pin 6) Low tPLH, tPHL = (1.7 ns/pF) CL + 3715 ns tPLH, tPHL = (0.66 ns/pF) CL + 1467 ns tPLH, tPHL = (0.5 ns/pF) CL + 1075 ns Clock Pulse Width VDD ns MC14536B PIN DESCRIPTIONS INPUTS OSC INHIBIT (Pin 14) − A high level on this pin stops the RC oscillator which allows for very low−power standby operation. May also be used, in conjunction with an external clock, with essentially the same results as the Clock Inhibit input. MONO−IN (Pin 15) − Used as the timing pin for the on−chip monostable multivibrator. If the Mono−In input is connected to VSS, the monostable circuit is disabled, and Decode Out is directly connected to the selected Q output. The monostable circuit is enabled if a resistor is connected between Mono−In and VDD. This resistor and the device’s internal capacitance will determine the minimum output pulse widths. With the addition of an external capacitor to VSS, the pulse width range may be extended. For reliable operation the resistor value should be limited to the range of 5 kW to 100 kW and the capacitor value should be limited to a maximum of 1000 pf. (See figures 5, 6, 7, and 12). A, B, C, D (Pins 9, 10, 11, 12) − These inputs select the flip−flop stage to be connected to Decode Out. (See the truth tables.) SET (Pin 1) − A high on Set asynchronously forces Decode Out to a high level. This is accomplished by setting an output conditioning latch to a high level while at the same time resetting the 24 flip−flop stages. After Set goes low (inactive), the occurrence of the first negative clock transition on IN1 causes Decode Out to go low. The counter’s flip−flop stages begin counting on the second negative clock transition of IN1. When Set is high, the on−chip RC oscillator is disabled. This allows for very low−power standby operation. RESET (Pin 2) − A high on Reset asynchronously forces Decode Out to a low level; all 24 flip−flop stages are also reset to a low level. Like the Set input, Reset disables the on−chip RC oscillator for standby operation. IN1 (Pin 3) − The device’s internal counters advance on the negative−going edge of this input. IN1 may be used as an external clock input or used in conjunction with OUT1 and OUT2 to form an RC oscillator. When an external clock is used, both OUT1 and OUT2 may be left unconnected or used to drive 1 LSTTL or several CMOS loads. 8−BYPASS (Pin 6) − A high on this input causes the first 8 flip−flop stages to be bypassed. This device essentially becomes a 16−stage counter with all 16 stages selectable. Selection is accomplished by the A, B, C, and D inputs. (See the truth tables.) CLOCK INHIBIT (Pin 7) − A high on this input disconnects the first counter stage from the clocking source. This holds the present count and inhibits further counting. However, the clocking source may continue to run. Therefore, when Clock Inhibit is brought low, no oscillator startup time is required. When Clock Inhibit is low, the counter will start counting on the occurrence of the first negative edge of the clocking source at IN1. OUTPUTS OUT1, OUT2 (Pin 4, 5) − Outputs used in conjunction with IN1 to form an RC oscillator. These outputs are buffered and may be used for 20 frequency division of an external clock. DECODE OUT (Pin 13) − Output function depends on configuration. When the monostable circuit is disabled, this output is a 50% duty cycle square wave during free run. TEST MODE The test mode configuration divides the 24 flip−flop stages into three 8−stage sections to facilitate a fast test sequence. The test mode is enabled when 8−Bypass, Set and Reset are at a high level. (See Figure 10.) TRUTH TABLES Input Input Stage Selected for Decode Out 8−Bypass D C B A Stage Selected for Decode Out 8−Bypass D C B A 0 0 0 0 0 9 1 0 0 0 0 1 0 0 0 0 1 10 1 0 0 0 1 2 0 0 0 1 0 11 1 0 0 1 0 3 0 0 0 1 1 12 1 0 0 1 1 4 0 0 1 0 0 13 1 0 1 0 0 5 0 0 1 0 1 14 1 0 1 0 1 6 0 0 1 1 0 15 1 0 1 1 0 7 0 0 1 1 1 16 1 0 1 1 1 8 0 1 0 0 0 17 1 1 0 0 0 9 0 1 0 0 1 18 1 1 0 0 1 10 0 1 0 1 0 19 1 1 0 1 0 11 0 1 0 1 1 20 1 1 0 1 1 12 0 1 1 0 0 21 1 1 1 0 0 13 0 1 1 0 1 22 1 1 1 0 1 14 0 1 1 1 0 23 1 1 1 1 0 15 0 1 1 1 1 24 1 1 1 1 1 16 http://onsemi.com 5 IN1 3 SET 1 4 OUT 1 OSC INHIBIT 14 OUT 2 http://onsemi.com 6 7 CLOCK INHIBIT 5 En R C S Q T 1 RESET 2 STAGES 2 THRU 7 8 15 MONO−IN A9 B10 C11 D12 T 9 6 8−BYPASS STAGES 10 THRU 15 16 DECODER OUT 13 DECODER VSS = PIN 8 STAGES 18 THRU 23 VDD = PIN 16 17 24 MC14536B LOGIC DIAGRAM MC14536B TYPICAL RC OSCILLATOR CHARACTERISTICS (For Circuit Diagram See Figure 13 In Application) 8.0 100 f, OSCILLATOR FREQUENCY (kHz) FREQUENCY DEVIATION (%) VDD = 15 V 4.0 0 10 V −4.0 −8.0 5.0 V −12 RTC = 56 kW, C = 1000 pF −16 −55 −25 *Device Only. RS = 0, f = 10.15 kHz @ VDD = 10 V, TA = 25°C RS = 120 kW, f = 7.8 kHz @ VDD = 10 V, TA = 25°C 0 25 50 75 TA, AMBIENT TEMPERATURE (°C)* 100 VDD = 10 V 50 f AS A FUNCTION OF RTC (C = 1000 pF) (RS ≈ 2RTC) 20 10 5.0 2.0 1.0 0.5 f AS A FUNCTION OF C (RTC = 56 kW) (RS = 120 k) 0.2 0.1 1.0 k 125 10 k 100 k RTC, RESISTANCE (W) 0.001 0.01 C, CAPACITANCE (mF) 0.0001 Figure 3. RC Oscillator Stability 1.0 M 0.1 Figure 4. RC Oscillator Frequency as a Function of RTC and C MONOSTABLE CHARACTERISTICS (For Circuit Diagram See Figure 12 In Application) 100 10 t W, PULSE WIDTH ( μs) FORMULA FOR CALCULATING tW IN MICROSECONDS IS AS FOLLOWS: tW = 0.00247 • RX • (CX)0.85 WHERE R IS IN kW, CX IN pF. RX = 100 kW 50 kW 1.0 10 kW 5 kW 10 1.0 FORMULA FOR CALCULATING tW IN MICROSECONDS IS AS FOLLOWS: tW = 0.00247 • RX • (CX)0.85 WHERE R IS IN kW, CX IN pF. RX = 100 kW 50 kW 10 kW 5 kW TA = 25°C VDD = 5 V 0.1 1.0 10 100 CX, EXTERNAL CAPACITANCE (pF) 0.1 1000 1.0 Figure 5. Typical CX versus Pulse Width @ VDD = 5.0 V 100 t W, PULSE WIDTH ( μs) t W, PULSE WIDTH ( μs) 100 10 TA = 25°C VDD = 10 V 10 100 CX, EXTERNAL CAPACITANCE (pF) Figure 6. Typical CX versus Pulse Width @ VDD = 10 V FORMULA FOR CALCULATING tW IN MICROSECONDS IS AS FOLLOWS: tW = 0.00247 • RX • (CX)0.85 WHERE R IS IN kW, CX IN pF. RX = 100 kW 50 kW 1.0 10 kW 5 kW 0.1 1.0 TA = 25°C VDD = 15 V 10 100 CX, EXTERNAL CAPACITANCE (pF) Figure 7. Typical CX versus Pulse Width @ VDD = 15 V http://onsemi.com 7 1000 1000 MC14536B VDD 0.01 mF CERAMIC ID 500 mF SET RESET OUT 1 8−BYPASS IN1 C INH MONO−IN OUT 2 OSC INH PULSE GENERATOR A B C D CL CL DECODE OUT VDD PULSE GENERATOR CL 20 ns 50% IN1 tWL SET OUT 1 RESET 8−BYPASS IN1 C INH MONO−IN OUT 2 OSC INH A B C DECODE OUT D VSS 20 ns 20 ns 20 ns OUT tPLH tWH 90% 10% 50% tTLH tTHL CL VSS 90% 50% 10% 50% DUTY CYCLE Figure 8. Power Dissipation Test Circuit and Waveform Figure 9. Switching Time Test Circuit and Waveforms VDD FUNCTIONAL TEST SEQUENCE Test function (Figure 10) has been included for the reduction of test time required to exercise all 24 counter stages. This test function divides the counter into three 8−stage sections and 255 counts are loaded in each of the 8−stage sections in parallel. All flip−flops are now at a “1”. The counter is now returned to the normal 24−stages in series configuration. One more pulse is entered into In1 which will cause the counter to ripple from an all “1” state to an all “0” state. PULSE GENERATOR SET RESET OUT 1 8−BYPASS IN1 C INH MONO−IN OUT 2 OSC INH A B C D Figure 10. Functional Test Circuit DECODE OUT VSS FUNCTIONAL TEST SEQUENCE Inputs Outputs Comments All 24 stages are in Reset mode. In1 Set Reset 8−Bypass Decade Out Q1 thru Q24 1 0 1 1 0 1 1 1 1 0 Counter is in three 8 stage sections in parallel mode. 0 1 1 1 0 First “1” to “0” transition of clock. 1 0 − − − 1 1 1 0 1 1 1 1 The 255 “1” to “0” transition. 0 0 0 0 1 Counter converted back to 24 stages in series mode. Set and Reset must be connected together and simultaneously go from “1” to “0”. 1 0 0 0 1 In1 Switches to a “1”. 0 0 0 0 0 Counter Ripples from an all “1” state to an all “0” state. 255 “1” to “0” transitions are clocked in the counter. http://onsemi.com 8 tPHL MC14536B +V 16 6 9 8−BYPASS VDD A 10 B 11 C 12 2 14 15 1 PULSE GEN. 7 PULSE GEN. 3 OUT 1 D RESET 4 OUT 2 5 DECODE OUT 13 OSC INH MONO−IN SET CLOCK INH IN1 CLOCK VSS 8 IN1 SET CLOCK INH DECODE OUT POWERUP NOTE: When power is first applied to the device, DECODE OUT can be either at a high or low state. On the rising edge of a SET pulse the output goes high if initially at a low state. The output remains high if initially at a high state. Because CLOCK INH is held high, the clock source on the input pin has no effect on the output. Once CLOCK INH is taken low, the output goes low on the first negative clock transition. The output returns high depending on the 8−BYPASS, A, B, C, and D inputs, and the clock input period. A 2n frequency division (where n = the number of stages selected from the truth table) is obtainable at DECODE OUT. A 20–divided output of IN1 can be obtained at OUT1 and OUT2. Figure 11. Time Interval Configuration Using an External Clock, Set, and Clock Inhibit Functions (Divide−by−2 Configured) http://onsemi.com 9 MC14536B +V 6 RX 9 A 10 B 11 C 12 PULSE GEN. 2 1 7 15 14 3 CLOCK 8−BYPASS 16 VDD OUT 1 D 4 OUT 2 5 DECODE OUT 13 RESET SET CLOCK INH MONO−IN OSC INH IN1 VSS 8 CX IN1 RESET *tw ≈ .00247 • RX • CX0.85 tw in msec RX in kW CX in pF DECODE OUT POWERUP *tw NOTE: When Power is first applied to the device with the RESET input going high, DECODE OUT initializes low. Bringing the RESET input low enables the chip’s internal counters. After RESET goes low, the 2n/2 negative transition of the clock input causes DECODE OUT to go high. Since the MONO−IN input is being used, the output becomes monostable. The pulse width of the output is dependent on the external timing components. The second and all subsequent pulses occur at 2n x (the clock period) intervals where n = the number of stages selected from the truth table. Figure 12. Time Interval Configuration Using an External Clock, Reset, and Output Monostable to Achieve a Pulse Output (Divide−by−4 Configured) http://onsemi.com 10 MC14536B +V RS 16 6 8−BYPASS VDD 9 A 10 B 11 C 12 PULSE GEN. 2 14 15 1 7 3 OUT 1 4 C RTC D OUT 2 RESET 5 OSC INH MONO−IN SET CLOCK INH IN1 VSS 8 DECODE OUT 13 RESET OUT 1 1 fosc ^ 2.3 Rtc C Rs ≥ Rtc F = Hz R = Ohms C = FARADS OUT 2 DECODE OUT POWERUP tw NOTE: This circuit is designed to use the on−chip oscillation function. The oscillator frequency is determined by the external R and C components. When power is first applied to the device, DECODE OUT initializes to a high state. Because this output is tied directly to the OSC INH input, the oscillator is disabled. This puts the device in a low−current standby condition. The rising edge of the RESET pulse will cause the output to go low. This in turn causes OSC INH to go low. However, while RESET is high, the oscillator is still disabled (i.e.: standby condition). After RESET goes low, the output remains low for 2n/2 of the oscillator’s period. After the part times out, the output again goes high. Figure 13. Time Interval Configuration Using On−Chip RC Oscillator and Reset Input to Initiate Time Interval (Divide−by−2 Configured) http://onsemi.com 11 MC14536B ORDERING INFORMATION Device Package MC14536BCP PDIP−16 MC14536BCPG PDIP−16 (Pb−Free) MC14536BDW SOIC−16 MC14536BDWG SOIC−16 (Pb−Free) MC14536BDWR2 SOIC−16 MC14536BDWR2G SOIC−16 (Pb−Free) MC14536BFEL SOEIAJ−16 MC14536BFELG SOEIAJ−16 (Pb−Free) Shipping † 25 Units / Rail 47 Units / Rail 1000 / Tape & Reel 2000 / Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://onsemi.com 12 MC14536B PACKAGE DIMENSIONS PDIP−16 CASE 648−08 ISSUE T NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL. −A− 16 9 1 8 B F C L S −T− SEATING PLANE K H G D M J 16 PL 0.25 (0.010) T A M M DIM A B C D F G H J K L M S INCHES MIN MAX 0.740 0.770 0.250 0.270 0.145 0.175 0.015 0.021 0.040 0.70 0.100 BSC 0.050 BSC 0.008 0.015 0.110 0.130 0.295 0.305 0_ 10 _ 0.020 0.040 MILLIMETERS MIN MAX 18.80 19.55 6.35 6.85 3.69 4.44 0.39 0.53 1.02 1.77 2.54 BSC 1.27 BSC 0.21 0.38 2.80 3.30 7.50 7.74 0_ 10 _ 0.51 1.01 SOIC−16WB CASE 751G−03 ISSUE C A D 9 h X 45 _ E 0.25 1 MILLIMETERS DIM MIN MAX A 2.35 2.65 A1 0.10 0.25 B 0.35 0.49 C 0.23 0.32 D 10.15 10.45 E 7.40 7.60 e 1.27 BSC H 10.05 10.55 h 0.25 0.75 L 0.50 0.90 q 0_ 7_ 8 16X M 14X e T A S B S L A 0.25 B B A1 H 8X M B M 16 q NOTES: 1. DIMENSIONS ARE IN MILLIMETERS. 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. 3. DIMENSIONS D AND E DO NOT INLCUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION. SEATING PLANE T C http://onsemi.com 13 MC14536B PACKAGE DIMENSIONS SOEIAJ−16 CASE 966−01 ISSUE A 16 LE 9 Q1 M_ E HE 1 8 L DETAIL P Z D e VIEW P A DIM A A1 b c D E e HE L LE M Q1 Z A1 b 0.13 (0.005) c NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 ( 0.018). M 0.10 (0.004) MILLIMETERS MIN MAX −−− 2.05 0.05 0.20 0.35 0.50 0.10 0.20 9.90 10.50 5.10 5.45 1.27 BSC 7.40 8.20 0.50 0.85 1.10 1.50 10 _ 0_ 0.70 0.90 −−− 0.78 INCHES MIN MAX −−− 0.081 0.002 0.008 0.014 0.020 0.007 0.011 0.390 0.413 0.201 0.215 0.050 BSC 0.291 0.323 0.020 0.033 0.043 0.059 10 _ 0_ 0.028 0.035 −−− 0.031 ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC). ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: N. American Technical Support: 800−282−9855 Toll Free Literature Distribution Center for ON Semiconductor USA/Canada P.O. Box 61312, Phoenix, Arizona 85082−1312 USA Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada Japan: ON Semiconductor, Japan Customer Focus Center 2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051 Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada Phone: 81−3−5773−3850 Email: [email protected] http://onsemi.com 14 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative. MC14536B/D