MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 D Low Supply-Voltage Range, 1.8 V to 3.6 V D Ultralow-Power Consumption: D D D D D D D -- Active Mode: 270 μA at 1 MHz, 2.2 V -- Standby Mode: 0.7 μA -- Off Mode (RAM Retention): 0.1 μA Ultrafast Wake-Up From Standby Mode in Less Than 1 μs 16-Bit RISC Architecture, 62.5 ns Instruction Cycle Time Hardware Multiplier Basic Clock Module Configurations: -- Internal Frequencies up to 16MHz With Four Calibrated Frequencies to ±1% -- Internal Very Low Power LF Oscillator -- 32-kHz Crystal -- High-Frequency Crystal up to 16 MHz -- Resonator -- External Digital Clock Source -- External Resistor 16-Bit Timer_A With Three Capture/Compare Registers 16-Bit Timer_B With Three Capture/Compare Registers On-Chip Comparator for Analog Signal Compare Function or Slope A/D Conversion D Universal Serial Communication Interface D D D D D D D -- Enhanced UART Supporting Auto Baudrate Detection (LIN) -- IrDA Encoder and Decoder -- Synchronous SPI -- I2Ct Brownout Detector Serial Onboard Programming, No External Programming Voltage Needed Programmable Code Protection by Security Fuse Bootstrap Loader in Flash Devices On-Chip Emulation Module Family Members Include: MSP430F2330 8KB + 256B Flash Memory 1KB RAM MSP430F2350 16KB + 256B Flash Memory 2KB RAM MSP430F2370 32KB + 256B Flash Memory 2KB RAM Available in 40-pin QFN Package For Complete Module Descriptions, See the MSP430x2xx Family User’s Guide description The Texas Instruments MSP430 family of ultralow-power microcontrollers consists of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low-power modes is optimized to achieve extended battery life in portable measurement applications. The devices feature a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 1 μs. The MSP430F23x0 series is an ultralow-power microcontroller with two built-in 16-bit timers, one universal serial communication interface (USCI), a versatile analog comparator, and 32 I/O pins. This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. These devices have limited built-in ESD protection. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright © 2007, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 AVAILABLE OPTIONS PACKAGED DEVICES TA PLASTIC 40-PIN QFN (RHA) --40°C to 85°C --40°C to 105°C MSP430F2330IRHA MSP430F2350IRHA MSP430F2370IRHA MSP430F2330TRHA MSP430F2350TRHA MSP430F2370TRHA AVCC D/AVSS RST/NMI TCK TMS TDI/TCLK TDO/TDI P4.7/TBCLK P4.6/TBOUTH/ACLK P4.5/TB2 pin designation, MSP430F23x0 P4.4/TB1 P4.3/TB0 P4.2/TB2 P1.0/TACLK P1.1/TA0 4 5 27 26 P4.1/TB1 P4.0/TB0 P1.2/TA1 P1.3/TA2 P1.4/SMCLK 6 7 8 25 24 23 P3.7 P3.6 P3.5/UCA0RXD/UCA0SOMI 9 22 10 21 11 12 13 14 15 16 17 18 19 20 P3.4/UCA0TXD/UCA0SIMO P3.3/UCB0CLK/UCA0STE P1.7/TA2 P2.0/ACLK/CA2 P2.1/TAINCLK/CA3 P2.2/CAOUT/TA0/CA4 P2.3/CA0/TA1 P2.4/CA1/TA2 P2.5/ROSC/CA5 P3.0/UCB0STE/UCA0CLK P3.1/UCB0SIMO/UCB0SDA P1.5/TA0 P1.6/TA1 RHA PACKAGE (TOP VIEW) 2 POST OFFICE BOX 655303 P3.2/UCB0SOMI/UCB0SCL 40 39 38 37 36 35 34 33 32 31 1 30 2 29 3 28 DVCC XIN/P2.6/CA6 XOUT/P2.7/CA7 • DALLAS, TEXAS 75265 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 functional block diagram MSP430F23x0 XIN XOUT DVCC D/AVSS AVCC P1.x/P2.x 2x8 P3.x/P4.x 2x8 ACLK Basic Clock System+ SMCLK Flash RAM 32kB 16kB 8kB 2kB 2kB 1kB MCLK 16MHz CPU MAB incl. 16 Registers MDB Hardware Multiplier Emulation JTAG Interface Brownout Protection MPY, MPYS, MAC, MACS Ports P1/P2 2x8 I/O Interrupt capability Watchdog WDT+ 15-Bit Ports P3/P4 2x8 I/O Timer_A3 Timer_B3 Comp_A+ 3 CC Registers 3 CC Registers 8 Channels USCI A0: UART IrDA, SPI USCI B0: SPI, I2C RST/NMI POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 Terminal Functions, MSP430F23x0 TERMINAL NAME NO DESCRIPTION I/O DVCC 1 XIN/P2.6/CA6 2 I/O Input terminal of crystal oscillator/general-purpose digital I/O pin/Comparator_A input XOUT/P2.7/CA7 3 I/O Output terminal of crystal oscillator/general-purpose digital I/O pin/Comparator_A input P1.0/TACLK 4 I/O General-purpose digital I/O pin/Timer_A, clock signal TACLK input P1.1/TA0 5 I/O General-purpose digital I/O pin/Timer_A, capture: CCI0A input, compare: Out0 output P1.2/TA1 6 I/O General-purpose digital I/O pin/Timer_A, capture: CCI1A input, compare: Out1 output P1.3/TA2 7 I/O General-purpose digital I/O pin/Timer_A, capture: CCI2A input, compare: Out2 output P1.4/SMCLK 8 I/O General-purpose digital I/O pin/SMCLK signal output P1.5/TA0 9 I/O General-purpose digital I/O pin/Timer_A, compare: Out0 output P1.6/TA1 10 I/O General-purpose digital I/O pin/Timer_A, compare: Out1 output P1.7/TA2 11 I/O General-purpose digital I/O pin/Timer_A, compare: Out2 output P2.0/ACLK/CA2 12 I/O General-purpose digital I/O pin/ACLK output/Comparator_A input P2.1/TAINCLK/CA3 13 I/O General-purpose digital I/O pin/Timer_A, clock signal at INCLK/Comparator_A input P2.2/CAOUT/TA0/CA4 14 I/O General-purpose digital I/O pin/Comparator_A output/Timer_A, capture: CCI0B input/Comparator_A input P2.3/CA0/TA1 15 I/O General-purpose digital I/O pin/Comparator_A input/Timer_A, compare: Out1 output P2.4/CA1/TA2 16 I/O General-purpose digital I/O pin/Comparator_A input/Timer_A, compare: Out2 output P2.5/ROSC/CA5 17 I/O General-purpose digital I/O frequency/Comparator_A input P3.0/UCB0STE/ UCA0CLK 18 I/O General-purpose digital I/O pin/USCIB0 slave transmit enable/USCIA0 clock input/output P3.1/UCB0SIMO/ UCB0SDA 19 I/O General-purpose digital I/O pin/USCIB0 slave in/master out in SPI mode, SDA I2C data in I2C mode P3.2/UCB0SOMI/ UCB0SCL 20 I/O General-purpose digital I/O pin/USCIB0 slave out/master in in SPI mode, SCL I2C clock in I2C mode P3.3/UCB0CLK/ UCA0STE 21 I/O General-purpose digital I/O/USCIB0 clock input/output, USCIA0 slave transmit enable P3.4/UCA0TXD/ UCA0SIMO 22 I/O General-purpose digital I/O pin/USCIA0 transmit data output in UART mode, slave data in/master out in SPI mode P3.5/UCA0RXD/ UCA0SOMI 23 I/O General-purpose digital I/O pin/USCIA0 receive data input in UART mode, slave data out/master in in SPI mode P3.6 24 I/O General-purpose digital I/O pin P3.7 25 I/O General-purpose digital I/O pin P4.0/TB0 26 I/O General-purpose digital I/O pin/Timer_B, capture: CCI0A input, compare: Out0 output P4.1/TB1 27 I/O General-purpose digital I/O pin/Timer_B, capture: CCI1A input, compare: Out1 output P4.2/TB2 28 I/O General-purpose digital I/O pin/Timer_B, capture: CCI2A input, compare: Out2 output P4.3/TB0 29 I/O General-purpose digital I/O pin/Timer_B, capture: CCI0B input, compare: Out0 output P4.4/TB1 30 I/O General-purpose digital I/O pin/Timer_B, capture: CCI1B input, compare: Out1 output P4.5/TB2 31 I/O General-purpose digital I/O pin/Timer_B, compare: Out2 output P4.6/TBOUTH/ACLK 32 I/O General-purpose digital I/O pin/switch all PWM digital outputs to high impedance -- Timer_B3: TB0 to TB2/ACLK output P4.7/TBCLK 33 I/O General-purpose digital I/O pin/input clock TBCLK -- Timer_B3 TDO/TDI 34 I/O Test data output port. TDO/TDI data output or programming data input terminal TDI/TCLK 35 I Test data input or test clock input. The device protection fuse is connected to TDI/TCLK. TMS 36 I Test mode select. TMS is used as an input port for device programming and test. 4 Digital supply voltage, positive terminal. Supplies all digital parts. POST OFFICE BOX 655303 pin/input for external • DALLAS, TEXAS 75265 resistor defining the DCO nominal MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 Terminal Functions (Continued) TERMINAL NAME DESCRIPTION NO I/O TCK 37 I Test clock. TCK is the clock input port for device programming and test. RST/NMI 38 I Reset input, nonmaskable interrupt input port D/AVSS 39 AVCC 40 QFN Pad NA Digital/Analog supply voltage, negative terminal Analog supply voltage, positive terminal NA QFN package pad connection to D/AVSS recommended POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 short-form description CPU The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand. Program Counter PC/R0 Stack Pointer SP/R1 SR/CG1/R2 Status Register Constant Generator The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator respectively. The remaining registers are general-purpose registers. Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions. instruction set The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 1 shows examples of the three types of instruction formats; the address modes are listed in Table 2. CG2/R3 General-Purpose Register R4 General-Purpose Register R5 General-Purpose Register R6 General-Purpose Register R7 General-Purpose Register R8 General-Purpose Register R9 General-Purpose Register R10 General-Purpose Register R11 General-Purpose Register R12 General-Purpose Register R13 General-Purpose Register R14 General-Purpose Register R15 Table 1. Instruction Word Formats Dual operands, source-destination e.g. ADD R4,R5 R4 + R5 ------> R5 Single operands, destination only e.g. CALL PC ---->(TOS), R8----> PC Relative jump, un/conditional e.g. JNE R8 Jump-on-equal bit = 0 Table 2. Address Mode Descriptions ADDRESS MODE S D Register F F MOV Rs,Rd MOV R10,R11 Indexed F F MOV X(Rn),Y(Rm) MOV 2(R5),6(R6) Symbolic (PC relative) F F MOV EDE,TONI M(EDE) ----> M(TONI) Absolute F F MOV &MEM,&TCDAT M(MEM) ----> M(TCDAT) EXAMPLE OPERATION R10 ----> R11 M(2+R5)----> M(6+R6) Indirect F MOV @Rn,Y(Rm) MOV @R10,Tab(R6) M(R10) ----> M(Tab+R6) Indirect autoincrement F MOV @Rn+,Rm MOV @R10+,R11 M(R10) ----> R11 R10 + 2----> R10 F MOV #X,TONI MOV #45,TONI Immediate NOTE : S = source 6 SYNTAX D = destination POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 #45 ----> M(TONI) MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 operating modes The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request and restore back to the low-power mode on return from the interrupt program. The following six operating modes can be configured by software: D Active mode (AM) -- All clocks are active D Low-power mode 0 (LPM0) -- CPU is disabled ACLK and SMCLK remain active, MCLK is disabled D Low-power mode 1 (LPM1) -- CPU is disabled ACLK and SMCLK remain active, MCLK is disabled DCO’s dc-generator is disabled if DCO not used in active mode D Low-power mode 2 (LPM2) -- CPU is disabled MCLK and SMCLK are disabled DCO’s dc-generator remains enabled ACLK remains active D Low-power mode 3 (LPM3) -- CPU is disabled MCLK and SMCLK are disabled DCO’s dc-generator is disabled ACLK remains active D Low-power mode 4 (LPM4) -- CPU is disabled ACLK is disabled MCLK and SMCLK are disabled DCO’s dc-generator is disabled Crystal oscillator is stopped POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 interrupt vector addresses The interrupt vectors and the power-up starting address are located in the address range 0xFFFF--0xFFC0. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence. INTERRUPT SOURCE INTERRUPT FLAG SYSTEM INTERRUPT WORD ADDRESS PRIORITY Power-up External Reset Watchdog Flash key violation PC out of range (see Note 1) PORIFG RSTIFG WDTIFG KEYV (see Note 2) Reset 0xFFFE 31, highest NMI Oscillator Fault Flash memory access violation NMIIFG OFIFG ACCVIFG (see Notes 2 & 6) (non)-maskable (non)-maskable (non)-maskable 0xFFFC 30 Timer_B3 TBCCR0 CCIFG (see Note 3) maskable 0xFFFA 29 Timer_B3 TBCCR1 and TBCCR2, CCIFGs, TBIFG (see Notes 2 & 3) maskable 0xFFF8 28 Comparator_A+ CAIFG maskable 0xFFF6 27 Watchdog timer WDTIFG maskable 0xFFF4 26 Timer_A3 TACCR0 CCIFG (see Note 3) maskable 0xFFF2 25 Timer_A3 TACCR1 CCIFG, TACCR2 CCIFG, TAIFG (see Notes 2 & 3) maskable 0xFFF0 24 USCI_A0/USCI_B0 Receive USCI_B0 I2C Status UCA0RXIFG, UCB0RXIFG (see Note 2 and 4) maskable 0xFFEE 23 USCI_A0/USCI_B0 Transmit USCI_B0 I2C Receive / Transmit UCA0TXIFG, UCB0TXIFG (see Note 2 and 5) maskable 0xFFEC 22 0xFFEA 21 0xFFE8 20 maskable 0xFFE6 19 maskable 0xFFE4 18 0xFFE2 17 0xFFE0 16 I/O port P2 (eight flags) I/O port P1 (eight flags) P2IFG.0 to P2IFG.7 (see Notes 2 & 3) P1IFG.0 to P1IFG.7 (see Notes 2 & 3) (see Note 7) 0xFFDE 15 (see Note 8) 0xFFDC--0xFFC0 14--0, lowest NOTES: 1. 2. 3. 4. 5. 6. A reset is executed if the CPU tries to fetch instructions from within the module register memory address range (0x0000--0x01FF). Multiple source flags. Interrupt flags are located in the module. In SPI mode: UCB0RXIFG. In I2C mode: UCALIFG, UCNACKIFG, ICSTTIFG, UCSTPIFG. In UART/SPI mode: UCB0TXIFG. In I2C mode: UCB0RXIFG, UCB0TXIFG. Non-maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot. Non-maskable: neither the individual nor the general interrupt-enable bit will disable an interrupt event. 7. This location is used as bootstrap loader security key (BSLSKEY). A 0xAA55 at this location disables the BSL completely. A zero (0h) disables the erasure of the flash if an invalid password is supplied. 8. The interrupt vectors at addresses 0xFFDC to 0xFFC0 are not used in this device and can be used for regular program code if necessary. 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 special function registers Most interrupt and module-enable bits are collected in the lowest address space. Special-function register bits not allocated to a functional purpose are not physically present in the device. This arrangement provides simple software access. interrupt enable 1 and 2 Address 7 6 00h 5 4 ACCVIE rw--0 3 2 1 0 NMIIE OFIE WDTIE rw--0 rw--0 rw--0 WDTIE Watchdog Timer interrupt enable. Inactive if watchdog mode is selected. Active if Watchdog Timer is configured in interval timer mode. OFIE Oscillator fault enable NMIIE (Non)maskable interrupt enable ACCVIE Flash access violation interrupt enable Address 7 6 5 4 01h UCA0RXIE USCI_A0 receive-interrupt enable UCA0TXIE USCI_A0 transmit-interrupt enable UCB0RXIE USCI_B0 receive-interrupt enable UCB0TXIE USCI_B0 transmit-interrupt enable POST OFFICE BOX 655303 3 2 1 0 UCB0TXIE UCB0RXIE UCA0TXIE UCA0RXIE rw--0 rw--0 rw--0 rw--0 • DALLAS, TEXAS 75265 9 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 interrupt flag register 1 and 2 Address 7 6 5 02h 4 3 2 1 0 NMIIFG RSTIFG PORIFG OFIFG WDTIFG rw--0 rw--(0) rw--(1) rw--1 rw--(0) WDTIFG Set on Watchdog Timer overflow (in watchdog mode) or security key violation. Reset on VCC power-up or a reset condition at RST/NMI pin in reset mode. OFIFG Flag set on oscillator fault RSTIFG External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset on VCC power up PORIFG Power-on interrupt flag. Set on VCC power up. NMIIFG Set via RST/NMI pin Address 7 6 5 03h 4 3 2 1 0 UCB0TX IFG UCB0RX IFG UCA0TX IFG UCA0RX IFG rw--0 rw--0 rw--0 rw--0 UCA0RXIFG USCI_A0 receive-interrupt flag UCA0TXIFG USCI_A0 transmit-interrupt flag UCB0RXIFG USCI_B0 receive-interrupt flag UCB0TXIFG USCI_B0 transmit-interrupt flag Legend rw: rw-0,1: rw-(0,1): Bit can be read and written. Bit can be read and written. It is Reset or Set by PUC. Bit can be read and written. It is Reset or Set by POR. SFR bit is not present in device 10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 memory organization MSP430F2330 MSP430F2350 MSP430F2370 Memory Main: interrupt vector Main: code memory Size Flash Flash 8KB Flash 0xFFFF -- 0xFFC0 0xFFFF -- 0xE000 16KB Flash 0xFFFF -- 0xFFC0 0xFFFF -- 0xC000 32KB 0xFFFF -- 0xFFC0 0xFFFF -- 0x8000 Information memory Size Flash 256 Byte 0x10FF -- 0x1000 256 Byte 0x10FF -- 0x1000 256 Byte 0x10FF -- 0x1000 Boot memory Size ROM 1KB 0x0FFF -- 0x0C00 1KB 0x0FFF -- 0x0C00 1KB 0x0FFF -- 0x0C00 Size 1KB Byte 0x5FF -- 0x0200 2KB Byte 0x9FF -- 0x0200 2KB 0x09FF -- 0x0200 16-bit 8-bit 8-bit SFR 0x01FF -- 0x0100 0x00FF -- 0x0010 0x000F -- 0x0000 0x01FF -- 0x0100 0x00FF -- 0x0010 0x000F -- 0x0000 0x01FF -- 0x0100 0x00FF -- 0x0010 0x000F -- 0x0000 RAM Peripherals bootstrap loader (BSL) The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete description of the features of the BSL and its implementation, see the Application report Features of the MSP430 Bootstrap Loader, Literature Number SLAA089. BSL Function RHA Package Pins Data Transmit 5 -- P1.1 Data Receive 14 -- P2.2 flash memory The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include: D Flash memory has n segments of main memory and four segments of information memory (A to D) of 64 bytes each. Each segment in main memory is 512 bytes in size. D Segments 0 to n may be erased in one step, or each segment may be individually erased. D Segments A to D can be erased individually, or as a group with segments 0--n. Segments A to D are also called information memory. D Segment A contains calibration data. After reset segment A is protected against programming or erasing. It can be unlocked but care should be taken not to erase this segment if the calibration data is required. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 peripherals Peripherals are connected to the CPU through data, address, and control busses and can be handled using all instructions. For complete module descriptions, refer to the MSP430x2xx Family User’s Guide. oscillator and system clock The clock system is supported by the basic clock module that includes support for a 32768-Hz watch crystal oscillator, an internal very low power, low frequency oscillator, an internal digitally-controlled oscillator (DCO) and a high frequency crystal oscillator. The basic clock module is designed to meet the requirements of both low system cost and low-power consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 1 μs. The basic clock module provides the following clock signals: D Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal, a high frequency crystal or the internal very D D low power LF oscillator. Main clock (MCLK), the system clock used by the CPU. Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules. The DCO settings to calibrate the DCO output frequency are stored in the information memory segment A. DCO Calibration Data (provided from factory in flash info memory segment A) DCO Frequency Calibration Register Size Address 1 MHz CALBC1_1MHZ byte 0x10FF CALDCO_1MHZ byte 0x10FE CALBC1_8MHZ byte 0x10FD CALDCO_8MHZ byte 0x10FC 8 MHz 12 MHz 16 MHz CALBC1_12MHZ byte 0x10FB CALDCO_12MHZ byte 0x10FA CALBC1_16MHZ byte 0x10F9 CALDCO_16MHZ byte 0x10F8 brownout The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and power off. digital I/O There are 4 8-bit I/O ports implemented—ports P1 through P4: D D D D D All individual I/O bits are independently programmable. Any combination of input, output, and interrupt conditions is possible. Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2. Read/write access to port-control registers is supported by all instructions. Each I/O has an individually programmable pull--up/pull--down resistor. The MSP430F23x0 devices provide 32 total port I/O pins available externally. Please see the device pinout for more information. watchdog timer + The primary function of the watchdog timer (WDT+) module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals. 12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 hardware multiplier The multiplication operation is supported by a dedicated peripheral module. The module performs 16×16, 16×8, 8×16, and 8×8 bit operations. The module is capable of supporting signed and unsigned multiplication as well as signed and unsigned multiply and accumulate operations. The result of an operation can be accessed immediately after the operands have been loaded into the peripheral registers. No additional clock cycles are required. comparator_A+ The primary function of the comparator_A+ module is to support precision slope analog--to--digital conversions, battery--voltage supervision, and monitoring of external analog signals. timer_A3 Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Timer_A3 Signal Connections Input Pin Number Device Input Signal Module Input Name TACLK TACLK ACLK ACLK SMCLK SMCLK 13 - P2.1 TAINCLK INCLK 5 - P1.1 TA0 CCI0A 14 - P2.2 TA0 CCI0B VSS GND Module Block Module Output Signal RHA 4 - P1.0 6 - P1.2 7 - P1.3 Output Pin Number RHA Timer NA 5 - P1.1 CCR0 TA0 9 -- P1.5 VCC VCC TA1 CCI1A 6 - P1.2 CAOUT (internal) CCI1B 10 - P1.6 VSS GND VCC VCC TA2 CCI2A ACLK (internal) CCI2B VSS GND VCC VCC CCR1 TA1 15 - P2.3 7 - P1.3 CCR2 POST OFFICE BOX 655303 TA2 • DALLAS, TEXAS 75265 11 - P1.7 16 - P2.4 13 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 timer_B3 Timer_B3 is a 16-bit timer/counter with three capture/compare registers. Timer_B3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_B3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Timer_B3 Signal Connections Input Pin Number Device Input Signal Module Input Name TBCLK TBCLK Module Block Module Output Signal RHA 33 - P4.7 RHA ACLK ACLK SMCLK SMCLK TBCLK INCLK 26 - P4.0 TB0 CCI0A 29 - P4.3 TB0 CCI0B DVSS GND 27 - P4.1 30 - P4.4 28 - P4.2 Output Pin Number DVCC VCC TB1 CCI1A TB1 CCI1B DVSS GND DVCC VCC TB2 CCI2A ACLK (internal) CCI2B DVSS GND DVCC VCC Timer NA 26 - P4.0 CCR0 TB0 29 - P4.3 27 - P4.1 CCR1 TB1 30 - P4.4 28 - P4.2 CCR2 TB2 31 - P4.5 USCI The universal serial communication interface (USCI) module is used for serial data communication. The USCI module supports synchronous communication protocols like SPI (3 or 4 pin), I2C and asynchronous communication protocols like UART, enhanced UART with automatic baudrate detection (LIN), and IrDA. USCI A0 provides support for SPI (3 or 4 pin), UART, enhanced UART and IrDA. USCI B0 provides support for SPI (3 or 4 pin) and I2C. 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 peripheral file map PERIPHERALS WITH WORD ACCESS Timer_B3 Capture/compare register Capture/compare register Capture/compare register Timer_B register Capture/compare control Capture/compare control Capture/compare control Timer_B control Timer_B interrupt vector TBCCR2 TBCCR1 TBCCR0 TBR TBCCTL2 TBCCTL1 TBCCTL0 TBCTL TBIV 0x0196 0x0194 0x0192 0x0190 0x0186 0x0184 0x0182 0x0180 0x011E Timer_A3 Capture/compare register Capture/compare register Capture/compare register Timer_A register Capture/compare control Capture/compare control Capture/compare control Timer_A control Timer_A interrupt vector TACCR2 TACCR1 TACCR0 TAR TACCTL2 TACCTL1 TACCTL0 TACTL TAIV 0x0176 0x0174 0x0172 0x0170 0x0166 0x0164 0x0162 0x0160 0x012E Flash Memory Flash control 3 Flash control 2 Flash control 1 FCTL3 FCTL2 FCTL1 0x012C 0x012A 0x0128 Hardware Multiplier Sum extend Result high word Result low word Second operand Multiply signed +accumulate/operand1 Multiply+accumulate/operand1 Multiply signed/operand1 Multiply unsigned/operand1 SUMEXT RESHI RESLO OP2 MACS MAC MPYS MPY 0x013E 0x013C 0x013A 0x0138 0x0136 0x0134 0x0132 0x0130 Watchdog Timer+ Watchdog/timer control WDTCTL 0x0120 USCI_B0 USCI_B0 transmit buffer USCI_B0 receive buffer USCI_B0 status USCI_B0 bit rate control 1 USCI_B0 bit rate control 0 USCI_B0 control 1 USCI_B0 control 0 USCI_B0 I2C slave address USCI_B0 I2C own address UCB0TXBUF UCB0RXBUF UCB0STAT UCB0BR1 UCB0BR0 UCB0CTL1 UCB0CTL0 UCB0SA UCB0OA 0x06F 0x06E 0x06D 0x06B 0x06A 0x069 0x068 0x011A 0x0118 USCI_A0 USCI_A0 transmit buffer USCI_A0 receive buffer USCI_A0 status USCI_A0 modulation control USCI_A0 baud rate control 1 USCI_A0 baud rate control 0 USCI_A0 control 1 USCI_A0 control 0 USCI_A0 IrDA receive control USCI_A0 IrDA transmit control USCI_A0 auto baud rate control UCA0TXBUF UCA0RXBUF UCA0STAT UCA0MCTL UCA0BR1 UCA0BR0 UCA0CTL1 UCA0CTL0 UCA0IRRCTL UCA0IRTCTL UCA0ABCTL 0x0067 0x0066 0x0065 0x0064 0x0063 0x0062 0x0061 0x0060 0x005F 0x005E 0x005D PERIPHERALS WITH BYTE ACCESS POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 PERIPHERALS WITH BYTE ACCESS (continued) 16 Basic Clock System+ Basic clock system control 3 Basic clock system control 2 Basic clock system control 1 DCO clock frequency control BCSCTL3 BCSCTL2 BCSCTL1 DCOCTL 0x0053 0x0058 0x0057 0x0056 Port P4 Port P4 resistor enable Port P4 selection Port P4 direction Port P4 output Port P4 input P4REN P4SEL P4DIR P4OUT P4IN 0x0011 0x001F 0x001E 0x001D 0x001C Port P3 Port P3 resistor enable Port P3 selection Port P3 direction Port P3 output Port P3 input P3REN P3SEL P3DIR P3OUT P3IN 0x0010 0x001B 0x001A 0x0019 0x0018 Port P2 Port P2 resistor enable Port P2 selection Port P2 interrupt enable Port P2 interrupt edge select Port P2 interrupt flag Port P2 direction Port P2 output Port P2 input P2REN P2SEL P2IE P2IES P2IFG P2DIR P2OUT P2IN 0x002F 0x002E 0x002D 0x002C 0x002B 0x002A 0x0029 0x0028 Port P1 Port P1 resistor enable Port P1 selection Port P1 interrupt enable Port P1 interrupt edge select Port P1 interrupt flag Port P1 direction Port P1 output Port P1 input P1REN P1SEL P1IE P1IES P1IFG P1DIR P1OUT P1IN 0x0027 0x0026 0x0025 0x0024 0x0023 0x0022 0x0021 0x0020 Special Function SFR interrupt flag 2 SFR interrupt flag 1 SFR interrupt enable 2 SFR interrupt enable 1 IFG2 IFG1 IE2 IE1 0x0003 0x0002 0x0001 0x0000 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 absolute maximum ratings (see Note 1) Voltage applied at VCC to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . --0.3 V to + 4.1 V Voltage applied to any pin (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . --0.3 V to VCC+0.3 V Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±2 mA Storage temperature (unprogrammed device, see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . --55°C to 150°C Storage temperature (programmed device, see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . --40°C to 105°C NOTES: 1. Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. 2. All voltages referenced to VSS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is applied to the TDI/TCLK pin when blowing the JTAG fuse. 3. Higher temperature may be applied during board soldering process according to the current JEDEC J--STD--020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels. recommended operating conditions PARAMETER MIN NOM MAX UNITS Supply voltage during program execution, VCC AVCC = DVCC = VCC (see Note 1) 1.8 3.6 V Supply voltage during flash memory programming, VCC AVCC = DVCC = VCC (see Note 1) 2.2 3.6 V Supply voltage, VSS AVSS = DVSS = VSS 0.0 0.0 V I Version --40 85 °C T Version --40 105 °C VCC = 1.8 V, Duty Cycle = 50% ±10% dc 4.15 VCC = 2.7 V, Duty Cycle = 50% ±10% dc 12 VCC ≥ 3.3 V, Duty Cycle = 50% ±10% dc 16 Operating free-air free air temperature range, range TA Processor frequency fSYSYTEM (Maximum MCLK frequency) (see Notes 2, 3 and Figure 1) MHz NOTES: 1. It is recommended to power AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be tolerated during power-up and operation. 2. The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse width of the specified maximum frequency. 3. Modules might have a different maximum input clock specification. See the specification of the respective module in this datasheet. Legend: System Frequency --MHz 16 MHz Supply voltage range during flash memory programming 12 MHz Supply voltage range during program execution 7.5 MHz 4.15 MHz 1.8 V 2.2 V 2.7 V 3.3 V 3.6 V Supply Voltage --V NOTE : Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum VCC of 2.2 V. Figure 1. Operating Area POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 17 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) active mode supply current (into VCC) excluding external current (see Notes 1 and 2) PARAMETER IAM, 1MHz IAM, 1MHz IAM, 4kHz IAM,100kHz Active mode (AM) current (1MHz) Active mode (AM) current (1MHz) Active mode (AM) current (4kHz) Active mode (AM) current (100kHz) TEST CONDITIONS TA fDCO = fMCLK = fSMCLK = 1MHz, fACLK = 32,768Hz, Program executes from flash, BCSCTL1 = CALBC1_1MHZ, CALBC1 1MHZ DCOCTL = CALDCO_1MHZ, CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0 VCC 2.2 V MIN TYP MAX 270 370 μA fDCO = fMCLK = fSMCLK = 1MHz, fACLK = 32,768Hz, Program executes in RAM, BCSCTL1 = CALBC1_1MHZ, CALBC1 1MHZ DCOCTL = CALDCO_1MHZ, CPUOFF = 0, SCG0 = 0, SCG1 = 0, OSCOFF = 0 3V 390 2.2 V 226 3V fMCLK = fSMCLK = fACLK = 32,768Hz/8 = 4,096Hz, fDCO = 0Hz, Program executes in flash, SELMx = 11, SELS = 1, DIVMx = DIVSx = DIVAx = 11, CPUOFF = 0, SCG0 = 1, SCG1 = 0, OSCOFF = 0 --40..85_C 2.2 V 105_C 2.2 V --40..85_C 3V 105_C 3V fMCLK = fSMCLK = fDCO(0, 0) ≈ 100kHz, fACLK = 0Hz 0Hz, Program executes in flash, RSELx = 0, DCOx = 0, CPUOFF = 0, 0 SCG0 = 0 0, SCG1 = 0, 0 OSCOFF = 1 --40..85_C 2.2 V 105_C 2.2 V --40..85_C 3V 105_C 3V POST OFFICE BOX 655303 550 μA 318 2 6 14 μA 3 • DALLAS, TEXAS 75265 9 17 60 85 95 72 NOTES: 1. All inputs are tied to 0 V or VCC. Outputs do not source or sink any current. 2. The currents are characterized with a Micro Crystal CC4V--T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance is chosen to closely match the required 9pF. 18 UNIT 95 105 μA MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 typical characteristics -- active mode supply current (into DVCC + AVCC) 8.0 5.0 fDCO = 16 MHz 6.0 fDCO = 12 MHz 5.0 4.0 fDCO = 8 MHz 3.0 2.0 0.0 1.5 2.0 2.5 3.0 3.5 4.0 TA = 25 °C 3.0 VCC = 3 V 2.0 TA = 85 °C TA = 25 °C 1.0 fDCO = 1 MHz 1.0 TA = 85 °C Active Mode Current -- mA Active Mode Current -- mA 7.0 VCC = 2.2 V 4.0 0.0 0.0 VCC -- Supply Voltage -- V Figure 2. Active mode current vs VCC, TA = 25°C POST OFFICE BOX 655303 4.0 8.0 12.0 16.0 fDCO -- DCO Frequency -- MHz Figure 3. Active mode current vs DCO frequency • DALLAS, TEXAS 75265 19 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) low power mode supply currents (into VCC) excluding external current (see Notes 1 and 2) PARAMETER ILPM0, 1MHz ILPM0, 100kHz ILPM2 Low-power mode 0 (LPM0) current, current see Note 3 Low-power mode 0 (LPM0) current, current see Note 3 Low-power mode 2 (LPM2) current, current see Note 4 TEST CONDITIONS VCC fMCLK = 0MHz, fSMCLK = fDCO = 1MHz, 1MHz fACLK = 32,768Hz, BCSCTL1 = CALBC1_1MHZ, CALBC1 1MHZ DCOCTL = CALDCO_1MHZ, _ CPUOFF = 1, 1 SCG0 = 0 0, SCG1 = 0, 0 OSCOFF = 0 TA = --40..85_C fMCLK = 0MHz, fSMCLK = fDCO(0, 0) ≈ 100kHz, 100kHz fACLK = 0Hz, RSELx = 0, DCOx = 0, CPUOFF = 1, 1 SCG0 = 0 0, SCG1 = 0, 0 OSCOFF = 1 fMCLK = fSMCLK = 0MHz, fDCO = 1MHz, fACLK = 32 32,768Hz, 768Hz BCSCTL1 = CALBC1_1MHZ, DCOCTL = CALDCO_1MHZ, CPUOFF = 1, 1 SCG0 = 0 0, SCG1 = 1, 1 OSCOFF = 0 TA = --40..85_C TA = 105_C TA = --40..85_C TA = 105_C TA = 105_C TA = --40..85_C TA = 105_C TA = --40..85_C TA = 105_C TA = --40..85_C TA = 105_C 22V 2.2 3V 22V 2.2 3V 22V 2.2 3V TA = --40..25°C ILPM3,LFXT1 Low-power mode 3 (LPM3) current, current see Note 4 fDCO = fMCLK = fSMCLK = 0MHz, 0MHz fACLK = 32,768Hz, CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 TA = 85°C MIN TYP MAX 68 84 μA 90 μA 110 μA 115 μA 45 μA 50 μA 50 μA 54 μA 28 μA 32 μA 32 μA 37 μA 88 36 40 20 23 0.7 TA = 105°C 0.85 ILPM3,VLO fDCO = fMCLK = fSMCLK = 0MHz, 0MHz fACLK from internal LF oscillator (VLO), CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 ILPM4 Low-power mode 4 (LPM4) current, current see Note 5 2.9 0.35 3.5 3V 11 TA = --40°C 0.5 TA = 85°C 2 2V 2.2V 0.5 1.7 8.6 TA = --40°C 0.5 3V 0.5 1.9 TA = 105°C NOTES: 1. All inputs are tied to 0 V or VCC. Outputs do not source or sink any current. 2. The currents are characterized with a Micro Crystal CC4V--T1A SMD crystal with a load capacitance of 9 pF. The internal and external load capacitance is chosen to closely match the required 9pF. 3. Current for brownout and WDT clocked by SMCLK included. 4. Current for brownout and WDT clocked by ACLK included. 5. Current for brownout included. POST OFFICE BOX 655303 2.7 TA = 105°C TA = 25°C • DALLAS, TEXAS 75265 μA μ 1.0 TA = 105°C TA = 85°C 20 0.8 9 TA = --40..25°C TA = 25°C fDCO = fMCLK = fSMCLK = 0MHz, 0MHz fACLK = 0Hz, CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 0.25 2.2 V TA = 105°C TA = 85°C μA μ 12 TA = --40..25°C Low-power mode 3 current, current (LPM3) see Note 4 1.2 3.8 3V TA = 105°C TA = 85°C μA μ 10 TA = --40..25°C TA = 85°C 1.0 3.3 2.2 V UNIT 3 9 μA μ μA A μA A MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) Schmitt-trigger inputs -- Ports P1, P2, P3 P4, JTAG, RST/NMI, and XIN (see Note) PARAMETER VIT+ VIT-- TEST CONDITIONS Positive-going P iti i input i t threshold th h ld voltage Negative-going N ti i input i t threshold th h ld voltage Vhys Input voltage hysteresis (VIT+ -- VIT-- ) RPull Pullup/pulldown resistor For pullup: VIN = VSS; For pulldown: VIN = VCC CI Input capacitance VIN = VSS or VCC VCC MIN MAX UNIT 0.45 0.75 VCC 2.2 V 1.00 1.65 3V 1.35 2.25 0.25 0.55 2.2 V 0.55 1.20 3V 0.75 1.65 2.2 V 0.2 1.0 3V 0.3 1.0 20 TYP 35 50 5 V VCC V V kΩ pF NOTE : XIN only in bypass mode. inputs -- Ports P1, P2 PARAMETER t(int) TEST CONDITIONS Port P1, P2: P1.x to P2.x, External trigger puls width to set interrupt flag, (see Note) External interrupt timing VCC 2.2 V/3 V MIN TYP MAX 20 UNIT ns NOTE : An external signal sets the interrupt flag every time the minimum interrupt puls width t(int) is met. It may be set even with trigger signals shorter than t(int). leakage current -- Ports P1, P2, P3 and P4 PARAMETER Ilkg(Px.x) TEST CONDITIONS High-impedance leakage current see Notes 1 and 2 VCC 2.2 V/3 V MIN TYP MAX UNIT ±50 nA NOTES: 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted. 2. The leakage of the digital port pins is measured individually. The port pin is selected for input and the pull--up/pull--down resistor is disabled. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 21 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) outputs -- Ports P1, P2, P3 and P4 PARAMETER VOH VOL High level output High-level voltage Low level output Low-level voltage VCC MIN I(OHmax) = --1.5 mA (see Notes 1) TEST CONDITIONS 2.2 V VCC --0.25 TYP MAX VCC UNIT I(OHmax) = --6 mA (see Notes 2) 2.2 V VCC --0.6 VCC I(OHmax) = --1.5 mA (see Notes 1) 3V VCC --0.25 VCC I(OHmax) = --6 mA (see Notes 2) 3V VCC --0.6 VCC I(OLmax) = 1.5 mA (see Notes 1) 2.2 V VSS VSS+0.25 I(OLmax) = 6 mA (see Notes 2) 2.2 V VSS VSS+0.6 I(OLmax) = 1.5 mA (see Notes 1) 3V VSS VSS+0.25 I(OLmax) = 6 mA (see Notes 2) 3V VSS VSS+0.6 V V NOTES: 1. The maximum total current, IOHmax and IOLmax, for all outputs combined, should not exceed ±12 mA to hold the maximum voltage drop specified. 2. The maximum total current, IOHmax and IOLmax, for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop specified. output frequency -- Ports P1, P2, P3 and P4 PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT 7.5 MHz fPx.y Port output frequency (with load) P1.4/SMCLK, CL = 20 pF, RL = 1 kΩ (see Note 1 and 2) 2.2 V 3V 12 MHz fPort_CLK Clock output frequency P2.0/ACLK, P1.4/SMCLK, CL = 20 pF (see Note 2) 2.2 V 7.5 MHz 3V 16 MHz NOTES: 1. A resistive divider with 2 times 0.5 kΩ between VCC and VSS is used as load. The output is connected to the center tap of the divider. 2. The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency. 22 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) typical characteristics -- outputs TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE 50.0 TA = 25°C VCC = 2.2 V P2.4 20.0 I OL -- Typical Low-Level Output Current -- mA I OL -- Typical Low-Level Output Current -- mA 25.0 TA = 85°C 15.0 10.0 5.0 0.0 0.0 0.5 1.0 1.5 2.0 VCC = 3 V P2.4 40.0 TA = 85°C 30.0 20.0 10.0 0.0 0.0 2.5 TA = 25°C 0.5 VOL -- Low-Level Output Voltage -- V 1.0 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE I OH -- Typical High-Level Output Current -- mA I OH -- Typical High-Level Output Current -- mA VCC = 2.2 V P2.4 --5.0 --10.0 --15.0 TA = 85°C TA = 25°C 0.5 1.0 2.5 3.0 3.5 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE 0.0 --25.0 0.0 2.0 Figure 5 Figure 4 --20.0 1.5 VOL -- Low-Level Output Voltage -- V 1.5 2.0 2.5 VOH -- High-Level Output Voltage -- V 0.0 VCC = 3 V P2.4 --10.0 --20.0 --30.0 --40.0 --50.0 0.0 TA = 85°C TA = 25°C 0.5 1.0 1.5 2.0 2.5 3.0 3.5 VOH -- High-Level Output Voltage -- V Figure 6 Figure 7 NOTE : One output loaded at a time. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 23 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) POR/brownout reset (BOR) (see Notes 1 and 2) PARAMETER TEST CONDITIONS VCC(start) (see Figure 8) dVCC/dt ≤ 3 V/s V(B_IT--) (see Figure 8 through Figure 10) dVCC/dt ≤ 3 V/s Vhys(B_IT--) (see Figure 8) dVCC/dt ≤ 3 V/s td(BOR) (see Figure 8) t(reset) Pulse length needed at RST/NMI pin to accepted reset internally VCC MIN TYP MAX 0.7 × V(B_IT--) 70 2.2 V/3 V 2 130 UNIT V 1.71 V 210 mV 2000 μs μs NOTES: 1. The current consumption of the brownout module is already included in the ICC current consumption data. The voltage level V(B_IT--) + Vhys(B_IT--) is ≤ 1.8V. 2. During power up, the CPU begins code execution following a period of td(BOR) after VCC = V(B_IT--) + Vhys(B_IT--). The default DCO settings must not be changed until VCC ≥ VCC(min), where VCC(min) is the minimum supply voltage for the desired operating frequency. VCC Vhys(B_IT--) V(B_IT--) VCC(start) 1 0 t d(BOR) Figure 8. POR/Brownout Reset (BOR) vs Supply Voltage 24 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) typical characteristics -- POR/brownout reset (BOR) VCC 3V VCC(drop) -- V 2 VCC = 3 V Typical Conditions 1.5 t pw 1 VCC(drop) 0.5 0 0.001 1 1000 1 ns tpw -- Pulse Width -- μs 1 ns tpw -- Pulse Width -- μs Figure 9. VCC(drop) Level With a Square Voltage Drop to Generate a POR/Brownout Signal VCC 2 3V VCC(drop) -- V VCC = 3 V 1.5 t pw Typical Conditions 1 VCC(drop) 0.5 0 0.001 tf = tr 1 1000 tf tr tpw -- Pulse Width -- μs tpw -- Pulse Width -- μs Figure 10. VCC(drop) Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 25 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) main DCO characteristics D All ranges selected by RSELx overlap with RSELx + 1: RSELx = 0 overlaps RSELx = 1, ... RSELx = 14 overlaps RSELx = 15. D DCO control bits DCOx have a step size as defined by parameter SDCO. D Modulation control bits MODx select how often fDCO(RSEL,DCO+1) is used within the period of 32 DCOCLK cycles. The frequency fDCO(RSEL,DCO) is used for the remaining cycles. The frequency is an average equal to: f average = 32 × f DCO(RSEL,DCO) × f DCO(RSEL,DCO+1) MOD × f DCO(RSEL,DCO)+(32−MOD) × f DCO(RSEL,DCO+1) DCO frequency PARAMETER VCC Supply voltage range TEST CONDITIONS VCC MIN TYP MAX UNIT RSELx < 14 1.8 3.6 V RSELx = 14 2.2 3.6 V RSELx = 15 3.0 3.6 V fDCO(0,0) DCO frequency (0, 0) RSELx = 0, DCOx = 0, MODx = 0 2.2 V/3 V 0.06 0.14 MHz fDCO(0,3) DCO frequency (0, 3) RSELx = 0, DCOx = 3, MODx = 0 2.2 V/3 V 0.07 0.17 MHz fDCO(1,3) DCO frequency (1, 3) RSELx = 1, DCOx = 3, MODx = 0 2.2 V/3 V 0.10 0.20 MHz fDCO(2,3) DCO frequency (2, 3) RSELx = 2, DCOx = 3, MODx = 0 2.2 V/3 V 0.14 0.28 MHz fDCO(3,3) DCO frequency (3, 3) RSELx = 3, DCOx = 3, MODx = 0 2.2 V/3 V 0.20 0.40 MHz fDCO(4,3) DCO frequency (4, 3) RSELx = 4, DCOx = 3, MODx = 0 2.2 V/3 V 0.28 0.54 MHz fDCO(5,3) DCO frequency (5, 3) RSELx = 5, DCOx = 3, MODx = 0 2.2 V/3 V 0.39 0.77 MHz fDCO(6,3) DCO frequency (6, 3) RSELx = 6, DCOx = 3, MODx = 0 2.2 V/3 V 0.54 1.06 MHz fDCO(7,3) DCO frequency (7, 3) RSELx = 7, DCOx = 3, MODx = 0 2.2 V/3 V 0.80 1.50 MHz fDCO(8,3) DCO frequency (8, 3) RSELx = 8, DCOx = 3, MODx = 0 2.2 V/3 V 1.10 2.10 MHz fDCO(9,3) DCO frequency (9, 3) RSELx = 9, DCOx = 3, MODx = 0 2.2 V/3 V 1.60 3.00 MHz fDCO(10,3) DCO frequency (10, 3) RSELx = 10, DCOx = 3, MODx = 0 2.2 V/3 V 2.50 4.30 MHz fDCO(11,3) DCO frequency (11, 3) RSELx = 11, DCOx = 3, MODx = 0 2.2 V/3 V 3.00 5.50 MHz fDCO(12,3) DCO frequency (12, 3) RSELx = 12, DCOx = 3, MODx = 0 2.2 V/3 V 4.30 7.30 MHz fDCO(13,3) DCO frequency (13, 3) RSELx = 13, DCOx = 3, MODx = 0 2.2 V/3 V 6.00 9.60 MHz fDCO(14,3) DCO frequency (14, 3) RSELx = 14, DCOx = 3, MODx = 0 2.2 V/3 V 8.60 13.9 MHz fDCO(15,3) DCO frequency (15, 3) RSELx = 15, DCOx = 3, MODx = 0 3V 12.0 18.5 MHz fDCO(15,7) DCO frequency (15, 7) RSELx = 15, DCOx = 7, MODx = 0 3V 16.0 26.0 MHz SRSEL Frequency step between range RSEL and RSEL+1 SRSEL = fDCO(RSEL+1,DCO)/fDCO(RSEL,DCO) 2.2 V/3 V SDCO Frequency step between tap DCO and DCO+1 SDCO = fDCO(RSEL,DCO+1)/fDCO(RSEL,DCO) 2.2 V/3 V 1.05 1.08 1.12 Measured at P1.4/SMCLK 2.2 V/3 V 40 50 60 Duty Cycle 26 1.55 ratio POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 % MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) calibrated DCO frequencies -- tolerance at calibration PARAMETER TEST CONDITIONS Frequency tolerance at calibration TA VCC MIN TYP MAX UNIT 25°C 3V --1 ±0.2 +1 % 25°C 3V 0.990 1 1.010 MHz fCAL(1MHz) 1MHz calibration value BCSCTL1= CALBC1_1MHZ; DCOCTL = CALDCO_1MHZ Gating time: 5ms fCAL(8MHz) 8MHz calibration value BCSCTL1= CALBC1_8MHZ; DCOCTL = CALDCO_8MHZ Gating time: 5ms 25°C 3V 7.920 8 8.080 MHz fCAL(12MHz) 12MHz calibration value BCSCTL1= CALBC1_12MHZ; DCOCTL = CALDCO_12MHZ Gating time: 5ms 25°C 3V 11.88 12 12.12 MHz fCAL(16MHz) 16MHz calibration value BCSCTL1= CALBC1_16MHZ; DCOCTL = CALDCO_16MHZ Gating time: 2ms 25°C 3V 15.84 16 16.16 MHz MIN MAX UNIT calibrated DCO frequencies -- tolerance over temperature 0°C -- +85°C TA VCC 1 MHz tolerance over temperature PARAMETER 0°C -- 85°C 3.0 V --2.5 ±0.5 +2.5 % 8 MHz tolerance over temperature 0°C -- 85°C 3.0 V --2.5 ±1 +2.5 % 12 MHz tolerance over temperature 0°C -- 85°C 3.0 V --2.5 ±1 +2.5 % 16 MHz tolerance over temperature 0°C -- 85°C 3.0 V --3 ±2 +3 2.2 V 0.970 1 1.030 MHz 3.0 V 0.975 1 1.025 MHz 3.6 V 0.970 1 1.030 MHz 2.2 V 7.760 8 8.400 MHz 3.0 V 7.800 8 8.200 MHz 3.6 V 7.600 8 8.240 MHz 2.2 V 11.64 12 12.36 MHz 3.0 V 11.64 12 12.36 MHz 3.6 V 11.64 12 12.36 MHz 3.0 V 15.52 16 16.48 MHz 3.6 V 15.00 16 16.48 MHz fCAL(1MHz) fCAL(8MHz) fCAL(12MHz) fCAL(16MHz) 1MHz calibration value 8MHz calibration value TEST CONDITIONS BCSCTL1= CALBC1_1MHZ; CALBC1 1MHZ; DCOCTL = CALDCO_1MHZ Gating time: 5ms BCSCTL1= CALBC1_8MHZ; CALBC1 8MHZ; DCOCTL = CALDCO_8MHZ Gating time: 5ms 0°C 0 C -- 85 85°C C 0°C 0 C -- 85 85°C C 12MHz calibration 12MH lib ti value BCSCTL1= CALBC1_12MHZ; CALBC1 12MHZ; DCOCTL = CALDCO_12MHZ Gating time: 5ms 0°C 0 C -- 85 85°C C 16MHz calibration value BCSCTL1= CALBC1_16MHZ; DCOCTL = CALDCO_16MHZ CALDCO 16MHZ Gating time: 2ms 0°C -- 85°C POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TYP % 27 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) calibrated DCO frequencies -- tolerance over supply voltage VCC PARAMETER TEST CONDITIONS TA VCC MIN TYP MAX UNIT 1 MHz tolerance over VCC 25°C 1.8 V -- 3.6 V --3 ±2 +3 % 8 MHz tolerance over VCC 25°C 1.8 V -- 3.6 V --3 ±2 +3 % 12 MHz tolerance over VCC 25°C 2.2 V -- 3.6 V --3 ±2 +3 % 16 MHz tolerance over VCC 25°C 3.0 V -- 3.6 V --6 ±2 +3 % 25°C 1.8 V -- 3.6 V 0.970 1 1.030 MHz fCAL(1MHz) 1MHz calibration value BCSCTL1= CALBC1_1MHZ; DCOCTL = CALDCO_1MHZ Gating time: 5ms fCAL(8MHz) 8MHz calibration value BCSCTL1= CALBC1_8MHZ; DCOCTL = CALDCO_8MHZ Gating time: 5ms 25°C 1.8 V -- 3.6 V 7.760 8 8.240 MHz fCAL(12MHz) 12MHz calibration value BCSCTL1= CALBC1_12MHZ; DCOCTL = CALDCO_12MHZ Gating time: 5ms 25°C 2.2 V -- 3.6 V 11.64 12 12.36 MHz fCAL(16MHz) 16MHz calibration value BCSCTL1= CALBC1_16MHZ; DCOCTL = CALDCO_16MHZ Gating time: 2ms 25°C 3.0 V -- 3.6 V 15.00 16 16.48 MHz TA VCC MIN MAX UNIT 1 MHz tolerance overall --40°C -- 105°C 1.8 V -- 3.6 V --5 ±2 +5 % 8 MHz tolerance overall --40°C -- 105°C 1.8 V -- 3.6 V --5 ±2 +5 % 12 MHz tolerance overall --40°C -- 105°C 2.2 V -- 3.6 V --5 ±2 +5 % % calibrated DCO frequencies -- overall tolerance PARAMETER TEST CONDITIONS 16 MHz tolerance overall TYP --40°C -- 105°C 3.0 V -- 3.6 V --6 ±3 +6 --40°C -- 105°C 1.8 V -- 3.6 V 0.950 1 1.050 MHz fCAL(1MHz) 1MHz calibration value BCSCTL1= CALBC1_1MHZ; DCOCTL = CALDCO_1MHZ Gating time: 5ms fCAL(8MHz) 8MHz calibration value BCSCTL1= CALBC1_8MHZ; DCOCTL = CALDCO_8MHZ Gating time: 5ms --40°C -- 105°C 1.8 V -- 3.6 V 7.600 8 8.400 MHz fCAL(12MHz) 12MHz calibration value BCSCTL1= CALBC1_12MHZ; DCOCTL = CALDCO_12MHZ Gating time: 5ms --40°C -- 105°C 2.2 V -- 3.6 V 11.40 12 12.60 MHz fCAL(16MHz) 16MHz calibration value BCSCTL1= CALBC1_16MHZ; DCOCTL = CALDCO_16MHZ Gating time: 2ms --40°C -- 105°C 3.0 V -- 3.6 V 15.00 16 17.00 MHz 28 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 1.03 Frequency -- MHz 1.02 TA = 105 °C 1.01 TA = 85 °C 1.00 TA = 25 °C 0.99 TA = --40 °C 0.98 0.97 1.5 2.0 2.5 3.0 3.5 4.0 VCC -- Supply Voltage -- V Figure 11. Calibrated 1 MHz Frequency vs. VCC POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 29 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 ,electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) wake-up from lower power modes (LPM3/4) PARAMETER tDCO,LPM3/4 tCPU,LPM3/4 TEST CONDITIONS DCO clock wake--up time from LPM3/4 (see Note 1) VCC MIN TYP MAX BCSCTL1= CALBC1_1MHZ; DCOCTL = CALDCO_1MHZ 2.2 V/3 V 2 BCSCTL1= CALBC1_8MHZ; DCOCTL = CALDCO_8MHZ 2.2 V/3 V 1.5 BCSCTL1= CALBC1_12MHZ; DCOCTL = CALDCO_12MHZ 2.2 V/3 V 1 BCSCTL1= CALBC1_16MHZ; DCOCTL = CALDCO_16MHZ 3V 1 UNIT μs s CPU wake--up time from LPM3/4 (see Note 2) 1/fMCLK + tClock,LPM3/4 NOTES: 1. The DCO clock wake--up time is measured from the edge of an external wake--up signal (e.g. port interrupt) to the first clock edge observable externally on a clock pin (MCLK or SMCLK). 2. Parameter applicable only if DCOCLK is used for MCLK. typical characteristics -- DCO clock wake--up time from LPM3/4 DCO Wake Time -- us 10.00 1.00 0.10 0.10 RSELx = 0...11 RSELx = 12...15 1.00 10.00 DCO Frequency -- MHz Figure 12. Clock wake--up time from LPM3 vs DCO frequency 30 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) DCO with external resistor ROSC (see Note) PARAMETER TEST CONDITIONS VCC fDCO,ROSC DCO output frequency with ROSC DCOR = 1, RSELx = 4, 4 DCOx = 3, 3 MODx = 0 0, TA = 25°C Dt Temperature drift DV Drift with VCC MIN TYP MAX UNIT 2.2 V 1.8 3V 1.95 DCOR = 1, RSELx = 4, DCOx = 3, MODx = 0 2.2 V/3 V ±0.1 %/°C DCOR = 1, RSELx = 4, DCOx = 3, MODx = 0 2.2 V/3 V 10 %/V MHz NOTE : ROSC = 100kΩ. Metal film resistor, type 0257. 0.6 watt with 1% tolerance and TK = ±50ppm/°C. typical characteristics -- DCO with external resistor ROSC 10.00 1.00 0.10 RSELx = 4 0.01 10.00 100.00 1000.00 DCO Frequency -- MHz DCO Frequency -- MHz 10.00 1.00 0.10 RSELx = 4 0.01 10.00 10000.00 ROSC -- External Resistor -- kΩ 10000.00 Figure 14. DCO Frequency vs ROSC, VCC = 3.0 V, TA = 25°C 2.50 2.50 2.25 2.25 DCO Frequency -- MHz ROSC = 100k 2.00 1.75 DCO Frequency -- MHz 1000.00 ROSC -- External Resistor -- kΩ Figure 13. DCO Frequency vs ROSC, VCC = 2.2 V, TA = 25°C 1.50 1.25 1.00 ROSC = 270k 0.75 0.50 --25 0 25 50 75 ROSC = 100k 2.00 1.75 1.50 1.25 1.00 ROSC = 270k 0.75 0.50 ROSC = 1M 0.25 0.00 --50 100.00 ROSC = 1M 0.25 100 0.00 2.0 Figure 15. DCO Frequency vs Temperature, VCC = 3.0 V POST OFFICE BOX 655303 2.5 3.0 3.5 4.0 VCC -- Supply Voltage -- V TA -- Temperature -- °C Figure 16. DCO Frequency vs VCC, TA = 25°C • DALLAS, TEXAS 75265 31 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) crystal oscillator, LFXT1, low frequency modes (see Note 4) PARAMETER TEST CONDITIONS VCC fLFXT1,LF LFXT1 oscillator crystal frequency, LF mode 0, 1 XTS = 0, LFXT1Sx = 0 or 1 1.8 V -- 3.6 V fLFXT1,LF,logic LFXT1 oscillator logic level square wave input frequency, LF mode XTS = 0, XCAPx = 0, LFXT1Sx = 3 1.8 V -- 3.6 V Oscillation allowance for LF crystals OALF Integrated effective load capacitance LF mode capacitance, (see Note 1) CL,eff MIN TYP MAX 32,768 10,000 32,768 UNIT Hz 50,000 Hz XTS = 0, LFXT1Sx = 0; fLFXT1,LF = 32,768 kHz, CL,eff = 6 pF 500 kΩ XTS = 0, LFXT1Sx = 0; fLFXT1,LF = 32,768 kHz, CL,eff = 12 pF 200 kΩ XTS = 0, XCAPx = 0 1 pF XTS = 0, XCAPx = 1 5.5 pF XTS = 0, XCAPx = 2 8.5 pF XTS = 0, XCAPx = 3 11 pF Duty cycle LF mode XTS = 0, Measured at P1.4/ACLK, fLFXT1,LF = 32,768Hz fFault,LF Oscillator fault frequency, LF mode (see Note 3) XTS = 0, XCAPx = 0. LFXT1Sx = 3 (see Note 2) 2.2 V/3 V 30 2.2 V/3 V 10 50 70 % 10,000 Hz NOTES: 1. Includes parasitic bond and package capacitance (approximately 2 pF per pin). Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup the effective load capacitance should always match the specification of the used crystal. 2. Measured with logic level input frequency but also applies to operation with crystals. 3. Frequencies below the MIN specification will set the fault flag, frequencies above the MAX specification will not set the fault flag. Frequencies in between might set the flag. 4. To improve EMI on the LFXT1 oscillator the following guidelines should be observed. -- Keep as short of a trace as possible between the device and the crystal. -- Design a good ground plane around the oscillator pins. -- Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. -- Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. ---- Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter. internal very low power, low frequency oscillator (VLO) PARAMETER TEST CONDITIONS VCC fVLO VLO frequency 2.2 V/3 V dfVLO/dT VLO frequency temperature drift (See Note 1) 2.2 V/3 V dfVLO/dVCC VLO frequency supply voltage drift (See Note 2) 1.8V -- 3.6V MIN TYP MAX 4 12 20 NOTES: 1. Calculated using the box method: I Version: (MAX(--40...85_C) -- MIN(--40...85_C))/MIN(--40...85_C)/(85_C -- (--40_C)) T Version: (MAX(--40...105_C) -- MIN(--40...105_C))/MIN(--40...105_C)/(105_C -- (--40_C)) 2. Calculated using the box method: (MAX(1.8...3.6V) -- MIN(1.8...3.6V))/MIN(1.8...3.6V)/(3.6V -- 1.8V) 32 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 UNIT kHz 0.5 %/°C 4 %/V MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) crystal oscillator, LFXT1, high frequency modes (see Note 5) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT fLFXT1,HF0 LFXT1 oscillator crystal frequency, HF mode 0 XTS = 1, XCAPx = 0, LFXT1Sx = 0 1.8 V -- 3.6 V 0.4 1 MHz fLFXT1,HF1 LFXT1 oscillator crystal frequency, HF mode 1 XTS = 1, XCAPx = 0, LFXT1Sx = 1 1.8 V -- 3.6 V 1 4 MHz LFXT1 oscillator ill t crystal t l frequency, f HF mode 2 1.8 V -- 3.6 V 2 10 MHz fLFXT1,HF2 XTS = 1, XCAPx = 0, LFXT1Sx = 2 2.2 V -- 3.6 V 2 12 MHz 3.0 V -- 3.6 V 2 16 MHz 1.8 V -- 3.6 V 0.4 10 MHz 2.2 V -- 3.6 V 0.4 12 MHz 3.0 V -- 3.6 V 0.4 16 MHz LFXT1 oscillator ill t logic l i level l l square wave input frequency, frequency HF mode fLFXT1,HF,logic Oscillation allowance for HF crystals (refer to Figure 17 and Figure 18) OAHF Integrated effective load capacitance, HF mode (see Note 1) CL,eff Duty cycle XTS = 1, XCAPx = 0, LFXT1Sx = 0, fLFXT1,HF = 1 MHz, CL,eff = 15 pF 2700 Ω XTS = 1, XCAPx = 0, LFXT1Sx = 1 fLFXT1,HF = 4 MHz, CL,eff = 15 pF 800 Ω XTS = 1, XCAPx = 0, LFXT1Sx = 2 fLFXT1,HF = 16 MHz, CL,eff = 15 pF 300 Ω 1 pF XTS = 1, XCAPx = 0 (see Note 2) HF mode Oscillator fault frequency, HF mode (see Note 4) fFault,HF XTS = 1, XCAPx = 0, LFXT1Sx = 3 XTS = 1, XCAPx = 0, Measured at P1.4/ACLK, fLFXT1,HF = 10 MHz 2.2 V/3 V 40 50 60 % XTS = 1, XCAPx = 0, Measured at P1.4/ACLK, fLFXT1,HF = 16 MHz 2.2 V/3 V 40 50 60 % XTS = 1, XCAPx = 0, LFXT1Sx = 3 (see Notes 3) 2.2 V/3 V 30 300 kHz NOTES: 1. Includes parasitic bond and package capacitance (approximately 2 pF per pin). Since the PCB adds additional capacitance it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup the effective load capacitance should always match the specification of the used crystal. 2. Requires external capacitors at both terminals. Values are specified by crystal manufacturers. 3. Measured with logic level input frequency but also applies to operation with crystals. 4. Frequencies below the MIN specification will set the fault flag, frequencies above the MAX specification will not set the fault flag. Frequencies in between might set the flag. 5. To improve EMI on the LFXT1 oscillator the following guidelines should be observed. -- Keep as short of a trace as possible between the device and the crystal. -- Design a good ground plane around the oscillator pins. -- Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. -- Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. ---- Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 33 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) typical characteristics -- LFXT1 oscillator in HF mode (XTS = 1) Oscillation Allowance -- Ohms 100000.00 10000.00 1000.00 LFXT1Sx = 3 100.00 LFXT1Sx = 2 LFXT1Sx = 1 10.00 0.10 1.00 10.00 100.00 Crystal Frequency -- MHz Figure 17. Oscillation Allowance vs Crystal Frequency, CL,eff = 15 pF, TA = 25°C XT Oscillator Supply Current -- uA 800.0 LFXT1Sx = 3 700.0 600.0 500.0 400.0 300.0 LFXT1Sx = 2 200.0 100.0 LFXT1Sx = 1 0.0 0.0 4.0 8.0 12.0 16.0 20.0 Crystal Frequency -- MHz Figure 18. XT Oscillator Supply Current vs Crystal Frequency, CL,eff = 15 pF, TA = 25°C 34 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) Timer_A PARAMETER TEST CONDITIONS fTA Timer A clock frequency Timer_A Internal: SMCLK, ACLK; External: TACLK, TACLK INCLK; Duty Cycle = 50% ±10% tTA,cap Timer_A, capture timing TA0, TA1, TA2 VCC MIN TYP MAX 2.2 V 10 3V 16 2.2 V/3 V 20 UNIT MHz ns Timer_B PARAMETER TEST CONDITIONS fTB Timer B clock frequency Timer_B Internal: SMCLK, ACLK; External: TBCLK; Duty Cycle = 50% ±10% tTB,cap Timer_B, capture timing TB0, TB1, TB2 POST OFFICE BOX 655303 VCC TYP MAX 10 3V 16 2.2 V/3 V • DALLAS, TEXAS 75265 MIN 2.2 V 20 UNIT MHz ns 35 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) USCI (UART Mode) PARAMETER fUSCI USCI input clock frequency fBITCLK BITCLK clock frequency (equals baudrate in MBaud) tτ UART receive deglitch time (see Note NO TAG) TEST CONDITIONS VCC MIN TYP Internal: SMCLK, ACLK External: UCLK Duty Cycle = 50% ± 10% 2.2V /3 V MAX UNIT fSYSTEM MHz 1 MHz 2.2 V 50 150 600 ns 3V 50 100 600 ns NOTE : Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are correctly recognized their width should exceed the maximum specification of the deglitch time. USCI (SPI Master Mode, see Figure 19 and Figure 20) PARAMETER fUSCI USCI input clock frequency tSU,MI SOMI input data setup time tHD,MI tVALID,MO TEST CONDITIONS VCC MIN TYP SMCLK, ACLK Duty Cycle = 50% ± 10% MAX UNIT fSYSTEM MHz 2.2 V 110 ns 3V 75 ns 2.2 V SOMI input data hold time ns 3V UCLK edge to SIMO valid; CL = 20 pF SIMO output data valid time ns 2.2 V 30 ns 3V 20 ns USCI (SPI Slave Mode, see Figure 21 and Figure 22) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT tSTE,LEAD STE lead time STE low to clock 2.2 V/3 V tSTE,LAG STE lag time Last clock to STE high 2.2 V/3 V tSTE,ACC STE access time STE low to SOMI data out 2.2 V/3 V 50 ns tSTE,DIS STE disable time STE high to SOMI high impedance 2.2 V/3 V 50 ns tSU,SI SIMO input data setup time tHD,SI SIMO input data hold time tVALID,SO 36 SOMI output data valid time UCLK edge to SOMI valid; CL = 20 pF POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 50 ns 10 ns 2.2 V 20 ns 3V 15 ns 2.2 V 10 ns 3V 10 ns 2.2 V 75 110 ns 3V 50 75 ns MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)6 1/fUCxCLK CKPL =0 CKPL =1 UCLK tLOW/HIGH tLOW/HIGH tSU,MI tHD,MI SOMI tVALID ,MO SIMO Figure 19. SPI Master Mode, CKPH = 0 1/fUCxCLK CKPL =0 CKPL =1 UCLK tLOW/HIGH tLOW/HIGH tSU,MI tHD,MI SOMI tVALID ,MO SIMO Figure 20. SPI Master Mode, CKPH = 1 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 37 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued)7 tSTE,LEAD tSTE,LAG STE 1/fUCxCLK CKPL =0 CKPL =1 UCLK tLOW/HIGH tLOW/HIGH tSU,SIMO tHD,SIMO SIMO tACC tVALID ,SOMI tDIS SOMI Figure 21. SPI Slave Mode, CKPH = 0 tSTE ,LEAD tSTE,LAG STE 1/fUCxCLK CKPL=0 UCLK CKPL=1 tLOW/HIGH tLOW/HIGH tSU,SI tHD,SI SIMO tACC tVALID ,SO SOMI Figure 22. SPI Slave Mode, CKPH = 1 38 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 tDIS MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) USCI (I2C Mode, see Figure 23) PARAMETER TEST CONDITIONS fUSCI USCI input clock frequency fSCL SCL clock frequency VCC MIN TYP Internal: SMCLK, ACLK External: UCLK Duty Cycle = 50% ± 10% MAX UNIT fSYSTEM MHz 400 kHz 2.2 V/3 V 0 fSCL ≤ 100kHz 2.2 V/3 V 4.0 us fSCL > 100kHz 2.2 V/3 V 0.6 us fSCL ≤ 100kHz 2.2 V/3 V 4.7 us fSCL > 100kHz 2.2 V/3 V 0.6 us tHD,STA Hold time (repeated) START tSU,STA Set p time for a repeated START Set--up tHD,DAT Data hold time 2.2 V/3 V 0 ns tSU,DAT Data setup time 2.2 V/3 V 250 ns tSU,STO Setup time for STOP 2.2 V/3 V 4.0 us tSP Pulse width of spikes suppressed by input filter 2.2 V 50 150 600 ns 3V 50 100 600 ns tHD ,STA tSU ,STA tHD ,STA tBUF SDA t LOW tHIGH tSP SCL tSU ,DAT tSU ,STO tHD ,DAT Figure 23. I2C Mode Timing POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 39 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) Comparator_A+ (see Note 1) PARAMETER TEST CONDITIONS I(DD) CAON 1 CARSEL=0, CAON=1, CARSEL 0 CAREF=0 CAREF 0 I(Refladder/RefDiode) CAON=1, CARSEL=0, CAREF 1/2/3 CAREF=1/2/3, no load at P1.0/CA0 and P1.1/CA1 V(IC) V(Ref025) V(Ref050) VCC MIN TYP MAX 2.2 V 25 40 3V 45 60 2.2 V 30 50 3V 45 71 Common-mode input voltage CAON=1 2.2 V/3 V 0 Voltage @ 0.25 V node PCA0=1, CARSEL=1, CAREF=1, no load at P1.0/CA0 and P1.1/CA1 2.2 V/3 V 0.23 0.24 0.25 node PCA0=1, CARSEL=1, CAREF=2, no load at P1.0/CA0 and P1.1/CA1 2.2 V/3 V 0.47 0.48 0.5 2.2 V 390 480 540 3V 400 490 550 V CC Voltage @ 0.5V V CC CC CC VCC --1 UNIT μA μA V V(RefVT) (see Figure 27 and Figure 28) PCA0=1, CARSEL=1, CAREF=3, no load at P1.0/CA0 P1 0/CA0 and P1 P1.1/CA1, 1/CA1 TA = 85°C V(offset) Offset voltage See Note 2 2.2 V/3 V --30 30 mV Vhys Input hysteresis CAON=1 2.2 V/3 V 0 0.7 1.4 mV 2.2 V 80 165 300 3V 70 120 240 t(response) Response time (low-high and high-low) TA = 25°C, Overdrive 10 mV, Without filter: CAF=0 (see Note 3, Figure 24 and Figure 25) mV ns TA = 25°C, Overdrive 10 mV, 2.2 V 1.4 1.9 2.8 With filter: CAF=1 μs (see Note 3, Figure 24 and 3V 0.9 1.5 2.2 Figure 25) NOTES: 1. The leakage current for the Comparator_A+ terminals is identical to Ilkg(Px.x) specification. 2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A+ inputs on successive measurements. The two successive measurements are then summed together. 3. Response time measured at P1.3/CAOUT. 40 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) 0V VCC 0 1 CAF CAON To Internal Modules Low Pass Filter + _ V+ V-- 0 0 1 1 CAOUT Set CAIFG Flag τ ≈ 2.0 μs Figure 24. Block Diagram of Comparator_A+ Module VCAOUT Overdrive V-400 mV t(response) V+ Figure 25. Overdrive Definition CASHORT CA0 CA1 1 VIN + -- IOUT = 10μA Comparator_A+ CASHORT = 1 Figure 26. Comparator_A+ Short Resistance Test Condition POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 41 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) typical characteristics -- Comparator_A+ 650 650 VCC = 2.2 V V(REFVT) -- Reference Volts -- mV V(REFVT) -- Reference Volts -- mV VCC = 3 V 600 Typical 550 500 450 400 --45 --25 --5 15 35 55 75 600 Typical 550 500 450 400 --45 95 --25 --5 15 Short Resistance -- kOhms 100.00 VCC = 1.8V VCC = 2.2V VCC = 3.0V VCC = 3.6V 1.00 0.0 0.2 0.4 0.6 0.8 VIN/VCC -- Normalized Input Voltage -- V/V 1.0 Figure 29. Short Resistance vs VIN/VCC 42 55 75 95 Figure 28. V(RefVT) vs Temperature, VCC = 2.2 V Figure 27. V(RefVT) vs Temperature, VCC = 3 V 10.00 35 TA -- Free-Air Temperature -- °C TA -- Free-Air Temperature -- °C POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (continued) Flash Memory PARAMETER VCC(PGM/ TEST CONDITIONS VCC Program and erase supply voltage ERASE) MIN TYP 2.2 fFTG Flash Timing Generator frequency IPGM Supply current from VCC during program 2.2 V/3.6 V 257 1 IERASE Supply current from VCC during erase 2.2 V/3.6 V 1 tCPT Cumulative program time (see Note 1) 2.2 V/3.6 V tCMErase Cumulative mass erase time 2.2 V/3.6 V TJ = 25°C V 476 kHz 5 mA 7 mA 10 ms ms 105 tRetention Data retention duration tWord Word or byte program time 30 tBlock, 0 Block program time for first byte or word 25 tBlock, 1-63 Block program time for each additional byte or word tBlock, End Block program end-sequence wait time tMass Erase Mass erase time tSeg Erase Segment erase time cycles 100 years 18 see Note 2 UNIT 3.6 20 104 Program/erase endurance MAX tFTG 6 10593 4819 NOTES: 1. The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming methods: individual word/byte write and block write modes. 2. These values are hardwired into the Flash Controller’s state machine (tFTG = 1/fFTG). RAM PARAMETER V(RAMh) TEST CONDITIONS RAM retention supply voltage (see Note) CPU halted MIN TYP MAX 1.6 UNIT V NOTE : This parameter defines the minimum supply voltage VCC when the data in RAM remains unchanged. No program execution should happen during this supply voltage condition. JTAG Interface TEST CONDITIONS PARAMETER fTCK TCK input frequency see Note 1 RInternal Internal pullup resistance on TMS, TCK, TDI/TCLK see Note 2 VCC MIN 2.2 V 0 NOM MAX UNIT 5 MHz 3V 0 10 MHz 2.2 V/ 3 V 20 35 55 kΩ MIN NOM MAX NOTES: 1. fTCK may be restricted to meet the timing requirements of the module selected. 2. TMS, TDI/TCLK, and TCK pull-up resistors are implemented in all versions. JTAG Fuse (see Note) TEST CONDITIONS PARAMETER VCC(FB) Supply voltage during fuse-blow condition VFB Voltage level on TDI/TCLK for fuse-blow: F versions IFB Supply current into TDI/TCLK during fuse blow tFB Time to blow fuse NOTE : TA = 25°C VCC 2.5 6 UNIT V 7 V 100 mA 1 ms Once the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched to bypass mode. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 43 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 APPLICATION INFORMATION Port P1 pin schematic: P1.0 to P1.7, input/output with Schmitt-trigger Pad Logic P1REN.x P1DIR.x 0 0 Module X OUT 1 0 DVCC 1 P1.0/TACLK P1.1/TA0 P1.2/TA1 P1.3/TA2 P1.4/SMCLK P1.5/TA0 P1.6/TA1 P1.7/TA2 P1SEL.x P1IN.x EN Module X IN D P1IE.x P1IRQ.x EN Q P1IFG.x P1SEL.x P1IES.x 44 1 Direction 0: Input 1: Output 1 P1OUT.x DVSS Set Interrupt Edge Select POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 Port P1 (P1.0 to P1.7) pin functions PIN NAME (P1.X) (P1 X) P1.0/TACLK / X 0 FUNCTION P1.0 (I/O) Timer_A3.TACLK DVSS P1.1/TA0 / P1.2/TA1 / P1.3/TA2 / 1 2 3 P1.4/SMCLK / 4 P1.5/TA0 / 5 P1.7/TA2 / 6 7 P1DIR.x P1SEL.x I: 0; O: 1 0 0 1 1 1 I: 0; O: 1 0 Timer_A3.CCI0A 0 1 Timer_A3.TA0 1 1 I: 0; O: 1 0 Timer_A3.CCI0A 0 1 Timer_A3.TA0 1 1 I: 0; O: 1 0 Timer_A3.CCI0A 0 1 Timer_A3.TA0 1 1 I: 0; O: 1 0 P1.1 (I/O) P1.2 (I/O) P1.3 (I/O) P1.4 (I/O) SMCLK P1.6/TA1 / CONTROL BITS / SIGNALS 1 1 I: 0; O: 1 0 Timer_A3.CCI0A 0 1 Timer_A3.TA0 1 1 I: 0; O: 1 0 Timer_A3.CCI0A 0 1 Timer_A3.TA1 1 1 I: 0; O: 1 0 Timer_A3.CCI0A 0 1 Timer_A3.TA2 1 1 P1.5 (I/O) P1.6 (I/O) P1.7 (I/O) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 45 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 Port P2 pin schematic: P2.0 -- P2.4, input/output with Schmitt-trigger Pad Logic To Comparator_A From Comparator_A CAPD.x P2REN.x P2DIR.x 0 0 Module X OUT 1 0 DVCC 1 Bus Keeper EN P2SEL.x P2IN.x EN Module X IN D P2IE.x P2IRQ.x EN Q P2IFG.x P2SEL.x P2IES.x 46 1 Direction 0: Input 1: Output 1 P2OUT.x DVSS Set Interrupt Edge Select POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 P2.0/ACLK/CA2 P2.1/TAINCLK/CA3 P2.2/CAOUT/TA0/CA4 P2.3/CA0/TA1 P2.4/CA1/TA2 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 Port P2.0 -- P2.4 pin functions PIN NAME (P2.X) (P2 X) P2.0/ACLK/CA2 / / P2.1/TAINCLK/CA3 / / P2.2/CAOUT/TA0/ / / / CA4 P2.3/CA0/TA1 / / P2.4/CA1/TA2 / / X 0 1 2 3 4 CONTROL BITS / SIGNALS FUNCTION CAPD.x P2DIR.x P2SEL.x P2.0 (I/O) 0 I: 0; O: 1 0 ACLK 0 1 1 CA2 (see Note 2) 1 X X P2.1 (I/O) 0 I: 0; O: 1 0 Timer_A3.TAINCLK 0 0 1 DVSS 0 1 1 CA3 (see Note 2) 1 X X P2.2 (I/O) 0 I: 0; O: 1 0 CAOUT 0 1 1 TA0 0 0 1 CA4 (see Note 2) 1 X X P2.3 (I/O) 0 I: 0; O: 1 0 CA0 (see Note 2) 1 X X Timer_A3.TA1 0 1 1 P2.4 (I/O) 0 I: 0; O: 1 0 CA1 (see Note 2) 1 X X Timer_A3.TA2 0 1 1 NOTES: 1. X: Don’t care. 2. Setting the CAPD.x bit disables the output driver as well as the input to prevent parasitic cross currents when applying analog signals. Selecting the CAx input to the comparator multiplexer with the P2CAx bits automatically disables the input buffer for that pin, regardless of the state of the associated CAPD.s bit. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 47 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 Port P2 pin schematic: P2.5, input/output with Schmitt-trigger Pad Logic To Comparator From Comparator CAPD.5 To DCO DCOR in DCO P2REN.5 P2DIR.5 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P2OUT.5 DVSS P2.5/ROSC/CA5 Bus Keeper EN P2SEL.x P2IN.5 EN Module X IN D P2IE.5 P2IRQ.5 EN Q Set P2IFG.5 P2SEL.5 Interrupt Edge Select P2IES.5 Port P2.5 pin functions PIN NAME (P2.X) (P2 X) P2.5/R / OSC//CA5 X 5 FUNCTION CONTROL BITS / SIGNALS CAPD.5 DCOR P2DIR.5 P2SEL.5 P2.5 (I/O) 0 0 I: 0; O: 1 0 ROSC 0 1 X X DVSS 0 0 1 1 CA5 (see Note 2) 1 0 X X NOTES: 1. X: Don’t care. 2. Setting the CAPD.x bit disables the output driver as well as the input to prevent parasitic cross currents when applying analog signals. Selecting the CAx input to the comparator multiplexer with the P2CAx bits automatically disables the input buffer for that pin, regardless of the state of the associated CAPD.s bit. 48 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 Port P2 pin schematic: P2.6, input/output with Schmitt-trigger BCSCTL3.LFXT1Sx = 11 P2.7/XOUT/CA7 LFXT1 off 0 LFXT1CLK 1 Pad Logic To Comparator From Comparator CAPD.6 P2SEL.7 P2REN.6 P2DIR.6 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P2OUT.6 DVSS P2.6/XIN/CA6 Bus Keeper EN P2SEL.6 P2IN.6 EN Module X IN D P2IE.6 P2IRQ.6 EN Q P2IFG.6 P2SEL.6 P2IES.6 Set Interrupt Edge Select POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 49 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 Port P2.6 pin functions PIN NAME (P2.X) (P2 X) P2.6/XIN/CA6 / / X 6 CONTROL BITS / SIGNALS FUNCTION CAPD.6 P2DIR.6 P2SEL.6 P2.6 (I/O) 0 I: 0; O: 1 0 XIN (default) X 1 1 CA6 (see Note 2) 1 X 0 NOTES: 1. X: Don’t care. 2. Setting the CAPD.x bit disables the output driver as well as the input to prevent parasitic cross currents when applying analog signals. Selecting the CAx input to the comparator multiplexer with the P2CAx bits automatically disables the input buffer for that pin, regardless of the state of the associated CAPD.s bit. 50 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 Port P2 pin schematic: P2.7, input/output with Schmitt-trigger BCSCTL3.LFXT1Sx = 11 P2.6/XIN/TA1 LFXT1 off 0 LFXT1CLK From P2.6/XIN 1 Pad Logic To Comparator From Comparator CAPD.7 P2SEL.6 P2REN.7 P2DIR.7 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P2OUT.7 DVSS P2.7/XOUT Bus Keeper EN P2SEL.7 P2IN.7 EN Module X IN D P2IE.7 P2IRQ.7 EN Q P2IFG.7 P2SEL.7 P2IES.7 Set Interrupt Edge Select POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 51 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 Port P2.7 pin functions PIN NAME (P2.X) (P2 X) P2.7/XOUT/CA7 / / X 7 CONTROL BITS / SIGNALS FUNCTION CAPD.7 P2DIR.7 P2SEL.7 P2.7 (I/O) 0 I: 0; O: 1 0 XOUT (default) X 1 1 CA7 (see Note 2) 1 X 0 NOTES: 1. X: Don’t care. 2. Setting the CAPD.x bit disables the output driver as well as the input to prevent parasitic cross currents when applying analog signals. Selecting the CAx input to the comparator multiplexer with the P2CAx bits automatically disables the input buffer for that pin, regardless of the state of the associated CAPD.s bit. 52 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 Port P3 pin schematic: P3.0 to P3.5, input/output with Schmitt-trigger Pad Logic P3REN.x P3DIR.x 0 Module direction 1 P3OUT.x 0 Module X OUT DVSS 0 DVCC 1 1 Direction 0: Input 1: Output 1 P3.0/UCB0STE/UCA0CLK P3.1/UCB0SIMO/UCB0SDA P3.2/UCB0SOMI/UCB0SCL P3.3/UCB0CLK/UCA0STE P3.4/UCA0TXD/UCA0SIMO P3.5/UCA0RXD/UCA0SOMI P3SEL.x P3IN.x EN Module X IN D Port P3.0 to P3.5 pin functions PIN NAME (P3.X) (P3 X) X P3.0/UCB0STE/ / / UCA0CLK 0 P3.1/UCB0SIMO/ / / UCB0SDA 1 P3.2/UCB0SOMI/ / / UCB0SCL 2 P3.3/UCB0CLK/ / / UCA0STE 3 P3.4/UCA0TXD/ / / UCA0SIMO 4 P3.5/UCA0RXD/ / / UCA0SOMI 5 FUNCTION P3.0 (I/O) UCB0STE/UCA0CLK (see Notes 1 and 2) P3.1 (I/O) UCB0SIMO/UCB0SDA (see Notes 1, 2 and 3) P3.2 (I/O) UCB0SOMI/UCB0SCL (see Notes 1, 2 and 3) P3.3 (I/O) UCB0CLK/UCA0STE (see Notes 1 and 2) P3.4 (I/O) UCA0TXD/UCA0SIMO (see Notes 1 and 2) P3.5 (I/O) UCA0RXD/UCA0SOMI (see Notes 1 and 2) CONTROL BITS / SIGNALS P3DIR.x P3SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 NOTES: 1. X: Don’t care. 2. The pin direction is controlled by the USCI module. 3. In case the I2C functionality is selected the output drives only the logical 0 to VSS level. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 53 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 Port P3 pin schematic: P3.6 to P3.7, input/output with Schmitt-trigger Pad Logic P3REN.x P3DIR.x 0 0 1 P3OUT.x 0 Module X OUT DVSS 0 DVCC 1 1 Direction 0: Input 1: Output 1 P3.6 P3.7 P3SEL.x P3IN.x EN Module X IN D Port P3.6 to P3.7 pin functions PIN NAME (P3.X) X FUNCTION P3DIR.x P3SEL.x P3.6 6 P3.6 (I/O) I: 0; O: 1 0 P3.7 7 P3.7 (I/O) I: 0; O: 1 0 54 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 Port P4 pin schematic: P4.0 to P4.7, input/output with Schmitt-trigger Pad Logic P4REN.x P4DIR.x 0 0 Module X OUT 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 P4OUT.x DVSS P4.0/TB0 P4.1/TB1 P4.2/TB2 P4.3/TB0 P4.4/TB1 P4.5/TB2 P4.6/TBOUTH/ACLK P4.7/TBCLK/ TBINCLK P4SEL.x P4IN.x EN Module X IN D Port P4.0 to P4.7 pin functions PIN NAME (P4.X) (P4 X) P4.0/TB0 / P4.1/TB1 / P4.2/TB2 / P4.3/TB0 / P4.4/TB1 / P4.5/TB2 / P4.6/TBOUTH/ACLK / / P4.7/TBCLK / X 0 1 2 3 4 5 6 7 FUNCTION CONTROL BITS / SIGNALS P4DIR.x P4SEL.x I: 0; O: 1 0 Timer_B3.CCI0A 0 1 Timer_B3.OUT0 1 1 I: 0; O: 1 0 Timer_B3.CCI1A 0 1 Timer_B3.OUT1 1 1 I: 0; O: 1 0 Timer_B3.CCI2A 0 1 Timer_B3.OUT2 1 1 I: 0; O: 1 0 Timer_B3.CCI0B 0 1 Timer_B3.OUT0 1 1 I: 0; O: 1 0 Timer_B3.CCI1B 0 1 Timer_B3.OUT1 1 1 P4.0 (I/O) P4.1 (I/O) P4.2 (I/O) P4.3 (I/O) P4.4 (I/O) P4.5 (I/O) I: 0; O: 1 0 N/A 0 1 Timer_B3.OUT2 1 1 P4.6 (I/O) I: 0; O: 1 0 Timer_B3.TBOUTH 0 1 ACLK 1 1 I: 0; O: 1 0 0 1 P4.7 (I/O) Timer_B3.TBCLK POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 55 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 APPLICATION INFORMATION JTAG pins TMS, TCK, TDI/TCLK, TDO/TDI, input/output with Schmitt-trigger TDO Controlled by JTAG Controlled by JTAG JTAG TDO/TDI Controlled by JTAG DVCC DVCC TDI Fuse Burn & Test Fuse Test TDI/TCLK & Emulation Module DVCC TMS TMS DVCC During Programming Activity and During Blowing of the Fuse, Pin TDO/TDI Is Used to Apply the Test Input Data for JTAG Circuitry TCK TCK 56 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 APPLICATION INFORMATION JTAG fuse check mode MSP430F23x0 devices that have the fuse on the TDI/TCLK terminal have a fuse check mode that tests the continuity of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check current, ITF, of 1 mA at 3 V, 2.5 mA at 5 V can flow from the TDI/TCLK pin to ground if the fuse is not burned. Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption. Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if the TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse check mode has the potential to be activated. The fuse check current will only flow when the fuse check mode is active and the TMS pin is in a low state (see Figure 30). Therefore, the additional current flow can be prevented by holding the TMS pin high (default condition). Time TMS Goes Low After POR TMS ITDI/TCLK ITF Figure 30. Fuse Check Mode Current POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 57 MSP430F23x0 MIXED SIGNAL MICROCONTROLLER SLAS518A -- AUGUST 2006 -- REVISED MAY 2007 Data Sheet Revision History LITERATURE NUMBER SUMMARY SLAS518 Preliminary PRODUCT PREVIEW data sheet release. SLAS518A PRODUCTION DATA data sheet release. 58 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PACKAGE OPTION ADDENDUM www.ti.com 18-May-2007 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty MSP430F2330IRHAR ACTIVE QFN RHA 40 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2330IRHAT ACTIVE QFN RHA 40 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2330TRHAR ACTIVE QFN RHA 40 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2330TRHAT ACTIVE QFN RHA 40 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2350IRHAR ACTIVE QFN RHA 40 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2350IRHAT ACTIVE QFN RHA 40 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2350TRHAR ACTIVE QFN RHA 40 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2350TRHAT ACTIVE QFN RHA 40 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2370IRHAR ACTIVE QFN RHA 40 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2370IRHAT ACTIVE QFN RHA 40 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2370TRHAR ACTIVE QFN RHA 40 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR MSP430F2370TRHAT ACTIVE QFN RHA 40 250 CU NIPDAU Level-3-260C-168 HR Green (RoHS & no Sb/Br) Lead/Ball Finish MSL Peak Temp (3) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. Addendum-Page 1 PACKAGE OPTION ADDENDUM www.ti.com 18-May-2007 In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Amplifiers Data Converters DSP Clocks and Timers Interface Logic Power Mgmt Microcontrollers RFID RF/IF and ZigBee® Solutions amplifier.ti.com dataconverter.ti.com dsp.ti.com www.ti.com/clocks interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www.ti-rfid.com www.ti.com/lprf Applications Audio Automotive Broadband Digital Control Medical Military Optical Networking Security Telephony Video & Imaging Wireless www.ti.com/audio www.ti.com/automotive www.ti.com/broadband www.ti.com/digitalcontrol www.ti.com/medical www.ti.com/military www.ti.com/opticalnetwork www.ti.com/security www.ti.com/telephony www.ti.com/video www.ti.com/wireless Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated