LINER LT1431C Programmable reference Datasheet

LT1431
Programmable Reference
U
DESCRIPTIO
FEATURES
■
■
■
■
■
Guaranteed 0.4% Initial Voltage Tolerance
0.1Ω Typical Dynamic Output Impedance
Fast Turn-On
Sink Current Capability, 1mA to 100mA
Low Reference Pin Current
UO
APPLICATI
■
■
Linear Regulators
Adjustable Power Supplies
Switching Power Supplies
A simplified three pin version, the LT1431Z/IZ, is available
for applications as an adjustable reference and is pin
compatible with the TL431.
UO
■
S
The LT1431 is an adjustable shunt voltage regulator with
100mA sink capability, 0.4% initial reference voltage tolerance, and 0.3% typical temperature stability. On-chip
divider resistors allow the LT1431 to be configured as a 5V
shunt regulator, with 1% initial voltage tolerance and
requiring no additional external components. By adding
two external resistors, the output voltage may be set to any
value between 2.5V and 36V. The nominal internal current
limit of 100mA may be decreased by including one external resistor.
TYPICAL APPLICATI
Isolated 5V Regulator
+
5V
+
COLL
VIN
COMP
V
+
RTOP
SWITCHING
REGULATOR
REF
+
gm =
4mA/V
–
–
RMID
2.5V
LT1431
GND-F
GND-S
LT1431 • TA01
1
LT1431
W W
W
AXI U
U
ABSOLUTE
RATI GS
V+, VCOLLECTOR ....................................................... 36V
VCOMP, RTOP,RMID,VREF ............................................ 6V
GND-F to GND-S .................................................... 0.7V
Ambient Temperature Range
LT1431M ........................................ – 55°C to 125°C
LT1431I ............................................ – 40°C to 85°C
LT1431C .............................................. 0°C TO 70°C
JunctionTemperature Range
LT1431M ........................................ – 55°C to 150°C
LT1431I .......................................... – 40°C to 100°C
LT1431C ............................................. 0°C to 100°C
Storage Temperature Range ................ –65°C to 150°C
Lead Temperature (Soldering, 10 sec)................ 300°C
W
U
U
PACKAGE/ORDER I FOR ATIO
ORDER PART
NUMBER
TOP VIEW
COLLECTOR 1
8
REF
COMP 2
7
RMID
V+ 3
6
GND-F
RTOP 4
5
GND-S
J8 PACKAGE
8-LEAD CERAMIC DIP
COLLECTOR 1
LT1431MJ8
LT1431CN8
LT1431IN8
N8 PACKAGE
8-LEAD PLASTIC DIP
TJ MAX = 150°C, θJA = 100°C/W (J)
TJ MAX = 100°C, θJA = 130°C/W (N)
ORDER PART
NUMBER
TOP VIEW
8
7
RMID
V+ 3
6
GND-F
RTOP 4
5
GND-S
S8 PACKAGE
8-LEAD PLASTIC SOIC
TJ MAX = 100°C, θJA = 170°C/W
LT1431CS8
LT1431IS8
PART
MARKING
2
3
REF
COMP 2
ORDER PART
NUMBER
BOTTOM VIEW
1
LT1431CZ
LT1431IZ
REF ANODE
CATHODE
Z PACKAGE
3-LEAD TO-92 PLASTIC
TJ MAX = 100°C, θJA = 160°C/W
LT1431
LT1431I
ELECTRICAL CHARACTERISTICS TA = 25°C, IK = 10mA, unless otherwise specified (Note 1).
LT1431M/I
MIN TYP MAX
SYMBOL
PARAMETER
CONDITIONS
VREF
Reference Voltage
VKA = 5V, IK = 2mA, (Note 2)
●
∆VREF/∆T
Reference Drift
LT1431C
MIN TYP MAX UNITS
2.490 2.500 2.510 2.490 2.500 2.510
2.465
2.535 2.480
2.520
VKA = 5V, IK = 2mA
●
50
∆VREF/∆VKA Voltage Ratio, Reference to
Cathode (Open-Loop Gain)
IK = 2mA, VKA = 3V to 36V
●
0.2
0.5
0.2
0.5
mV/V
|IREF|
VKA = 5V, TA = 25°C
0.2
1.0
1.5
0.2
1.0
1.2
µA
µA
0.6
1.0
0.6
1.0
mA
Reference Input Current
●
IMIN
Minimum Operating Current
VKA = VREF to 36V
|IOFF|
Off-State Cathode Current
VKA = 36V, VREF = 0V
|ILEAK|
Off-State Collector Leakage Current
Dynamic Impedance
VKA = VREF, IK = 1mA to 100mA, f ≤ 1kHz
ILIM
Collector Current Limit
VKA = VREF + 50mV
5V Reference Output
Internal Divider Used, IK = 2mA
The ● denotes specifications which apply over the operating temperature
range.
Note 1: VKA is the cathode voltage of the LT1431CZ/IZ and corresponds to
V + of the LT1431CN8/MJ8. IK is the cathode current of the LT1431CZ/IZ
and corresponds to I(V +) + ICOLLECTOR of the LT1431CN8/MJ8/IN8.
2
ppm/°C
●
1
15
1
2
µA
µA
●
1
5
1
2
µA
µA
0.2
0.2
Ω
260
mA
VCOLL = 36V, V + = 5V, VREF = 2.4V
|ZKA|
30
V
V
●
80
360
100
4.950 5.000 5.050 4.950 5.000 5.050
Note 2: The LT1431 has bias current cancellation which is effective only
for VKA ≥ 3V. A slight (≈2mV) shift in reference voltage occurs when
VKA drops below 3V. For this reason, these tests are not performed at
VKA = VREF.
V
LT1431
U W
TYPICAL PERFOR A CE CHARACTERISTICS
VREF and IREF vs V +
2.5V Reference IK vs VKA
2.505
3.5
900
2.504
3.0
800
2.503
2.5
700
2.502
2.0
IMIN
VREF (V)
600
500
400
2.501
1.5
VREF
2.500
2.499
1.0
0.5
IREF
300
2.498
200
2.497
–0.5
100
2.496
–1.0
0
0
0
–1.5
2.495
2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5
+
V (V)
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
VKA (V)
LT1431 • TPC01
LT1431 • TPC02
VREF and IREF vs Temperature
3.0
2.503
2.5
2.502
2.0
2.501
1.5
1.0
VREF
0.5
2.499
2.498
0
IREF
2.497
–0.5
2.496
2.495
2.5025
1.00
VREF
2.5000
0.33
IREF
2.4950
0
2.4925
–0.33
2.4900
–0.66
–1.0
0
4
8
12 16 20 24 28 32 36 40
V + (V)
–1.5
2.4875
–50 –25
50
25
75
0
TEMPERATURE (°C)
LT1431 • TPC03
ILIMIT vs Temperature with
External Resistor
Propagation Delay vs Overdrive
PROPAGATION DELAY (µs)
1.00
ICOLL = 100mA
1.000
0.80
0.875
0.750
0.60
ICOLL = 50mA
0.40
0.625
0.500
–50 –25
0.20
50
25
75
0
TEMPERATURE (°C)
100
5V 1k
3
135
VSAT (V)
ILIMIT (NORMALIZED)
0.7
AT 25°C
RLIM + 3.6
–1.00
125
150
1.20
ILIMIT =
100
LT1027 • TPC04
COLLECTOR VSAT vs
Temperature vs Current
1.250
1.125
0.66
2.4975
VREF (V)
3.5
2.504
IREF (µA)
2.505
IREF (µA)
VREF (V)
VREF and IREF vs V +
2.500
IREF (µA)
IK (µA)
1000
125
LT1431 • TPC05
0
–50 –25
ICOLL = 20mA
VREF ± OVERDRIVE
105
100
125
LT1431 • TPC06
1
OUTPUT
LT1431
5
6
90
75
60
45
OUTPUT HIGH-TO-LOW
30
OUTPUT LOW-TO-HIGH
15
ICOLL = 10mA
50
25
75
0
TEMPERATURE (°C)
120
0
0
50
150
100
OVERDRIVE (mV)
200
250
LT1431 • TPC07
3
LT1431
U W
TYPICAL PERFOR A CE CHARACTERISTICS
Voltage Gain and Phase
vs Frequency
Transconductance and Phase
vs Frequency (REF to COLL)
PHASE
AV
135
9
10
90
108
Ω
100
1010
45
60
0
40
–45
1M
107
45
gm
105
–45
104
–90
–135
103
–135
–180
10M
102
0
10k
100k
FREQUENCY (Hz)
90
0
–90
1k
135
PHASE
106
20
–20
100
180
100
1k
10k
100k
FREQUENCY (Hz)
1M
Transconductance and Phase vs
Frequency (Ref to Comp)
20
1.4
0
1.2
3.0
IK ≤ 100mA
PHASE
–20
–60
–80
3 × 102
2.0
1M
0.6
–140
10M
1.5
ICOLL = 10mA
0.5
0
100
1k
10k
FREQUENCY (Hz)
LT1431 • TPC10
0
–50 –25
100k
50
25
75
0
TEMPERATURE (˚C)
LT1431 • TPC11
ICOMP vs VCOMP vs VREF
100
125
LT1431 • TPC12
Noise vs Frequency
0.1Hz to 10Hz Noise
1000
600
NOISE VOLTAGE (50µV/DIV)
500
NOISE (nV/√Hz)
VREF = 5V
400
ICOMP (µA)
ICOLL = 100mA
1.0
0.2
–120
10k
100k
FREQUENCY (Hz)
0.8
0.4
–100
1k
VCOMP (V)
103
2.5
1.0
ZKA (Ω)
–40
PHASE (DEG)
REF-TO-COLL gm (µ )
Ω
3 × 103
0.1
100
VCOMP vs Temperature vs ICOLL
Dynamic Impedance vs Frequency
gm
–180
10M
LT1431 • TPC09
LT1431 • TPC08
104
PHASE (DEG)
80
PHASE (DEG)
REF-TO-COLL 1k LOAD AV (dB)
120
180
REF-TO-COLL gm (m )
140
VREF = 4V
300
VREF = 3V
200
500
VREF = 2.53V
100
0
0
0
0.5
1.0
1.5 2.0
VCOMP (V)
2.5
3.0
3.5
LT1431 • TPC13
4
1
10
100
1k
FREQUENCY (Hz)
10k
100k
LT1431 • G14
0
1
4
3
2
TIME (MINUTES)
5
6
LT1431 • TPC15
LT1431
U
U
U
PI FU CTIO S
COLL (Pin 1): Open collector of the output transistor. The
maximum pin voltage is 26V. The saturation voltage at
100mA is approximately 1V.
RMID (Pin 7): Middle of the on-chip resistive divider string
between RTOP and GND-S. The pin is tied to REF for selfcontained 5V operation. It may be left open if unused.
COMP (Pin 2): Base of the driver for the output transistor.
This pin allows additional compensation for complex
feedback systems and shutdown of the regulator. It must
be left open if unused.
REF (Pin 8): Control pin of the shunt regulator with a 2.5V
threshold. If V + > 3V, input bias current cancellation
reduces IB to 0.2µA typical.
V + (Pin 3): Bias voltage for the entire shunt regulator. The
maximum input voltage is 36V and the minimum to
operate is equal to VREF (2.5V). The quiescent current is
typically 0.6mA.
COMP, RTOP, RMID, and REF have static discharge protection circuits that must not be activated on a continuous
basis. Therefore, the absolute maximum DC voltage on
these pins is 6V, well beyond the normal operating conditions.
RTOP (Pin 4): Top of the on-chip 5k-5k resistive divider
that guarantees 1% accuracy of operation as a 5V shunt
regulator with no external trim. The pin is tied to COLL for
self-contained 5V operation. It may be left open if unused.
See note on parasitic diodes below.
As with all bipolar ICs, the LT1431 contains parasitic
diodes which must not be forward biased or else anomalous behavior will result. Pin conditions to be avoided are
RTOP below RMID in voltage and any pin below GND-F in
voltage (except for GND-S).
GND-S (Pin 5): Ground reference for the on-chip resistive
divider and shunt regulator circuitry except for the output
transistor. This pin allows external current limit of the
output transistor with one resistor between GND-F (force)
and GND-S (sense).
The following pin definitions apply to the Z package.
CATHODE (Pin 1): Corresponds to COLL and V + tied
together.
GND-F (Pin 6): Emitter of the output transistor and substrate connection for the die.
REF (Pin 3): Corresponds to REF.
ANODE (Pin 2): Corresponds to GND-S and GND-F tied
together.
W
BLOCK DIAGRA
RTOP
V
4
+
3
COMP
2
COLLECTOR
1
5k
REF
RMID
8
+
gm =
4mA/V
7
–
5k
2.5V
5
GND-SENSE
6
GND-FORCE
LT1431 • BD01
5
LT1431
U U
W
U
APPLICATIO S I FOR ATIO
Frequency Compensation
pole-zero compensation. This can be accomplished with a
capacitor or series resistor and capacitor between COLL
and COMP.
As a shunt regulator, the LT1431 is stable for all capacitive
loads on the COLL pin. Capacitive loading between 0.01µF
and 18µF causes reduced phase margin with some ringing
under transient conditions. Output capacitors should not
be used arbitrarily because output noise is not necessarily
reduced.
The compensation schemes mentioned above use voltage
feedback to stabilize the circuits. There must be voltage
gain at the COLL pin for them to be effective, so the COLL
pin must see a reasonable AC impedance. Capacitive
loading of the COLL pin reduces the AC impedance,
voltage gain, and frequency response, thereby decreasing
the effectiveness of the compensation schemes, but also
decreasing their necessity.
Excess capacitance on the REF pin can introduce enough
phase shift to induce oscillation when configured as a
reference >2.5V. This can be compensated with capacitance between COLL and REF (phase lead). More complicated feedback loops may require shaping of the frequency response of the LT1431 with dominant pole or
U
TYPICAL APPLICATIO S
2.5V Reference
8-Pin Package
2.5V Reference
3-Pin Package
RL
5V Reference
RL
VIN
RL
VIN
2.5V
2.5V
V+
CATHODE
VIN
REF
REF
LT1431Z
5V
V+
COLL
RTOP
LT1431
COLL
REF
LT1431
RMID
ANODE
GND-S
GND-F
LT1431 • TA04
LT1431 • TA03
LT1431 • TA02
Programmable Reference with Adjustable
Current Limit
Increasing 5V Reference
RL
RL
VIN
R
5V + ∆
V+
RTOP
COLL
VIN
V+
REF
COLL
R1
REF
LT1431
LT1431
GND-F
∆ = R × (0.5mA) ±25% PROCESS TOLERANCE
∆ ≤ 500mV
R2
GND-F
GND-S
LT1431 • TA05
6
( )
VOUT = 1 + R1 VREF
R2
RMID
GND-S
GND-F
GND-S
RLIM
ILIMIT =
0.7
AT 25°C
RLIM + 3.6
LT1431 • TA06
LT1431
U
TYPICAL APPLICATIO S
PNP Low Dropout 5V Regulator*
VIN
0.1µF
20Ω**
2W
47Ω
MJE2955
1k
2N2219
0.015µF
150Ω
3
4
2
COMP
1
COLL
V+
REF
LT1431
RTOP
RMID
GND-S
5
8
7
GND-F
6
5V
+
MEASURED DROPOUT VOLTAGE
420mV AT 4A
190mV AT 2A
95mV AT 1A
60mV AT 0.5A
330µF
LT1431 • TA07
*NO SHORT-CIRCUIT PROTECTION
**MAY BE INCREASED AT LOWER WATTAGE
FOR LOWER OUTPUT CURRENTS
FET Low Dropout 5V Regulator with Current Limit
12V
MTP50N05EL
MTM25N05L
VIN ≥ 5.2V
D
+
47µF
0.002Ω*
5V, 2.5A
S
2
+
–
G
1.5V
7
+
3
4
47µF
LT1006
5
1N4148
6
1
COLL
Measured Dropout Voltages
ILOAD
2A
1A
0.5A
MTP50N05EL
47mV
22mV
11.5mV
MTM25N05L
145mV
73mV
37mV
3
4
V+
REF
LT1431
RTOP
GND-S
5
RMID
8
7
GND-F
6
LT1431 • TA08
*1.5" #23 SOLID COPPER WIRE
~0.002Ω → 3A LIMIT
7
LT1431
U
TYPICAL APPLICATIO S
12V to 5V Buck Converter with Foldback Current Limit*
Buck Converter Efficiency
80
PULSE ENGINEERING
#PE-51515
LOGIC IN
4
70
MBR735
GND
5k
3
VIN = 9V
VOUT
LT1089
HI-SIDE SWITCH
100Ω
0.5W
EFFICIENCY (%)
VIN
VIN
1500pF
2
COMP
1
COLL
V+
REF
RMID
GND-S
5
60
VIN = 15V
50
40
LT1431
RTOP
VIN = 12V
8
30
7
0
1
2
4
3
5
6
8
7
ILOAD (A)
GND-F
6
LT1431 • TA10
5V, 7A
+
*CONTACT LTC FOR HIGH EFFICIENCY
SWITCHING REGULATORS
3300µF
LT1431 • TA09
Isolated 5V to ±15V Flyback Converter
Fully Loaded Output Ripple vs Filtering
COILTRONICS
CTX02-11934
6, 7
4.5V
TO 5.5V
0.47µF
C*
MUR105
9
+
C*
LT1072
30mVP-P
40mVP-P
6mVP-P
8mVP-P
+
–15V, 70mA
3k
LT1172
210µF
15k
L*
MUR105
•
4, 5
+
50µF
VOUT
VIN
•
LT1172
OR
LT1072
GND
+
•
VC
MUR105
15V, 70mA
+
C*
1.5k
4N36
2.4k
0.68µF
0.1µF
1
20k 2
3
V+
8
REF
COLL
LT1431
COMP
GND-S
5
13.3k
2.7k
GND-F
6
LT1431 • TA11
8
100µF
*L BELL INDUSTRIES J.W. MILLER
DIVISION 9310-36 10µH, 450mA
1
MEASURED EFFICIENCY
LT117267.8% AT 2.2W OUT
LT107268.6% AT 2.2W OUT
LT107161.1% AT 4.4W OUT
+
100µF
2
10
LT1431 • TA12
LT1431
U
TYPICAL APPLICATIO S
5V Power Supply Monitor with ±500mV
Window and 50mV Hysteresis
Transfer Function
6
1k
6k*
1k
4k*
V+
COLL
REF
LT1431
COLL
REF
3
LT1431
5k
2
5k
GND-F
GND-S
4
VOUT
V+
5
“HIGH” FOR
OVER VOLTAGE OR
UNDER VOLTAGE
1N4148
GND-S
GND-F
1
10Ω** *DETERMINES WINDOW SIZE
V = (R – 5)(0.5mA)
**SETS HYSTERESIS
10Ω**
0
0
2
1
3
VIN
LT1431 • TA13
4
5
6
LT1431 • TA14
High Efficiency Buck Converter E = 85% to 89%
VIN
1
+
D1
BAT85
C1
220µF
35V
BOLD LINE INDICATES HIGH CURRENT PATHS
* = 1% FILM RESISTORS
C1 = NICHICON-UPL1V221MPH
C6 = NICHICON-UPL1C471MPH6
D1, D2 = PHILIPS-BAT85
D3 = MOTORALA-MBR330
L1 = COILTRONICS CTX50-3-MP
C3, C4, C5 = WIMA-MKS-2
5
VIN
VSW
4
C5
0.047µF
LT1170
R1
470k
+
C2
4.7µF 35V
TANTALUM
GND
3
D4
BAT85
VC
FB
2
1
R2
1k
C3
0.1µF
C4
0.033µF
D3
MBR330
L1
50µH 3A
0.12mΩ
ESR
+
5V
2.5A
D2
BAT85
OFF
1
RUN = 0
SHUTDOWN > 3V
R3
10k
RTN
R6*
23.7k
Q2
2N3904
2
Q1
VN2222LL
Q3
2N3904
3
4
R4
100Ω
C6
470µF
16V
R5
680Ω
R8*
24.9k
COMP
V+
1
COLL
REF
VR2
LT1431CN8
RTOP
GND-S
5
RMID
GND-F
8
7
R7*
24.9k
6
2
NOTES: UNLESS OTHERWISE SPECIFIED
1. ALL RESISTANCES ARE IN Ω, 0.25W, 5%
2. ALL CAPACITANCES ARE IN µF, 50V, 10%
3. SHUTDOWN LOGIC STATE MUST BE DEFINED BY A LOGIC GATE OR BY TYING TO GND
LT1431 • TA15
9
LT1431
W
W
SCHE ATIC DIAGRA
Q5
R1
35k
4X
R2
35k
Q2
Q1
Q7
3
Q13
V
+
Q17
3X
Q11
Q3
Q10
Q12
Q6
2X
Q9
8
REF
Q14
C1
22pF
R12
1k
R11
11k
C2
65pF
R13
6.5k
Q8
7
R9
2.5k
Q20
2X
Q22
45X
Q18 Q19
Q15
R16
11Ω
Q16
10X
R4
5k
GND-SENSE
COLLECTOR
1
R7
2.5k
4
R3
5k
R MID
R17
1.5k
C4
1pF
Q4
RTOP
C3
6pF
R15
5k
5X
R6
8.5k
COMP
2
R5
5k
R8
600Ω
R10
340Ω
R21
100k
R14
11Ω
R20
5k
Q21
2.5X
R18
50k
R19
3.6Ω
5
6
GND-FORCE
LT1431 • SD01
10
LT1431
U
PACKAGE DESCRIPTIO
Dimensions in inches (millimeters) unless otherwise noted.
J8 Package
8-Lead Ceramic DIP
0.405
(10.287)
MAX
0.005
(0.127)
MIN
8
7
6
5
0.025
(0.635)
RAD TYP
0.220 – 0.310
(5.588 – 7.874)
1
0.290 – 0.320
(7.366 – 8.128)
2
3
4
0.200
(5.080)
MAX
0.055
(1.397)
MAX
0.015 – 0.060
(0.381 – 1.524)
0.008 – 0.018
(0.203 – 0.460)
0° – 15°
0.038 – 0.068
(0.965 – 1.727)
0.385 ± 0.025
(9.779 ± 0.635)
0.125
3.175
0.100 ± 0.010 MIN
(2.540 ± 0.254)
0.014 – 0.026
(0.360 – 0.660)
J8 0392
N8 Package
8-Lead Plastic DIP
0.400
(10.160)
MAX
8
7
6
5
0.250 ± 0.010
(6.350 ± 0.254)
1
0.300 – 0.320
(7.620 – 8.128)
0.009 – 0.015
(0.229 – 0.381)
(
+0.025
0.325 –0.015
+0.635
8.255
–0.381
)
2
0.045 – 0.065
(1.143 – 1.651)
3
4
0.130 ± 0.005
(3.302 ± 0.127)
0.065
(1.651)
TYP
0.045 ± 0.015
(1.143 ± 0.381)
0.100 ± 0.010
(2.540 ± 0.254)
0.125
(3.175)
MIN
0.018 ± 0.003
(0.457 ± 0.076)
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of circuits as described herein will not infringe on existing patent rights.
0.020
(0.508)
MIN
N8 0392
11
LT1431
U
PACKAGE DESCRIPTIO
Dimensions in inches (millimeters) unless otherwise noted.
S8 Package
8-Lead Plastic SOIC
0.189 – 0.197
(4.801 – 5.004)
8
7
6
5
0.228 – 0.244
(5.791 – 6.197)
0.150 – 0.157
(3.810 – 3.988)
1
0.010 – 0.020
× 45°
(0.254 – 0.508)
2
0.016 – 0.050
0.406 – 1.270
4
0.053 – 0.069
(1.346 – 1.752)
0.004 – 0.010
(0.101 – 0.254)
0.008 – 0.010
(0.203 – 0.254)
0°– 8° TYP
3
0.014 – 0.019
(0.355 – 0.483)
0.050
(1.270)
BSC
SO8 0392
Z Package
3-Lead TO-92
0.060 ± 0.005
(1.524± 0.127)
DIA
0.180 ± 0.005
(4.572 ± 0.127)
0.90
(2.286)
NOM
0.180 ± 0.005
(4.572 ± 0.127)
0.500
(12.79)
MIN
0.060 ± 0.010
(1.524 ± 0.254)
0.050
(1.270)
MAX
0.140 ± 0.010
(3.556 ± 0.127)
5°
NOM
10° NOM
UNCONTROLLED
LEAD DIA
0.020 ± 0.003
(0.508 ± 0.076)
0.050 ± 0.005
(1.270 ± 0.127)
12
0.015 ± 0.02
(0.381 ± 0.051)
Z3 1191
0.016 ± 0.03
(0.406 ± 0.076)
Linear Technology Corporation
1630 McCarthy Blvd., Milpitas, CA 95035-7487
(408) 432-1900 ● FAX: (408) 434-0507 ● TELEX: 499-3977
LT/GP1292 5K REV B
 LINEAR TECHNOLOGY CORPORATION 1992
Similar pages