Freescale Semiconductor Technical Data Document Number: MRF6VP3450H Rev. 2.1, 11/2008 RF Power Field Effect Transistors MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5 N - Channel Enhancement - Mode Lateral MOSFETs Designed for broadband commercial and industrial applications with frequencies from 470 to 860 MHz. The high gain and broadband performance of these devices make them ideal for large - signal, common - source amplifier applications in 50 volt analog or digital television transmitter equipment. • Typical DVB - T OFDM Performance: VDD = 50 Volts, IDQ = 1400 mA, Pout = 90 Watts Avg., f = 860 MHz, 8K Mode, 64 QAM Power Gain — 22.5 dB Drain Efficiency — 28% ACPR @ 4 MHz Offset — - 62 dBc @ 4 kHz Bandwidth • Typical Broadband Two - Tone Performance: VDD = 50 Volts, IDQ = 1400 mA, Pout = 450 Watts PEP, f = 470 - 860 MHz Power Gain — 22 dB Drain Efficiency — 44% IM3 — - 29 dBc • Capable of Handling 10:1 VSWR, All Phase Angles, @ 50 Vdc, 860 MHz, 90 Watts Avg. (DVB - T OFDM Signal, 10 dB PAR, 7.61 MHz Channel Bandwidth) Features • Characterized with Series Equivalent Large - Signal Impedance Parameters • Internally Input Matched for Ease of Use • Qualified Up to a Maximum of 50 VDD Operation • Integrated ESD Protection • Excellent Thermal Stability • Designed for Push - Pull Operation • Greater Negative Gate - Source Voltage Range for Improved Class C Operation • RoHS Compliant • In Tape and Reel. R6 Suffix = 150 Units per 56 mm, 13 inch Reel. R5 Suffix = 50 Units per 56 mm, 13 inch Reel. 860 MHz, 450 W, 50 V LATERAL N - CHANNEL BROADBAND RF POWER MOSFETs CASE 375D - 05, STYLE 1 NI - 1230 MRF6VP3450HR6(HR5) CASE 375E - 04, STYLE 1 NI - 1230S MRF6VP3450HSR6(HSR5) PARTS ARE PUSH - PULL RFinA/VGSA 3 1 RFoutA/VDSA RFinB/VGSB 4 2 RFoutB/VDSB (Top View) Figure 1. Pin Connections Table 1. Maximum Ratings Rating Symbol Value Unit Drain - Source Voltage VDSS - 0.5, +110 Vdc Gate - Source Voltage VGS - 6.0, +10 Vdc Storage Temperature Range Tstg - 65 to +150 °C Case Operating Temperature TC 150 °C Operating Junction Temperature TJ 200 °C © Freescale Semiconductor, Inc., 2008. All rights reserved. RF Device Data Freescale Semiconductor MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5 1 Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Case Temperature 80°C, 90 W CW Case Temperature 62°C, 450 W Pulsed, 50 μsec Pulse Width, 2.5% Duty Cycle Symbol Value (1,2) Unit RθJC 0.27 0.04 °C/W Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22 - A114) 1B (Minimum) Machine Model (per EIA/JESD22 - A115) B (Minimum) Charge Device Model (per JESD22 - C101) IV (Minimum) Table 4. Electrical Characteristics (TC = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit IGSS — — 10 μAdc V(BR)DSS 110 — — Vdc Zero Gate Voltage Drain Leakage Current (VDS = 50 Vdc, VGS = 0 Vdc) IDSS — — 10 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 100 Vdc, VGS = 0 Vdc) IDSS — — 10 μAdc Gate Threshold Voltage (3) (VDS = 10 Vdc, ID = 320 μAdc) VGS(th) 1 1.6 2.5 Vdc Gate Quiescent Voltage (4) (VDD = 50 Vdc, ID = 1400 mAdc, Measured in Functional Test) VGS(Q) 2 2.6 3.5 Vdc Drain - Source On - Voltage (3) (VGS = 10 Vdc, ID = 1.58 Adc) VDS(on) — 0.25 — Vdc Reverse Transfer Capacitance (VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Crss — 0.92 — pF Output Capacitance (VDS = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Coss — 54.5 — pF Input Capacitance (VDS = 50 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz) Ciss — 373 — pF Off Characteristics (3) Gate - Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) Drain - Source Breakdown Voltage (ID = 50 mA, VGS = 0 Vdc) On Characteristics Dynamic Characteristics (3,5) Functional Tests (4) (In Freescale Broadband Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 1400 mA, Pout = 90 W Avg., f = 860 MHz, DVB - T OFDM Single Channel. ACPR measured in 7.61 MHz Channel Bandwidth @ ±4 MHz Offset @ 4 kHz Bandwidth. Power Gain Gps 21.5 22.5 24.5 dB Drain Efficiency ηD 26 28 — % ACPR — - 62 - 59 dBc IRL — -4 -2 dB Adjacent Channel Power Ratio Input Return Loss 1. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 2. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1955. 3. Each side of device measured separately. 4. Measurement made with device in push - pull configuration. 5. Part internally input matched. (continued) MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5 2 RF Device Data Freescale Semiconductor Table 4. Electrical Characteristics (TC = 25°C unless otherwise noted) (continued) Characteristic Symbol Min Typ Max Unit Typical Pulsed Performances (In Freescale Broadband Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 1200 mA, Pout = 520 W, f = 470 - 860 MHz, 50 μsec Pulse Width, 2.5% Duty Cycle Power Gain Gps — 20.5 — dB Drain Efficiency ηD — 50 — % Input Return Loss IRL — -3 — dB P1dB — 520 — W Pout @ 1 dB Compression Point, Pulsed CW (f = 470 - 860 MHz) Typical Two - Tone Performances (In Freescale Broadband Test Fixture, 50 ohm system) VDD = 50 Vdc, IDQ = 1400 mA, Pout = 450 W PEP, f = 470 - 860 MHz, 100 kHz Tone Spacing Gps — Drain Efficiency ηD Intermodulation Distortion IM3 Input Return Loss IRL Power Gain 22 — dB — 44 — % — - 29 — dBc — -2 — dB MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5 RF Device Data Freescale Semiconductor 3 B1 VBIAS + R1 Z19 C24 C34 C44 C36 C38 R3 Z2 Printed Balun Input TOP Z6 Z8 Z10 Z9 Z11 Z12 Z14 C1 C3 Z3 Z7 Z5 Z13 C4 Z15 C2 BOTTOM Z16 Z3 Z2 Z5 Z7 Z6 Z4 RF INPUT Z1 Printed Balun Input Z18 Z4 Z1 Z17 Z20 R4 B2 Z21 VBIAS + R2 C25 C35 C45 C37 C39 Z25 + C22 C40 Z30 C13 Z32 C28 VSUPPLY C26 Z24 Printed Balun Output TOP Z22 Z28 Z40 Z34 Z36 BOTTOM Z38 Z42 C8 Z41 Z39 Z38Z40 Z43 Z42 C7 DUT Z44 C5 Z23 Z29 Z31 C6 Printed Balun Output C11 C12 Z33 Z35 Z37 Z39 Z44 RF OUTPUT Z43 C9 C14 Z26 C10 Z41 Z27 + C23 Z1 Z2, Z3 Z4, Z5 Z6, Z7 Z8, Z9 Z10, Z11 Z12, Z13 Z14, Z15 0.343″ 0.039″ 1.400″ 0.059″ 0.059″ 0.150″ 0.359″ 0.308″ x 0.065″ Microstrip x 0.200″ Microstrip x 0.590″ Microstrip x 0.118″ Microstrip x 0.118″ Microstrip x 0.394″ Microstrip x 0.394″ Microstrip x 0.394″ Microstrip Z16, Z17 Z18, Z20 Z19, Z21 Z22, Z23 Z24, Z26 Z25, Z27 Z28, Z29 Z30, Z31 0.172″ 0.397″ 0.800″ 0.276″ 0.070″ 1.000″ 0.103″ 0.084″ C41 x 0.465″ x 0.059″ x 0.059″ x 0.465″ x 0.157″ x 0.157″ x 0.392″ x 0.392″ C29 VSUPPLY C27 Microstrip Microstrip Microstrip Microstrip Microstrip Microstrip Microstrip Microstrip Z32, Z33 Z34, Z35 Z36, Z37 Z38, Z39 Z40, Z41 Z42, Z43 Z44 PCB 0.108″ x 0.392″ Microstrip 0.212″ x 0.388″ Microstrip 0.103″ x 0.388″ Microstrip 0.075″ x 0.157″ Microstrip 1.412″ x 0.071″ Microstrip 0.024″ x 0.087″ Microstrip 0.550″ x 0.065″ Microstrip Taconic RF35, 0.031”, εr = 3.5 Figure 2. MRF6VP3450HR6(HSR6) Test Circuit Schematic MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5 4 RF Device Data Freescale Semiconductor Table 5. MRF6VP3450HR6(HSR6) Test Circuit Component Designations and Values Part Description Part Number Manufacturer B1, B2 Short Ferrite Beads 2743019447 Fair - Rite C1, C2 12 pF Chip Capacitors ATC100B120GT500XT ATC C3 6.8 pF Chip Capacitor ATC100B6R8BT500XT ATC C4 10 pF Chip Capacitor ATC100B100GT500XT ATC C5, C6, C8, C9 6.8 pF Chip Capacitors ATC800B6R8BT500XT ATC C7, C10, C13, C14 10 pF Chip Capacitors ATC800B100J500XT ATC C11 4.7 pF Chip Capacitor ATC800B4R7J500XT ATC C12 3.9 pF Chip Capacitor ATC800B3R9J500XT ATC C22, C23 330 pF Chip Capacitors ATC100B331GT500XT ATC C24, C25 22 μF Electrolytic Capacitors UUD1V220MCL1GS Nichicon C26, C27 220 μF, 100 V Electrolytic Capacitors EEVFK2A221M Panasonic C28, C29 10 μF, 50 V Chip Capacitors C5750X5R1H106MT TDK C34, C35 39 nF Chip Capacitors ATC200B393KT50XT ATC C36, C37 1000 pF Chip Capacitors ATC100B102JT500XT ATC C38, C39 470 pF Chip Capacitors ATC100B471JT500XT ATC C40, C41 2.2 μF, 100 V Chip Capacitors HMK432BJ225KM - T Taiyo Yuden C44, C45 2.2 μF, 50 V Chip Capacitors C3225X7R1H225MT TDK R1, R2 10 Ω, 1/8 W Chip Resistors CRCW120610R0FKEA Vishay R3, R4 1.5 Ω, 1/8 W Chip Resistors CRCW12061R50FKEA Vishay MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5 RF Device Data Freescale Semiconductor 5 B1 MRF6VP3450H R1 C34 C24 C28 C36 C44 C26 C40 R3 C38 C22 CUT OUT AREA C13 C1 C3 C4 C2 C5 C6 C7 C8 C11 C12 C9 C10 C14 C23 C45 R4 B2 C35 C41 C27 C29 C25 C37 C39 Rev. 4 R2 CUT OUT AREA Figure 3. MRF6VP3450HR6(HSR6) Test Circuit Component Layout — Top Figure 3a. MRF6VP3450HR6(HSR6) Test Circuit Component Layout — Bottom MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5 6 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS 1000 100 ID, DRAIN CURRENT (AMPS) C, CAPACITANCE (pF) Ciss Coss 100 Measured with ±30 mV(rms)ac @ 1 MHz VGS = 0 Vdc Crss 10 TJ = 150_C TJ = 175_C 10 TJ = 200_C TC = 25_C 1 1 10 20 30 40 50 100 Note: Each side of device measured separately. Note: Each side of device measured separately. Figure 4. Capacitance versus Drain - Source Voltage Figure 5. DC Safe Operating Area 35 Gps 21 20.5 20 19.5 19 18.5 18 10 30 25 20 15 10 ηD Pout, OUTPUT POWER (dBm) 50 45 40 ηD, DRAIN EFFICIENCY (%) 22.5 22 21.5 60 55 5 0 1000 100 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 30 Ideal P3dB = 57.85 dBm (610 W) P2dB = 57.65 dBm (582 W) P1dB = 57.15 dBm (519 W) Actual VDD = 50 Vdc, IDQ = 1200 mA, f = 860 MHz Pulse Width = 12 μsec, Duty Cycle = 1% 31 32 33 34 35 36 37 38 39 40 41 Pout, OUTPUT POWER (WATTS) PULSED Pin, INPUT POWER (dBm) Figure 6. Pulsed Power Gain and Drain Efficiency versus Output Power Figure 7. Pulsed CW Output Power versus Input Power 24 25 23 VDD = 50 Vdc, IDQ = 1200 mA, f = 860 MHz 24 Pulse Width = 50 μsec, Duty Cycle = 2.5% 42 70 25_C 60 −30_C 85_C 22 21 50 V 20 45 V 19 VDD = 40 V 18 VDD = 50 Vdc, IDQ = 1200 mA, f = 860 MHz Pulse Width = 50 μsec, Duty Cycle = 2.5% 17 100 200 300 400 23 50 Gps TC = −30_C 22 40 21 30 ηD 25_C 20 85_C 19 16 0 Gps, POWER GAIN (dB) Gps, POWER GAIN (dB) 10 VDS, DRAIN−SOURCE VOLTAGE (VOLTS) 24 23.5 VDD = 50 Vdc, IDQ = 1200 mA, f = 860 MHz 23 Pulse Width = 50 μsec, Duty Cycle = 2.5% Gps, POWER GAIN (dB) 1 VDS, DRAIN−SOURCE VOLTAGE (VOLTS) 500 600 700 20 ηD, DRAIN EFFICIENCY (%) 0 10 18 10 100 0 1000 Pout, OUTPUT POWER (WATTS) PULSED Pout, OUTPUT POWER (WATTS) PULSED Figure 8. Pulsed Power Gain versus Output Power Figure 9. Pulsed Power Gain and Drain Efficiency versus Output Power MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5 RF Device Data Freescale Semiconductor 7 −20 IMD, INTERMODULATION DISTORTION (dBc) IMD, INTERMODULATION DISTORTION (dBc) TYPICAL CHARACTERISTICS — TWO - TONE VDD = 50 Vdc, IDQ = 1400 mA, f1 = 854 MHz f2 = 860 MHz, Two−Tone Measurements −30 −40 3rd Order −50 5th Order −60 7th Order −70 −80 5 10 100 VDD = 50 Vdc, Pout = 450 W (PEP), IDQ = 1400 mA Two−Tone Measurements −20 3rd Order −30 −40 5th Order −50 7th Order −60 −70 0.1 1000 Figure 10. Intermodulation Distortion Products versus Output Power Figure 11. Intermodulation Distortion Products versus Tone Spacing 22.6 IDQ = 1400 mA 22.2 1075 mA 21.8 1250 mA 975 mA 21.6 700 mA 21.4 VDD = 50 Vdc, f1 = 859.9 MHz, f2 = 860 MHz Two−Tone Measurements, 100 kHz Tone Spacing 21.2 IMD, THIRD ORDER INTERMODULATION DISTORTION (dBc) −20 22 10 TWO−TONE SPACING (MHz) 23 22.4 1 Pout, OUTPUT POWER (WATTS) PEP 22.8 Gps, POWER GAIN (dB) −10 60 VDD = 50 Vdc, f1 = 859.9 MHz, f2 = 860 MHz Two−Tone Measurements, 100 kHz Tone Spacing −25 IDQ = 700 mA −30 975 mA −35 1075 mA −40 1250 mA 1400 mA −45 −50 21 50 500 50 500 Pout, OUTPUT POWER (WATTS) PEP Pout, OUTPUT POWER (WATTS) PEP Figure 12. Two - Tone Power Gain versus Output Power Figure 13. Third Order Intermodulation Distortion versus Output Power MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5 8 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS — OFDM 100 −20 7.61 MHz −30 10 −50 4 kHz BW 4 kHz BW −60 0.1 (dB) PROBABILITY (%) −40 1 8K Mode DVB−T OFDM 64 QAM Data Carrier Modulation 5 Symbols 0.01 ACPR Measured at 4 MHz Offset from Center Frequency −70 −80 −90 0.001 −110 0.0001 0 2 4 6 8 10 12 −2 −1 0 1 2 3 5 4 Figure 15. 8K Mode DVB - T OFDM Spectrum ACPR, ADJACENT CHANNEL POWER RATIO (dBc) 975 mA 1250 mA 1075 mA 700 mA VDD = 50 Vdc, f = 860 MHz 8K Mode OFDM, 64 QAM Data Carrier Modulation, 5 Symbols 20.5 20 20 100 200 −50 VDD = 50 Vdc, f = 860 MHz 8K Mode OFDM, 64 QAM Data Carrier Modulation, 5 Symbols −60 IDQ = 700 mA 975 mA 1400 mA 1250 mA 1075 mA −70 20 100 200 Pout, OUTPUT POWER (WATTS) AVG. Figure 17. Single - Carrier DVB - T OFDM ACPR versus Output Power ηD, DRAIN EFFICIENCY (%), Gps, POWER GAIN (dB) Pout, OUTPUT POWER (WATTS) AVG. Figure 16. Single - Carrier DVB - T OFDM Power Gain versus Output Power 65 60 55 50 45 40 35 30 25 20 15 10 5 0 VDD = 50 Vdc, IDQ = 1400 mA f = 860 MHz, 8K Mode OFDM 64 QAM Data Carrier Modulation 5 Symbols 25_C −30_C 85_C ACPR ηD TC = −30_C 25_C 10 Gps 85_C 100 −46 −48 −50 −52 −54 −56 −58 −60 −62 −64 −66 −68 −70 −72 300 ACPR, ADJACENT CHANNEL POWER RATIO (dBc) Gps, POWER GAIN (dB) −3 Figure 14. Single - Carrier DVB - T OFDM 22 21 −4 f, FREQUENCY (MHz) IDQ = 1400 mA 21.5 −5 PEAK−TO−AVERAGE (dB) 23 22.5 8K Mode DVB−T OFDM 64 QAM Data Carrier Modulation, 5 Symbols −100 Pout, OUTPUT POWER (WATTS) AVG. Figure 18. Single - Carrier DVB - T OFDM ACPR Power Gain and Drain Efficiency versus Output Power MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5 RF Device Data Freescale Semiconductor 9 TYPICAL CHARACTERISTICS — 470 - 860 MHz 60 Gps 50 860 MHz 21.5 21 40 20.5 20 665 MHz 860 MHz 470 MHz 19.5 19 30 665 MHz 470 MHz 20 ηD 18.5 18 17.5 17 10 VDD = 50 Vdc, IDQ = 1200 mA Pulse Width = 50 μsec, Duty Cycle = 2.5% 10 100 ηD, DRAIN EFFICIENCY (%) Gps, POWER GAIN (dB) 23 22.5 22 0 1000 Pout, OUTPUT POWER (WATTS) PULSED Figure 19. Broadband Pulsed Power Gain and Drain Efficiency versus Output Power — 470 - 860 MHz 27 70 Gps, POWER GAIN (dB) ηD 24 23 50 22 Gps 21 40 20 19 30 P1dB 18 700 650 600 550 500 P1dB (WATTS) 60 25 ηD, DRAIN EFFICIENCY (%) VDD = 50 Vdc, Pout = P1dB, IDQ = 1200 mA Pulse Width = 50 μsec, Duty Cycle = 2.5% 26 450 20 17 470 500 530 560 590 620 650 680 710 740 770 800 830 860 f, FREQUENCY (MHz) 50 −50 VDD = 50 Vdc, IDQ = 1400 mA, 8K Mode OFDM 64 QAM Data Carrier Modulation, 5 Symbols 45 860 MHz −55 40 35 665 MHz 30 470 MHz 470 MHz 25 860 MHz Gps −65 20 665 MHz 15 10 −60 ACPR −70 ηD 5 0 3 10 100 −75 300 ACPR, ADJACENT CHANNEL POWER RATIO (dBc) ηD, DRAIN EFFICIENCY (%), Gps, POWER GAIN (dB) Figure 20. Pulsed Power Gain and Drain Efficiency versus Frequency at P1dB — 470 - 860 MHz Pout, OUTPUT POWER (WATTS) AVG. Figure 21. Single - Carrier DVB - T OFDM ACPR, Power Gain and Drain Efficiency versus Output Power — 470 - 860 MHz MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5 10 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS — 470 - 860 MHz 24 36 Gps, POWER GAIN (dB) 22 32 21 30 ηD 20 28 26 19 24 IRL VDD = 50 Vdc, IDQ = 1400 mA 17 P = 90 W Avg., 8K Mode OFDM 22 out 64 QAM Data Carrier Modulation, 5 Symbols 20 16 470 500 530 560 590 620 650 680 710 740 770 800 830 860 18 0 −2 −4 −6 −8 IRL, INPUT RETURN LOSS (dB) 34 Gps ηD, DRAIN EFFICIENCY (%) 23 f, FREQUENCY (MHz) Figure 22. Single - Carrier DVB - T OFDM Power Gain, Drain Efficiency and IRL versus Frequency — 470 - 860 MHz TYPICAL CHARACTERISTICS MTTF (HOURS) 108 107 106 105 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (°C) This above graph displays calculated MTTF in hours when the device is operated at VDD = 50 Vdc, Pout = 90 W Avg., and ηD = 28%. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. Figure 23. MTTF versus Junction Temperature MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5 RF Device Data Freescale Semiconductor 11 Zo = 10 Ω f = 860 MHz Zload f = 470 MHz f = 860 MHz Zsource f = 470 MHz VDD = 50 Vdc, IDQ = 1400 mA, Pout = 90 W Avg. f MHz Zsource W Zload W 470 2.81 - j1.88 5.52 + j2.34 650 6.46 + j1.21 7.46 + j2.26 860 3.90 + j2.09 2.60 + j3.73 Zsource = Test circuit impedance as measured from gate to gate, balanced configuration. Zload = Test circuit impedance as measured from drain to drain, balanced configuration. Input Matching Network + Device Under Test − − Z source Output Matching Network + Z load Figure 24. Series Equivalent Source and Load Impedance MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5 12 RF Device Data Freescale Semiconductor PACKAGE DIMENSIONS MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5 RF Device Data Freescale Semiconductor 13 MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5 14 RF Device Data Freescale Semiconductor MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5 RF Device Data Freescale Semiconductor 15 MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5 16 RF Device Data Freescale Semiconductor PRODUCT DOCUMENTATION Refer to the following documents to aid your design process. Application Notes • AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices REVISION HISTORY The following table summarizes revisions to this document. Revision Date Description 0 July 2008 • Initial Release of Data Sheet 1 Aug. 2008 • Corrected component designation part number for C34, 35 in Table 5. Test Circuit Component Designation and Values, p. 5 • Added Note to Fig. 4, Capacitance versus Drain - Source Voltage and Fig. 5, DC Safe Operating Area to denote that each side of device is measured separately, p. 7 • Adjusted imaginary component signs in Fig. 24, Series Equivalent Source and Load Impedance data table and replotted data, p. 12 2 Sept. 2008 • Fig. 24, Series Equivalent Source and Load Impedance, corrected Zsource copy to read ”Test circuit impedance as measured from gate to gate, balanced configuration” and Zload copy to read ”Test circuit impedance as measured from gate to gate, balanced configuration”, p. 12 2.1 Nov. 2008 • Corrected Fig. 24 Revision History Zload copy to read ”Test circuit impedance as measured from drain to drain, balanced configuration”, p. 12 MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5 RF Device Data Freescale Semiconductor 17 How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1 - 8 - 1, Shimo - Meguro, Meguro - ku, Tokyo 153 - 0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1 - 800 - 441 - 2447 or +1 - 303 - 675 - 2140 Fax: +1 - 303 - 675 - 2150 [email protected] Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008. All rights reserved. MRF6VP3450HR6 MRF6VP3450HR5 MRF6VP3450HSR6 MRF6VP3450HSR5 Document Number: MRF6VP3450H Rev. 2.1, 11/2008 18 RF Device Data Freescale Semiconductor