AD OP492 Dual/quad single-supply operational amplifier Datasheet

a
FEATURES
Single-Supply Operation: 4.5 V to 33 V
Input Common-Mode Includes Ground
Output Swings to Ground
High Slew Rate: 3 V/s
High Gain Bandwidth: 4 MHz
Low Input Offset Voltage
High Open-Loop Gain
No Phase Inversion
Low Cost
APPLICATIONS
Disk Drives
Mobile Phones
Servo Controls
Modems and Fax Machines
Pagers
Power Supply Monitors and Controls
Battery-Operated Instrumentation
Dual/Quad Single-Supply
Operational Amplifiers
OP292/OP492
PIN CONNECTIONS
8-Lead Narrow-Body SOIC
(S-Suffix)
8
1
2
OP292
7
6
3
5
4
14-Lead Narrow-Body SOIC
(S-Suffix)
14
1
2
3
OP-292
13
TOP VIEW 12
OP492
(NOT
TO S CALE)
8-Lead Epoxy DIP
(P-Suffix)
OUTA
1
INA
2
INA
3
V
4
7
OUTB
6
INB
5
INB
14 OUTD
INA 2
13
IND
12
IND
INA 3
GENERAL DESCRIPTION
10
V
The OP292/OP492 are low cost, general purpose dual and quad
operational amplifiers designed for single-supply applications
and are ideal for 5 olt systems.
6
9
8
V
OUTA 1
11
7
8
14-Lead Epoxy DIP
(P-Suffix)
5
4
OP292
OP492
11
V
INB 5
10
INC
INB 6
9
INC
OUTB 7
8
OUTC
4
Fabricated on Analog Devices’ CBCMOS process, the OP292/
OP492 series has a PNP input stage that allows the input voltage
range to include ground. A BiCMOS output stage enables the
output to swing to ground while sinking current.
The OP292/OP492 series is unity-gain stable and features an
outstanding combination of speed and performance for singleor dual-supply operation. The OP292/OP492 provide high slew
rate, high bandwidth, with open-loop gain exceeding 40,000
and offset voltage under 800 (OP292) and 1 mV (OP492).
With these combinations of features and low supply current, the
OP292/OP492 series is an excellent choice for battery-operated
applications.
The OP292/OP492 series performance is specified for single- or
dual-supply voltage operation over the extended industrial temperature range (–40∞C to +125∞C).
Package options for the OP292 and OP492 include plastic DIP,
SO-8 (OP292) and SO-14.
REV. B
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties that
may result from its use. No license is granted by implication or otherwise
under any patent or patent rights of Analog Devices.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700
www.analog.com
Fax: 781/326-8703
© Analog Devices, Inc., 2002
OP292/OP492–SPECIFICATIONS
ELECTRICAL CHARACTERISTICS (@ V = 5 V, VC
S
Parameter
Symbol
INPUT CHARACTERISTICS
Offset Voltage
OP292
VOS
OP492
VOS
Input Bias Current
IB
Input Offset Current
IOS
Input Voltage Range
Common-Mode Rejection Ratio
CMRR
Large-Signal Voltage Gain
AVO
Offset Voltage Drift
Long-Term VOS Drift
Bias Current Drift
DVOS /DT
DVOS /DT
DIB /DT
Offset Current Drift
DIOS /DT
OUTPUT CHARACTERISTICS
Output Voltage Swing
High
Low
Short-Circuit Current Limit
POWER SUPPLY
Power Supply Rejection Ratio
Supply Current Per Amp
OP292, OP492
DYNAMIC PERFORMANCE
Slew Rate
Gain Bandwidth Product
Phase Margin
Channel Separation
NOISE PERFORMANCE
Voltage Noise
Voltage Noise Density
Current Noise Density
VOUT
VOUT
ISC
PSRR
ISY
M
= O V, VO = 2 V, TA = 25C unless otherwise noted.)
Conditions
Min
–40∞C £ TA £ +85∞C
–40∞C £ TA £ +125∞C
–40∞C £ TA £ +85∞C
–40∞C £ TA £ +125∞C
–40∞C £ TA £ +85∞C
–40∞C £ TA £ +125∞C
–40∞C £ TA £ +85∞C
–40∞C £ TA £ +125∞C
VCM = 0 V to 4.0 V
–40∞C £ TA £ +85∞C
–40∞C £ TA £ +125∞C
RL = 10 k, VO = 0.1 V to 4 V
–40∞C £ TA £ +85∞C
–40∞C £ TA £ +125∞C
–40∞C £ TA £ +125∞C
Note 1
–40∞C £ TA £ +85∞C
–40∞C £ TA £ +125∞C
–40∞C £ TA £ +85∞C
–40∞C £ TA £ +125∞C
RL = 100 k to GND
–40∞C £ TA £ +125∞C
RL = 2 k to GND
–40∞C £ TA £ +125∞C
RL = 100 k to V+
–40∞C £ TA £ +125∞C
RL = 2 k to V+
–40∞C £ TA £ +125∞C
VS = 4.5 V to 30 V, VO = 2 V
–40∞C £ TA £ +125∞C
VO = 2 V
0
75
70
65
25
10
5
4.0
3.8
3.7
Typ
Max
Unit
0.1
0.3
0.5
0.1
0.3
0.5
450
0.75
3.0
7
100
0.4
0.8
1.2
2.5
1
1.5
2.5
700
2.5
5.0
50
700
1.2
4.0
mV
mV
mV
mV
mV
mV
nA
mA
mA
nA
nA
mA
V
dB
dB
dB
V/mV
V/mV
V/mV
mV/∞C
mV/Month
pA/∞C
pA/∞C
pA/∞C
pA/∞C
95
93
90
200
100
50
2
1
6
400
1.5
2
5
4.3
4.1
3.9
8
12
280
300
8
75
70
95
90
0.8
SR
GBP
m
CS
en p-p
en
in
RL = 10 k
–40∞C £ TA £ +125∞C
fO = 1 kHz
0.1 Hz to 10 Hz
f = 1 kHz
1
10
20
20
450
550
V
V
V
mV
mV
mV
mV
mA
dB
dB
1.2
mA
3
2
4
75
100
V/ms
V/ms
MHz
Degrees
dB
25
15
0.7
mV p-p
nV/÷Hz
pA/÷Hz
NOTES
1
Long-term offset voltage drift is guaranteed by 1,000 hours life test performed on three independent wafer lots at 125 ∞C with LTPD of 1.3.
Specifications subject to change without notice.
–2–
REV. B
OP292/OP492
ELECTRICAL CHARACTERISTICS (@ V = 5 V, VC
S
Parameter
Symbol
INPUT CHARACTERISTICS
Offset Voltage
OP292
VOS
OP492
VOS
Input Bias Current
IB
Input Offset Current
IOS
Input Voltage Range
Common-Mode Rejection Ratio
CMRR
Large-Signal Voltage Gain
AVO
Offset Voltage Drift
Bias Current Drift
DVOS/DT
DIB/DT
OUTPUT CHARACTERISTICS
Output Voltage Swing
Short-Circuit Current Limit
POWER SUPPLY
Power Supply Rejection Ratio
Supply Current Per Amp
OP292, OP492
VO
ISC
PSRR
ISY
NOISE PERFORMANCE
Voltage Noise
Voltage Noise Density
Current Noise Density
= O V, VO = 2 V, TA = 25∞C unless otherwise noted.)
Conditions
–40∞C £ TA £ +85∞C
–40∞C £ TA £ +125∞C
–40∞C £ TA £ +85∞C
–40∞C £ TA £ +125∞C
–40∞C £ TA £ +125∞C
Typ
Max
Unit
1.0
1.2
1.5
1.4
1.7
2
375
0.5
7
20
0.4
2.0
2.5
3
2.5
2.8
3
700
1
50
100
1.2
11
mV
mV
mV
mV
mV
mV
nA
mA
nA
nA
mA
V
dB
dB
V/mV
V/mV
V/mV
mV/∞C
pA/∞C
–40∞C £ TA £ +85∞C
–40∞C £ TA £ +125∞C
Note 1
VCM = 11 V
–40∞C £ TA £ +125∞C
RL = 10 k, VO =10 V
–40∞C £ TA £ +85∞C
–40∞C £ TA £ +125∞C
–40∞C £ TA £ +125∞C
–40∞C £ TA £ +125∞C
–11
78
75
25
10
5
RL = 2 k to GND
–40∞C £ TA £ +125∞C
RL = 100 k to GND
–40∞C £ TA £ +125∞C
Short Circuit to GND
11
10
13.8
13.5
8
12.2
11
14.3
14.0
10.5
V
V
V
mV
mA
VS = 2.25 V to 15 V
40∞C £ TA £ +125∞C
VO = 0 V
75
70
86
83
dB
dB
GBP
m
CS
en p-p
en
in
SR
RL =10 k
–40∞C £ TA £ +125∞C
fO = 1k Hz
0.1 Hz to 10 Hz
f = 1k Hz
NOTES
1
Input voltage range is guaranteed by CMRR tests.
Specifications subject to change without notice.
REV. B
Min
100
95
120
75
60
4
3
1
DYNAMIC PERFORMANCE
Slew Rate
Gain Bandwidth Product
Phase Margin
Channel Separation
M
–3–
2.5
2
10
1.4
mA
4
3
4
75
100
V/ms
V/ms
MHz
Degrees
dB
25
15
0.7
mV p-p
nV/÷Hz
pA/÷Hz
OP292/OP492
ABSOLUTE MAXIMUM RATINGS 1
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 V
Input Voltage2 . . . . . . . . . . . . . . . . . . . . . . . . –15 V to +14 V
Differential Input Voltage2 . . . . . . . . . . . . . . . . . . . . . . . . . . V
Output Short-Circuit Duration . . . . . . . . . . . . UNLIMITED
Storage Temperature Range
P, S Package . . . . . . . . . . . . . . . . . . . . . –65∞C to +150∞C
Operating Temperature Range
OP292/OP492 P, S . . . . . . . . . . . . . . . . –40∞C to +125∞C
Junction Temperature Range
P, S Package . . . . . . . . . . . . . . . . . . . . . –65∞C to +125∞C
Lead Temperature Range (Soldering, 60 sec) . . . . . . . 300∞C
Package Type
JA3
JC
Unit
8-Pin Plastic DIP (P)
14-Pin Plastic DIP (P)
8-Pin SOIC (S)
14-Pin SOIC (S)
103
83
158
120
43
39
43
36
C/W
C/W
C/W
C/W
NOTES
1
Absolute maximum ratings apply to both DICE and packaged parts, unless other wise
noted.
2
For supply voltages less than 36 V, the absolute maximum input voltage is equal
to the supply voltage.
3
JA is specified for the worst-case conditions, i.e., JA is specified for device in socket
for P-DIP package; JA is specified for device soldered in circuit board for SOIC
package.
ORDERING GUIDE
Model
OP292GP*
OP292GS
OP492GP*
OP492GS
Temperature Range
–40∞C to +125∞C
–40∞C to +125∞C
–40∞C to +125∞C
–40∞C to +125∞C
Package Option
N-8
RN-8
N-14
RN-14
*Not for new design, obsolete April 2002.
–4–
REV. B
Typical Performance Characteristics–OP292/OP492
200
160
VS = 5V
VCM = 0V
TA = 25C
720 OP AMPS
175
150
120
125
100
UNITS
UNITS
VS = 5V
VCM = 0V
TA = 25C
600 OP AMPS
140
100
80
75
60
50
40
25
20
0
500 400 300 200 100
0
100
200
300
400
0
0.5 0.4 0.3 0.2 0.1
500
0.1
0.2
0.3
0.4
0.5
0.6
TPC 4. OP492 Input Offset Voltage Distribution @ 5 V
TPC 1. OP292 Input Offset Voltage Distribution @ 5 V
240
320
VS = 15V
VCM = 0V
TA = 25C
720 OP AMPS
280
240
VS = 15V
VCM = 0V
TA = 25C
600 OP AMPS
200
160
UNITS
200
UNITS
0
INPUT OFFSET VOLTAGE, V OS mV
INPUT OFFSET VOLTAGE, V OS µV
160
120
120
80
80
40
40
0
0
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
0
0.2
INPUT OFFSET VOLTAGE, V OS mV
0.8
1.0
1.2
160
VS = 5V
VCM = 0V
40C TA 125C
600 OP AMPS
140
120
1.4
1.6
1.8
2.0
TPC 5. OP492 Input Offset Voltage Distribution @ ± 15 V
160
VS = 5V
VCM = 0V
40C TA 125C
600 OP AMPS
140
120
100
100
UNITS
UNITS
0.6
INPUT OFFSET VOLTAGE, V OS mV
TPC 2. OP292 Input Offset Voltage Distribution @ ± 15 V
80
80
60
60
40
40
20
20
0
0
0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6
4.0
0
TCVOS – µV/C
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
TCVOS – µV/C
TPC 6. OP492 Temperature Drift (TCVOS) Distribution @ 5 V
TPC 3. OP292 Temperature Drift (TCVOS) Distribution @ 5 V
REV. B
0.4
–5–
OP292/OP492
240
200
210
VS = 5V
VCM = 0V
175
180
40C TA 125C
600 OP AMPS
150
125
UNITS
UNITS
150
120
100
90
75
60
50
30
25
0
0
0
2
1
3
4
5
TCVOS µV/C
6
7
0
8
TPC 7. OP292 Temperature Drift (TCVOS) Distribution @ ±15 V
1
2
3
4
5
TCVOS µV/C
6
7
8
TPC 10. OP492 Temperature Drift (TCVOS) Distribution @ ± 15 V
900
600
VS = 5V
VO = 4V
500
VS = 5V
VO = 4V
800
700
OPEN-LOOP GAIN – V/mV
OPEN-LOOP GAIN – V/mV
VS = 15V
VCM = 0V
40C TA 125C
600 OP AMPS
400
300
R L = 10k
200
RL = 10k
600
500
400
300
RL = 2k
200
100
100
RL = 2k
0
50
25
0
25
50
75
100
0
50
125
25
0
TEMPERATURE C
TPC 8. OP292 Open-Loop Gain vs. Temperature @ 5 V
25
50
75
TEMPERATURE C
125
TPC 11. OP492 Open-Loop Gain vs. Temperature @ 5 V
250
400
VS = 15V
VO = 10V
VS = 15V
VO = 10V
350
OPEN-LOOP GAIN – V/mV
200
OPEN-LOOP GAIN V/mV
100
150
RL = 10k
100
RL = 2k
300
250
RL = 10k
200
150
100
RL = 2k
50
50
0
50
25
0
25
50
75
100
0
50
125
TEMPERATURE C
25
0
25
50
75
TEMPERATURE – C
100
125
TPC 12. OP492 Open-Loop Gain vs. Temperature @ ± 15 V
TPC 9. OP292 Open-Loop Gain vs. Temperature @ ± 15 V
–6–
REV. B
OP292/OP492
1.4
SUPPLY CURRENT PER AMPLIFIER mA
1.2
VS = 15V
1.0
VS = +5V
0.8
0.6
0.4
0.2
50
1.0
VS = 15V
0.8
0.6
VS = 5V
0.4
0.2
25
0
25
50
75
TEMPERATURE C
100
50
125
6
6
0
25
50
75
TEMPERATURE C
VS = 15V
VO = 10V
SR
VS = 15V
VO = 10V
25
SLEW RATE V/µs
SR
SR
3
2
4
SR
3
SR
2
SR
1
SR
1
0
25
0
25
50
75
TEMPERATURE C
100
125
TPC 14. OP292 Slew Rate vs. Temperature
70
0
25
50
75
TEMPERATURE C
100
125
TA = 25C
VS = 10k
RL = 10k
80
70
60
60
50
GAIN dB
GAIN
40
PHASE
MARGIN
= 83
30
PHASE
135
20
90
10
45
0
0
1k
10k
100k
1M
PHASE Degrees
GAIN dB
25
90
TA = 25C
V = 5V
V = 0V
RL = 10k
80
40
PHASE
MARGIN
= 92
30
135
90
PHASE
45
10
0
45
10M
TPC 15. OP292/OP492 Open-Loop Gain and Phase vs.
Frequency @ 5 V
GAIN
50
20
0
45
10
1k
FREQUENCY Hz
REV. B
50
TPC 17. OP492 Slew Rate vs. Temperature
90
10
VS = 5V
VO = 0.1V, 4V
VS = 5V
VO = 0.1V, 4V
0
50
125
SR
5
5
4
100
TPC 16. OP492 Supply Current per Amplifier
vs. Temperature
TPC 13. OP292 Supply Current per Amplifier
vs. Temperature
SLEW RATE V/µs
1.2
10k
100k
1M
10M
FREQUENCY Hz
TPC 18. OP292/OP492 Open-Loop Gain/Phase vs.
Frequency @ ± 15 V
–7–
PHASE Degrees
SUPPLY CURRENT PER AMPLIFIER mA
1.4
OP292/OP492
50
50
TA = 25C
V = 5V
V = 0V
30
20
10
0
1k
10k
100k
FREQUENCY – Hz
1M
20
10
10
10M
TPC 19. OP292/OP492 Closed-Loop Gain/Phase vs.
Frequency @ 5 V
COMMON-MODE REJECTION dB
80
60
40
20
1k
10k
FREQUENCY Hz
100k
100k
FREQUENCY – Hz
1M
10M
TA = 25C
VS = 15V
100
80
60
40
20
0
100
1M
1k
10k
FREQUENCY Hz
100k
1M
TPC 23. OP292/OP492 CMR vs. Frequency @ ± 15 V
TPC 20. OP292/OP492 CMR vs. Frequency @ 5 V
120
120
POWER SUPPLY REJECTION – dB
TA = 25C
VS = 5V
100
80
60
40
20
0
100
10k
120
TA = 25C
V = 5V
V = 0V
100
0
100
1k
TPC 22. OP292/OP492 Closed-Loop Gain/Phase vs.
Frequency @ ± 15 V
120
COMMON-MODE REJECTION dB
30
0
10
POWER SUPPLY REJECTION dB
TA = 25C
VS = 15V
40
CLOSED-LOOP GAIN dB
CLOSED-LOOP GAIN dB
40
1k
10k
100k
80
PSRR
60
40
FREQUENCY – Hz
PSRR
20
0
100
1M
TA = 25C
VS = 15V
100
1k
10k
FREQUENCY – Hz
100k
1M
TPC 24. OP292/OP492 PSR vs. Frequency @ ± 15 V
TPC 21. OP292/OP492 PSR vs. Frequency @ 5 V
–8–
REV. B
OP292/OP492
15.0
OUTPUT SWING V
4.8
VS = 5V
OUTPUT VOLTAGE SWING V
4.6
RL = 100k
4.4
VS = 15V
RL = 100k
14.0
RL = 10k
13.0
RL = 2k
12.0
11.0
RL = 10k
OUTPUT SWING – V
4.2
RL = 2k
4.0
3.8
50
25
0
25
50
75
TEMPERATURE – C
100
125
TPC 25. OP292/OP492 VOUT Swing vs. Temperature @ 5 V
10.0
14.0
14.5
0
25
50
TEMPERATURE – C
75
100
125
600
VS = 15V
VCM = 0V
500
INPUT BIAS CURRENT nA
INPUT BIAS CURRENT A
225
TPC 28. OP292/OP492 VOUT Swing vs. Temperature @ ± 15 V
VS = 5V
VCM = 0V
5.0
2.0
1.0
OP492
0.5
OP292
400
OP492
300
OP292
200
100
0.2
0
50
0.1
50
25
0
25
50
75
TEMPERATURE C
100
125
TPC 26. OP292/OP492 Input Bias Current vs.
Temperature @ 5 V
100
IB – nA
40
20
0
10
100
1k
10k
100k
0.50
0.48
0.46
0.44
0.42
0.40
0.38
0.36
0.34
0.32
0.30
0.28
0.26
0.24
0.22
0.20
0.18
50
75
100
125
RAIL
+15V
A
V
IN
–15V
RAIL
0 1
FREQUENCY – Hz
TPC 27. OP292/OP492 Channel Separation
25
VS = 5V, 15V
RL = 2k
VO = 3Vp–p
60
0
TPC 29. OP292/OP492 Input Bias Current vs. Temperature
@ ± 15 V
120
80
25
TEMPERATURE C
140
REV. B
RL = 100k
RL = 10k
15.0
250
10.0
0
RL = 2k
2
3
4
5
6
7 8
9
VIN – V
10
11 12 13 14 15
TPC 30. OP292/OP492 IB Current vs. Common-Mode Voltage
–9–
OP292/OP492
CH A: 800dV FS
MKR: 16.9V/冑Hz
Power Supply Considerations
100dV/DIV
The OP292/OP492 are designed to operate equally well at single 5 V
or 15 V supplies. The lowest supply voltage recommended is 4.5 V.
It is a good design practice to bypass the supply pins with a 0.1 mF
ceramic capacitor. It helps improve filtering of high frequency noise.
0Hz
MKR: 1000 Hz
For dual supply operation, the negative supply (V–) must be applied
at the same time, or before V. If V is applied before V–, or in
the case of a loss of V– supply, while either input is connected to
ground or other low impedance source, excessive input current
may result. Potentially damaging levels of input current can destroy the amplifier. If this condition can exist, simply add a l k
or larger resistor in series with the input to eliminate the problem.
25 kHz
BW: 150 Hz
TPC 31. Voltage Noise Density
TYPICAL APPLICATIONS
Direct Access Arrangement for Telephone Line Interface
APPLICATION INFORMATION
Phase Reversal
The OP492 has built-in protection against phase reversal when
the input voltage goes to either supply rail. In fact, it is safe for
the input to exceed either supply rail by up to 0.6 V with no risk
of phase reversal. However, the input should not go beyond the
positive supply rail by more than 0.9 V, otherwise the output
will reverse phase. If this condition can occur, the problem can
be fixed by adding a 5 k current limiting resistor in series with
the input pin. With this addition, the input can go to more than
5 V beyond the positive rail without phase reversal.
Figure 3 shows a 5 V- only transmit/receive telephone line interface for a modem circuit. It allows full duplex transmission of modem
signals on a transformer-coupled 600 V line in a differential manner. The transmit section gain can be set for the specific modem
device output. Similarly the receive amplifier gain can be appropriately selected based on the modem device input requirements.
The circuit operates on a single 5 V supply. The standard value
resistors allow the use of a SIP-packaged resistor array; coupled
with a quad op amp in a single package, this offers a compact,
low part-count solution.
An input voltage that is as much as 5 V below the negative rail
will not result in phase reversal.
TX GAIN ADJUST
50k
To
Telephone
Line
1V
100
5V
OV
11.8V p-p
1:1
300k
90
300k
OP492
20k
20k
0.1F
TRANSMIT
TXA
1/4
OP492
T1
20k
2K
6.2V
10
1/4
OP492
5V dc
6.2V
0%
5µS
MODEM
5k
Figure 1. Output Phase Reverse If Input Exceeds the Positive Supply (V+) by More Than 0.9 V
100pF 5k
10F
20k
5V
1V
0.1F
5V
20k
100
OV
10V p-p
OP492
90
20k
1/4
OP492
20k
2k
10
0%
5µS
RX GAIN ADJUST
20k
50k
0.1F
RECEIVE
RXA
Figure 3. A Universal Direct Access Arrangement for
Telephone Line Interface
A Single-Supply Instrumentation Amplifier
Figure 2. No Negative Rail Phase Reversal, Even with Input
Signal at 5 V Below Ground
A low-cost, single-supply instrumentation amplifier can be built
as shown in Figure 4. The circuit utilizes two op amps to form a
high-input impedance differential amplifier. Gain can be set by
selecting resistor RG which can be calculated using the transfer
function equation. Normally, VREFERENCE is set to 0 V. Then the
output voltage is a function of the gain times the differential input
–10–
REV. B
OP292/OP492
voltage. However, the output can be offset by setting VREFERENCE
from 0 V to 4 V, as long as the input common-mode voltage of
the amplifier is not exceeded.
5V
5
20k
7
VOUT
4
1
1/2
OP292
VREF
8
1/2
OP292
VIN
5k
5k
20k
VOUT = 5 40k + VREF
RG
RG
Figure 4. A Single-Supply Instrumentation Amplifier
In this configuration, while the output can swing to near zero
volts, one needs to be careful because the input’s common-mode
voltage range cannot operate to zero volts. This is because of the
limitation of the circuit configuration where the first amplifier
must be able to swing below ground in order to attain a 0 V
common-mode voltage, which it cannot do. Depending on the
gain of the instrumentation amplifier, the input common-mode
extends to within about 0.3 V of zero. One can easily calculate
the worst-case common-mode limit for a given gain.
A 50 Hz/60 Hz Single-Supply Notch Filter
Figure 6 shows a notch filter that achieves nearly 30 dB of 60 Hz
rejection while powered by only a single 12 V supply. The circuit
also works well on 5 V systems. The filter utilizes a twin-T configuration whose frequency selectivity depends heavily on the relative
matching of the capacitors and resistors in the twin-T section.
Mylar is a good choice for the twin-T’s capacitors, and the relative
matching of the capacitors and resistors determines the filter’s
passband symmetry. Using 1% resistors and 5% capacitors
produces satisfactory results.
The amount of rejection and the Q of the filter is solely determined
by one resistor, and is shown in the table. The bottom amplifier
is used to split the supply to bias the amplifier to midlevel. The
circuit can be modified to reject 50 Hz by simply changing the
resistors in the twin-T section (Rl through R4) from 2.67 k to
3.16 k, and changing R5 to 1⁄2 of 3.16 k. For best results,
the common value resistors can be from a resistor array for optimum matching characteristics.
R2
2.67k
R1
2.67k
1/4
OP492
VIN
C1
1F
DAC Output Amplifier
The OP292/OP492 are ideal for buffering the output of singlesupply D/A converters. Figure 5 shows a typical amplifier used to
buffer the output of a CMOS DAC that is connected for singlesupply operation. To do that, the normally current output 12-bit
CMOS DAC (R-2R ladder type) is connected backward to produce a voltage output. This operating configuration necessitates
a low voltage reference. In this case, a 1.235 V low-power reference
is used. The relatively high output impedance (10 k) is buffered by
the OP292 and at the same time gained up to a much more usable
level. The potentiometer provides an accurate gain trim for a
4.095 V full-scale, allowing 1mV increment per LSB of control
resolution.
R6
100k
R9
100k
5V
5V
DAC8043
VDD
1 VREF
DD 8
7.5k
NC 2 VFB
1.235V
Ad589
Clk 7
CLK
3 t0
Sri 6
SRI
4 VND
LD
1/4
OP492
RQ
R7
1k 8k
6V
NOTE
FOR 50Hz APPLICATION
CHANGE R12R4 TO 3.16k
AND R5 TO 1.58k (3.16k 2)
C4
1F
0.75
1.0
40
1.33
1.00
2.0
35
1.50
1.25
3.0
30
1.60
2.50
8.0
25
1.80
5.00
18
20
1.90
10.00
38
15
1.95
VOUT
1mV/LSB
0V4.095V
FS
5V
5V
20k
2
5k
8.45k
VIN
5
100F
500k
LD SRI CLK
DIGITAL
CONTROL
Figure 5. A 12-Bit Single-Supply DAC with Serial Bus Control
6
0.022F 1/2
OP292
5
8
1
0.01F 1/2
3 OP292
1.78k 16.2k
5k
REV. B
R5
1.335k
(2.67k 2)
VOUT
Figure 6. A Single-Supply 50 Hz/60 Hz Notch Filter
1/2
OP292
R4
2.67k
C3
2F
(1F2)
1/4
OP492
FILTER Q RQ (k) REJECTION (dB) VOLTAGE GAIN
The DAC8043 device comes in an 8-pin DIP package providing
a cost-effective, compact solution to a 12-bit analog channel.
5V
R3
2.67k
12V
R8
100k
12V
C2
1F
4
7
VOUT
1.1k 14.3k
2200pF
3300pF
Figure 7. A 4-Pole Bessel Low-Pass Filter Using Sallen-Key
Topology
A 4-Pole Bessel Low-Pass Filter
The linear phase filter in Figure 7 is designed to roll off at a
voiceband cutoff frequency of 3.6 kHz. The 4 poles are formed
by two cascading stages of two-pole Sallen-Key filters.
–11–
OP292/OP492
A Low-Cost, Linearized Thermistor Amplifier
An inexpensive thermometer amplifier circuit can be implemented
using low-cost thermistors. One such implementation is shown in
Figure 8. The circuit measures temperature over the range of
0∞C to 70∞C to an accuracy of ± 0.3∞C as the linearization circuit
works well within a narrow temperature range. However, it can
measure higher temperature but at a slightly reduced accuracy. To
achieve the aforementioned accuracy, the thermistor’s nonlinearity
must be corrected. This is done by connecting the thermistor in
parallel with the 10 k in the feedback loop of the first stage
amplifier. A constant operating current of 281 A is supplied by
the resistor R1 with the 5 V reference from the REF-195 such
that the thermistor’s self-heating error is kept below 0.1∞C.
feedback diodes begin to conduct, shunting the feedback current,
and thus reducing the gain. Although distorting the waveform,
the diodes effectively maintain a relatively constant amplitude even
with large signals that otherwise would saturate the amplifier. In
addition, this design is considerably more stable than the feedback type AGC.
The overall circuit has a gain range from –2 to –400, where the
inversion comes from the band-pass filter stage. Operating with
a Q of 5, the filter restores a clean, undistorted signal to the output. The circuit also works well with 5 V supply systems.
12V
In many cases, the thermistor is placed some distance from the
signal conditioning circuit. Under this condition, a 0.1 mF capacitor
placed across R2 will help to suppress noise pickup.
This linearization network creates an offset voltage that is corrected by summing a compensating current with potentiometer P1.
The temperature dependent signal is amplified by the second
stage, producing a transfer coefficient of –10 mV/∞C at the output.
RT
1.0F
R1*
17.8k
1/2
OP292
P1
10k
0C TRIM
7.5V
1/4
OP492
14k 68pF
56.2k
1/4
OP492
PANASONIC
EFR-RTB40K2
VOUT
12V
600k
390k
100k
10k
7.5V
6.04k
10k
0.01F
1F
1M
0.01F
0.01F
R3
10k
R6
7.87k
The OP292/OP492 have excellent overload recovery characteristics, making them suitable for precision comparator applications.
Figure 10 shows the saturation recovery characteristics of the
OP492. The amplifier exhibits very little propagation delay.
The amplifier compares a signal precisely to less than 0.5 mV
offset error.
P2
200
70C TRIM
5V
R4
41.2k
1/4
OP492
Precision Single-Supply Voltage Comparator
REF195
1F
12V
Figure 9. A 40 kHz Ultrasonic Clamping/Limiting Receiver
Amplifier
10kNTC
R1*
17.8k
12V
1M
To calibrate, a precision decade box can be used in place of the
thermistor. For 0∞C trim, the decade box is set to 32.650 k, and
P1 is adjusted until the circuit’s output reads 0 V. To trim the circuit
at the full-scale temperature of 70∞C, the decade box is then set
to 1.752 k and P2 is adjusted until the circuit reads –0.70 V.
15V
68pF
600k
RECEIVER
1/2
OP292
R5
806k
VOUT
10mV/C
1V
15V
1k
NOTES
+ = ALPHA THERMISTOR 13A1002-C3
* = 0.1% IMPERIAL ASTRONICS M015
ALL RESISTORS ARE 1%, 25 ppm/C
EXCEPT R5 = 1%, 100 ppm/C
100
90
3Vp-p
OP492
2k
15V
Figure 8. A Low Cost Linearized Thermistor Amplifier
20k
2.21k
A Single-Supply Ultrasonic Clamping/Limiting Receiver
Amplifier
10
0%
5V
Figure 9 shows an ultrasonic receiver amplifier using the nonlinear impedance of low-cost diodes to effectively control the gain
for wide dynamic range. This circuit amplifies a 40 kHz ultrasonic
signal through a pair of low-cost clamping amplifiers before feeding
a band-pass filter to extract a clean 40 kHz signal for processing.
The signal is ac-coupled into the false-ground bias node by virtue of
the capacitive piezoelectric sensing element. Rather than using
an amplifier to generate a supply splitting bias, the false ground
voltage is generated by a low-cost resistive voltage divider.
Each amplifier stage provides ac gain while passing on the dc selfbias. As long as the output signal at each stage is less than a diode’s
forward voltage, each amplifier has unrestricted gain to amplify
low level signals. However, as the signal strength increases, the
5µs
Figure 10. The OP492 Has Fast Overload Recovery for
Comparator Applications
Programmable Precision Window Comparator
The OP292/OP492 can be used for precise level detection such
as in test equipment where a signal is measured within a range.
Figure 11 shows such an implementation. The threshold voltage
level is set by a pair of 12-bit DIA converters. The DACs have
serial interface thus minimizing interconnection requirements.
The DAC85 12 has a control resolution of 1 mV/bit. Thus for 5 V
supply operation, maximum DAC output is 4.095 V. However,
the OP292 will accept a maximum input of 4.0 V.
–12–
REV. B
OP292/OP492
5V
5V
DAC8512
1
8
REF
DAC
2
7
CLK
3
6
SDI
4
ADDRESS
DECODE
3
2
8
1/2
OP292
4
CONTROL
1
HIGH
5
LD
CLR
5V
DAC8512
1
8
REF
2
3
4
6
DAC
7
CONTROL
5
1/2
OP292
7
LOW
6
5
ANALOG
INPUT
Figure 11. Programmable Window Comparator with 12-Bit
Threshold Level Control
REV. B
–13–
OP292/OP492
* OP292 SPICE Macro-model
REV. B, 6/93
*
ARG / PMI
*
* Copyright 1993 by Analog Devices
*
* Refer to “README.DOC” file for License Statement. Use of
* this model indicates your acceptance of the terms and provisions
* in the License Statement.
*
* Node assignments
*
noninverting input
*
inverting input
*
positive supply
*
negative supply
*
output
*
.SUBCKT OP292 2
1
99 50 34
*
* INPUT STAGE AND POLE AT 40 MHz
*
Il
99
4
5OE-6
IOS
2
l
10E-9
EOS
2
3
POLY(l) (21,30) 1.5E-3 75
CIN
1
2
3E-12
Q1
5
1
7
QP
Q2
6
3
8
QP
R3
5
50
2E3
R4
6
50
2E3
R5
4
7
966
R6
4
8
966
C1
5
6
.995E12
*
* GAIN STAGE
*
EREF
98
0
(30,0) 1
G1
98
9
(5,6) 5OOE-6
R7
9
98
210.819E3
D1
9
10
DX
D2
11
9
DX
V1
99
10
.6
V2
11
50
.6
*
* ZERO/POLE AT 6 MHz/12 MHz
*
E1
12
98
(9,30) 2
R8
12
13
1
R9
13
98
1
C3
12
13
26.526E-9
*
* ZERO AT 15 MHz
*
E2
14
98
(13,30) lE6
R10
14
15
1E6
R11
15
98
1
C4
14
15
10.610E-15
*
* COMMON-MODE STAGE WITH ZERO AT 40 kHz
*
ECM
20
98
POLY(2) (1,30) (2,30) 0 0.5 0.5
R20
20
21
1E6
R21
21
98
1
C5
20
21
3.979E-12
*
–14–
REV. B
OP292/OP492
* POLE AT 100 MHz
*
G2
98
16
R12
16
98
C6
16
98
*
* OUTPUT STAGE
*
RS1
99
30
RS2
30
50
ISY
99
50
G3
31
50
R16
31
50
DCL
50
31
I2
99
32
RCL
33
50
M1
32
31
M2
34
31
CC
31
32
Q3
99
32
Q4
33
32
Q5
31
33
(15,30) 1
1
1.592E-9
1E6
1E6
.44E-3
POLY(1) (16,30) -1.635E-6 4E-6
1E6
DZ
250E-6
56
50
50
MN L=9E-6 W=1000E-6 AD=15E-AS=15E-9
50
50
MN L=9E-6 W=1OOOE-6 AD=15E-9 AS=15E-9
14E-12
34
QNA
34
QPA
50
QNA
.MODEL QNA NPN(IS=1.19E-16 BF=253 NF=0.99 VAF=193 IKF=2.76E-3
+ ISE=2.57E-13 NE=5 BR=0.4 NR=0.988 VAR=15 IKR=1.465E-4
+ ISC=6.9E-16 NC=0.99 RB=2.0E3 IRB=7.73E-6 RBM= 132.8 RE=4 RC=209
+ CJE=2.1E-13 VJE=0.573 MJE=0.364 FC=0.5 CJC=1.64E-13 VJC=0.534 MJC=0.5
+ CJS=1.37E-12 VJS=0.59 MJS=0.5 TF=0.43E-9 PTF=30)
.MODEL QPA PNP(IS=5.21E-17 BF=131 NF=0.99 VAF=62 IKF=8.35E-4
+ ISE= 1.09E-14 NE=2.61 BR=0.5 NR=0.984 VAR= 15 IKR=3.96E-5
+ ISC=7.58E-16 NC=0.985 RB=1.52E3 IRB=1.67E-5 RBM=368.5 RE=6.31 RC=354.4
+ CJE=l.lE-13 VJE=0.745 MJE=0.33 FC=0.5 CJC=2.37E-13 VJC=0.762 MJC=0.4
+ CJS=7.11E-13 VJS=0.45 MJS=0.412 TF=l.OE-9 PTF=30)
.MODEL MN NMOS(LEVEL=3 VTO=1.3 RS=0.3 RD=0.3
+ TOX=8.5E-8 LD=1.48E-6 WD=1E-6 NSUB=1.53E16 UO=650 DELTA=10 VMAX=2E5
+ XJ=1.75E-6 KAPPA=0.8 ETA=0.066 THETA=0.01 TPG=1 CJ=2.9E-4 PB=0.837
+ MJ=0.407 CJSW=0.5E-9 MJSW=0.33)
.MODEL QP PNP(BF=61.5)
.MODEL DX D
.MODEL DZ D(BV=3.6)
.ENDS OP292
REV. B
–15–
OP292/OP492
* OP492 SPICE Macro-model
REV. B, 6/93
*
ARG / PMI
*
* Copyright 1993 by Analog Devices
*
* Refer to “README.DOC” file for License Statement. Use of
* this model indicates your acceptance of the terms and pro* visions in the License Statement.
*
* Node assignments
*
noninverting input
*
inverting input
*
positive supply
*
negative supply
*
output
.SUBCKT OP492 2 1
99 50 34
*
* INPUT STAGE AND POLE AT 40 MHz
I1
99
4
50E-6
IOS
2
1
10E-9
EOS
2
3
POLY(1) (21,30) 1.5E-3 75
CIN
1
2
3E-12
Q1
5
1
7
QP
Q2
6
3
8
QP
R3
5
50
2E3
R4
6
50
2E3
R5
4
7
966
R6
4
8
966
C1
5
6
.995E-12
*
* GAIN STAGE
*
* EREF 98
0
(30,0) 1
G1
98
9
(5,6)
500E-6
R7
9
98
210.819E3
D1
9
10
DX
D2
11
9
DX
V1
99
10
.6
V2
11
50
.6
*
* ZERO/POLE AT 6 MHz/12 MHz
*
E1
12
98
(9,30) 2
R8
12
13
1
R9
13
98
1
C3
12
13
26.526E-9
*
* ZERO AT 15 MHz
*
E2
14
98
(13,30) 1E6
R10
14
15
1E6
R11
15
98
1
C4
14
15
10.610E-15
*
* COMMON-MODE STAGE WITH ZERO AT 40 kHz
*
ECM
20
98
POLY(2) (1,30) (2,30) 0 0.5 0.5
R20
20
21
1E6
R21
21
98
1
C5
20
21
3.979E-12
–16–
REV. B
OP292/OP492
* POLE AT 100 MHz
*
G2
98
16
R12
16
98
C6
16
98
*
* OUTPUT STAGE
*
RS1
99
30
RS2
30
50
ISY
99
50
G3
31
50
R16
31
50
DCL
50
31
I2
99
32
RCL
33
50
M1
32
31
M2
34
31
CC
31
32
Q3
99
32
Q4
33
32
Q5
31
33
(15,30) 1
1
1.592E-9
1 E6
1E6
.44E-3
POLY(1) (16,30) –1.635E-6 4E-6
1E6
DZ
250E-6
56
50
50
MN L=9E-6
W=1OOOE-6 AD=15E-9 AS=15E-9
50
50
MN L=9E-6
W=1OOOE-6 AD=15E-9 AS=15E-9
14E-12
34 QNA
34 QPA
50 QNA
.MODEL QNA NPN(IS=1.19E-16 BF=253 NF=0.99 VAF=193 IKF=2.76E-3
+ ISE=2.57E-13 NE=5 BR=0.4 NR=0.988 VAR=15 IKR=1.465E-4
+ ISC=6.9E-16 NC=0.99 RB=2.0E3 IRB=7.73E-6 RBM=132.8 RE=4 RC=209
+ CJE=2.1E-13 VJE=0.573 MJE=0.364 FC=0.5 CJC=1.64E-13 VJC=0.534 MJC=0.5
+ CJS=1.37E-12 VJS=0.59 MJS=0.5 TF=0.43E-9 PTF=30)
.MODEL QPA PNP(IS=5.21E-17 BF=131 NF=0.99 VAF=62 IKF=8.35E-4
+ ISE=1.09E-14 NE=2.61 BR=0.5 NR=0.984 VAR=15 IKR=3.96E-5
+ ISC=7.58E-16 NC=0.985 RB=1.52E3 IRB=1.67E-5 RBM=368.5 RE=6.31 RC=354.4
+ CJE=l.lE-13 VJE=0.745 MJE=0.33 FC=0.5 CJC=2.37E-13 VJC=0.762 MJC=0.4
+ CJS=7.11E-13 VJS=0.45 MJS=0.412 TF=1.OE-9 PTF=30)
.MODEL MN NMOS(LEVEL=3 VTO=1.3 RS=0.3 RD=0.3
+ TOX=8.5E-8 LD=1.48E-6 WD=1E-6 NSUB=1.53E16 UO=650 DELTA=10 VMAX=2E5
+ XJ=1.75E-6 KAPPA=0.8 ETA=0.066 THETA=0.01 TPG=1 CJ=2.9E-4 PB=0.837
+ MJ=0.407 CJSW=0.5E-9 MJSW=0.33)
.MODEL QP PNP(BF=61.5)
.MODEL DX D
.MODEL DZ D(BV=3.6)
.ENDS OP492
REV. B
–17–
OP292/OP492
OUTLINE DIMENSIONS
8-Lead Standard Small Outline Package [SOIC]
Narrow Body
(RN-8)
8-Lead Plastic Dual-in-Line Package [PDIP]
(N-8)
Dimensions shown in inches and (millimeters)
Dimensions shown in millimeters and (inches)
0.375 (9.53)
0.365 (9.27)
0.355 (9.02)
5.00 (0.1968)
4.80 (0.1890)
4.00 (0.1574)
3.80 (0.1497)
8
5
1
4
6.20 (0.2440)
5.80 (0.2284)
1.27 (0.0500)
BSC
0.25 (0.0098)
0.10 (0.0040)
COPLANARITY
SEATING
0.10
PLANE
0.51 (0.0201)
0.33 (0.0130)
5
1
4
0.295 (7.49)
0.285 (7.24)
0.275 (6.98)
0.325 (8.26)
0.310 (7.87)
0.300 (7.62)
0.100 (2.54)
BSC
0.50 (0.0196)
45
0.25 (0.0099)
1.75 (0.0688)
1.35 (0.0532)
8
0.015
(0.38)
MIN
0.180
(4.57)
MAX
8
0.25 (0.0098) 0 1.27 (0.0500)
0.41 (0.0160)
0.19 (0.0075)
0.150 (3.81)
0.130 (3.30)
0.110 (2.79)
0.022 (0.56)
0.018 (0.46)
0.014 (0.36)
COMPLIANT TO JEDEC STANDARDS MS-012AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
0.150 (3.81)
0.135 (3.43)
0.120 (3.05)
0.015 (0.38)
0.010 (0.25)
0.008 (0.20)
SEATING
PLANE
0.060 (1.52)
0.050 (1.27)
0.045 (1.14)
COMPLIANT TO JEDEC STANDARDS MO-095AA
CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS
(IN PARENTHESES)
14-Lead Standard Small Outline Package [SOIC]
Narrow Body
(RN-14)
14-Lead Plastic Dual-in-Line Package [PDIP]
(N-14)
Dimensions shown in inches and (millimeters)
Dimensions shown in millimeters and (inches)
0.685 (17.40)
0.665 (16.89)
0.645 (16.38)
14
8
1
7
0.295 (7.49)
0.285 (7.24)
0.275 (6.99)
4.00 (0.1575)
3.80 (0.1496)
0.100 (2.54)
BSC
0.325 (8.26)
0.310 (7.87)
0.300 (7.62)
0.015 (0.38)
MIN
0.180 (4.57)
MAX
0.150 (3.81)
0.130 (3.30)
0.110 (2.79)
0.022 (0.56) 0.060 (1.52)
0.018 (0.46) 0.050 (1.27)
0.014 (0.36) 0.045 (1.14)
8.75 (0.3445)
8.55 (0.3366)
SEATING
PLANE
0.150 (3.81)
0.135 (3.43)
0.120 (3.05)
14
8
1
7
0.25 (0.0098)
0.10 (0.0039)
COPLANARITY
0.10
0.015 (0.38)
0.010 (0.25)
0.008 (0.20)
1.27 (0.0500)
BSC
0.51 (0.0201)
0.33 (0.0130)
6.20 (0.2441)
5.80 (0.2283)
1.75 (0.0689)
1.35 (0.0531)
SEATING
PLANE
0.50 (0.0197)
45
0.25 (0.0098)
8
0.25 (0.0098) 0 1.27 (0.0500)
0.40 (0.0157)
0.19 (0.0075)
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
COMPLIANT TO JEDEC STANDARDS MO-095-AB
CONTROLLING DIMENSIONS ARE IN INCH; MILLIMETERS DIMENSIONS
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN
Revision History
Location
Page
10/02 - Change from Rev. A to REV. B
Edits to OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1/02 - Change from Rev. 0 to REV. A
Deleted Wafer Test Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Deleted DICE CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Edits to ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
–18–
REV. B
–19–
–20–
PRINTED IN U.S.A.
C00310-0-10/02 (B)
Similar pages