ON MC74HC273ADWG Octal d flip-flop with common clock and reset Datasheet

MC74HC273A
Octal D Flip-Flop with
Common Clock and Reset
High−Performance Silicon−Gate CMOS
The MC74HC273A is identical in pinout to the LS273. The device
inputs are compatible with standard CMOS outputs; with pullup
resistors, they are compatible with LSTTL outputs.
This device consists of eight D flip−flops with common Clock and
Reset inputs. Each flip−flop is loaded with a low−to−high transition of
the Clock input. Reset is asynchronous and active low.
www.onsemi.com
SOIC−20
DW SUFFIX
CASE 751D
Features
•
•
•
•
•
•
•
•
•
Output Drive Capability: 10 LSTTL Loads
Outputs Directly Interface to CMOS, NMOS and TTL
Operating Voltage Range: 2.0 to 6.0 V
Low Input Current: 1.0 mA
High Noise Immunity Characteristic of CMOS Devices
In Compliance with the Requirements Defined by JEDEC Standard
No. 7 A
Chip Complexity: 264 FETs or 66 Equivalent Gates
NLV Prefix for Automotive and Other Applications Requiring
Unique Site and Control Change Requirements; AEC−Q100
Qualified and PPAP Capable
These Devices are Pb−Free, Halogen Free and are RoHS Compliant
PIN ASSIGNMENT
RESET
1
20
VCC
Q0
D0
2
3
19
18
Q7
D7
D1
D2
DATA
INPUTS
D3
D4
D5
D6
D7
CLOCK
RESET
2
4
5
7
6
8
9
13
12
17
15
16
18
19
11
1
Q0
Q3
Q4
NONINVERTING
OUTPUTS
D2
7
14
D5
D3
8
13
D4
Q3
9
12
Q4
10
11
CLOCK
20
HC
273A
ALYWG
G
1
1
SOIC−20
TSSOP−20
A
= Assembly Location
WL, L
= Wafer Lot
YY, Y
= Year
WW, W = Work Week
G or G
= Pb−Free Package
(Note: Microdot may be in either location)
Q5
Q6
Q7
PIN 20 = VCC
PIN 10 = GND
FUNCTION TABLE
Internal Gate Count*
66
ea
Internal Gate Propagation Delay
1.5
ns
Internal Gate Power Dissipation
5.0
mW
.0075
pJ
*Equivalent to a two−input NAND gate.
October, 2015 − Rev. 17
Q6
Q5
Q2
Units
© Semiconductor Components Industries, LLC, 2015
D6
16
15
HC273A
AWLYYWWG
Q1
Value
Speed Power Product
17
5
6
20
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
Design Criteria
4
MARKING DIAGRAMS
3
14
D1
Q1
Q2
GND
LOGIC DIAGRAM
D0
TSSOP−20
DT SUFFIX
CASE 948E
1
Inputs
Output
Reset
Clock
D
Q
L
H
H
H
H
X
X
H
L
X
X
L
H
L
No Change
No Change
L
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 6 of this data sheet.
Publication Order Number:
MC74HC273A/D
MC74HC273A
MAXIMUM RATINGS
Symbol
Parameter
Value
Unit
–0.5 to +7.0
V
DC Input Voltage (Referenced to GND)
–0.5 to VCC + 0.5
V
DC Output Voltage (Referenced to GND)
–0.5 to VCC + 0.5
V
VCC
DC Supply Voltage (Referenced to GND)
Vin
Vout
Iin
DC Input Current, per Pin
±20
mA
Iout
DC Output Current, per Pin
±25
mA
ICC
DC Supply Current, VCC and GND Pins
±50
mA
PD
Power Dissipation in Still Air,
500
450
mW
Tstg
Storage Temperature
–65 to +150
°C
TL
Lead Temperature, 1 mm from Case for 10 Seconds
SOIC or TSSOP Package
SOIC Package†
TSSOP Package†
This device contains protection
circuitry to guard against damage
due to high static voltages or electric
fields. However, precautions must
be taken to avoid applications of any
voltage higher than maximum rated
voltages to this high−impedance circuit. For proper operation, Vin and
Vout should be constrained to the
range GND v (Vin or Vout) v VCC.
Unused inputs must always be
tied to an appropriate logic voltage
level (e.g., either GND or VCC).
Unused outputs must be left open.
°C
260
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of
these limits are exceeded, device functionality should not be assumed, damage may occur and
reliability may be affected.
†Derating: SOIC Package: –7 mW/°C from 65° to 125°C
TSSOP Package: −6.1 mW/°C from 65° to 125°C
RECOMMENDED OPERATING CONDITIONS
Symbol
VCC
Vin, Vout
Parameter
Min
Max
Unit
2.0
6.0
V
0
VCC
V
–55
+125
°C
0
0
0
1000
500
400
ns
DC Supply Voltage (Referenced to GND)
DC Input Voltage, Output Voltage (Referenced to GND)
TA
Operating Temperature, All Package Types
tr, tf
Input Rise and Fall Time
(Figure 1)
VCC = 2.0 V
VCC = 4.5 V
VCC = 6.0 V
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond
the Recommended Operating Ranges limits may affect device reliability.
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)
Guaranteed Limit
Test Conditions
VCC
V
–55 to
25°C
v 85°C
v 125°C
Unit
Symbol
Parameter
VIH
Minimum High−Level Input Voltage
Vout = VCC – 0.1 V
|Iout| v 20 mA
2.0
3.0
4.5
6.0
1.5
2.1
3.15
4.2
1.5
2.1
3.15
4.2
1.5
2.1
3.15
4.2
V
VIL
Maximum Low−Level Input Voltage
Vout = 0.1 V
|Iout| v 20 mA
2.0
3.0
4.5
6.0
0.5
0.9
1.35
1.8
0.5
0.9
1.35
1.8
0.5
0.9
1.35
1.8
V
VOH
Minimum High−Level Output
Voltage
Vin = VIH
|Iout| v 20 mA
2.0
4.5
6.0
1.9
4.4
5.9
1.9
4.4
5.9
1.9
4.4
5.9
V
3.0
4.5
6.0
2.48
3.98
5.48
2.34
3.84
5.34
2.2
3.7
5.2
2.0
4.5
6.0
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
3.0
4.5
6.0
0.26
0.26
0.26
0.33
0.33
0.33
0.4
0.4
0.4
|Iout| v 2.4 mA
|Iout| v 6.0 mA
|Iout| v 7.8 mA
Vin = VIH
VOL
Maximum Low−Level Output
Voltage
Vin = VIL
|Iout| v 20 mA
Vin = VIL
|Iout| v 2.4 mA
|Iout| v 6.0 mA
|Iout| v 7.8 mA
www.onsemi.com
2
V
MC74HC273A
DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)
Guaranteed Limit
Symbol
Parameter
Test Conditions
VCC
V
–55 to
25°C
v 85°C
v 125°C
Unit
Iin
Maximum Input Leakage Current
Vin = VCC or GND
6.0
±0.1
±1.0
±1.0
mA
ICC
Maximum Quiescent Supply
Current (per Package)
Vin = VCC or GND
Iout = 0 mA
6.0
4.0
40
160
mA
AC ELECTRICAL CHARACTERISTICS (CL = 50 pF, Input tr = tf = 6.0 ns)
Guaranteed Limit
Symbol
Parameter
VCC
V
–55 to
25°C
v 85°C
v 125°C
Unit
fmax
Maximum Clock Frequency (50% Duty Cycle)
(Figures 1 and 4)
2.0
3.0
4.5
6.0
6.0
15
30
35
5.0
10
24
28
4.0
8.0
20
24
MHz
tPLH
tPHL
Maximum Propagation Delay, Clock to Q
(Figures 1 and 4)
2.0
3.0
4.5
6.0
145
90
29
25
180
120
36
31
220
140
44
38
ns
tPHL
Maximum Propagation Delay, Reset to Q
(Figures 2 and 4)
2.0
3.0
4.5
6.0
145
90
29
25
180
120
36
31
220
140
44
38
ns
tTLH
tTHL
Maximum Output Transition Time, Any Output
(Figures 1 and 4)
2.0
3.0
4.5
6.0
75
27
15
13
95
32
19
16
110
36
22
19
ns
Cin
Maximum Input Capacitance
10
10
10
pF
Typical @ 25°C, VCC = 5.0 V
CPD
48
Power Dissipation Capacitance (Per Enabled Output)*
* Used to determine the no−load dynamic power consumption: P D = CPD VCC
2f
pF
+ ICC VCC .
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
TIMING REQUIREMENTS (CL = 50 pF, Input tr = tf = 6.0 ns)
Guaranteed Limit
Symbol
Parameter
Figure
–55 to 25°C
VCC
Volts
Min
Max
v 85°C
Min
Max
v 125°C
Min
Max
Unit
tsu
Minimum Setup Time, Data to Clock
3
2.0
3.0
4.5
6.0
60
23
12
10
75
27
15
13
90
32
18
15
ns
th
Minimum Hold Time, Clock to Data
3
2.0
3.0
4.5
6.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
ns
trec
Minimum Recovery Time, Reset Inactive to
Clock
2
2.0
3.0
4.5
6.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
ns
tw
Minimum Pulse Width, Clock
1
2.0
3.0
4.5
6.0
60
23
12
10
75
27
15
13
90
32
18
15
ns
www.onsemi.com
3
MC74HC273A
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
TIMING REQUIREMENTS (CL = 50 pF, Input tr = tf = 6.0 ns)
Symbol
tw
tr, tf
Parameter
Figure
VCC
Volts
Min
60
23
12
10
Minimum Pulse Width, Reset
2
2.0
3.0
4.5
6.0
Maximum Input Rise and Fall Times
1
2.0
3.0
4.5
6.0
www.onsemi.com
4
Max
Min
Max
75
27
15
13
1000
800
500
400
Min
Max
90
32
18
15
1000
800
500
400
Unit
ns
1000
800
500
400
ns
MC74HC273A
SWITCHING WAVEFORMS
tr
CLOCK
tw
tf
VCC
90%
50%
10%
tw
GND
GND
1/fmax
tPHL
50%
Q
tPHL
tPLH
Q
VCC
50%
RESET
trec
90%
50%
10%
VCC
CLOCK
tTLH
50%
GND
tTHL
Figure 1.
Figure 2.
C
D0
3
VALID
C
VCC
DATA
DR
D1
50%
4
DR
Q
Q
2
5
Q0
Q1
GND
tsu
th
C
VCC
CLOCK
D2
7
DR
Q
6
Q2
50%
GND
C
DATA
INPUTS
Figure 3.
D3
8
DR
C
D4
13
DR
C
D5
14
C
TEST POINT
D6
17
OUTPUT
DEVICE
UNDER
TEST
DR
D7
18
DR
C
DR
Q
9
Q3
NONINVERTING
OUTPUTS
Q
Q
Q
Q
12
15
16
19
Q4
Q5
Q6
Q7
CL*
11
1
*Includes all probe and jig capacitance
Figure 4. Test Circuit
Figure 5. Expanded Logic Diagram
www.onsemi.com
5
MC74HC273A
ORDERING INFORMATION
Package
Shipping†
MC74HC273ADWG
SOIC−20 WB
(Pb−Free)
38 Units / Rail
MC74HC273ADWR2G
SOIC−20 WB
(Pb−Free)
1000 / Tape & Reel
NLV74HC273ADWR2G*
SOIC−20 WB
(Pb−Free)
1000 / Tape & Reel
MC74HC273ADTG
TSSOP−20
(Pb−Free)
75 Units / Rail
MC74HC273ADTR2G
TSSOP−20
(Pb−Free)
2500 / Tape & Reel
NLV74HC273ADTR2G*
TSSOP−20
(Pb−Free)
2500 / Tape & Reel
Device
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
*NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC−Q100 Qualified and PPAP
Capable.
www.onsemi.com
6
MC74HC273A
PACKAGE DIMENSIONS
TSSOP−20
DT SUFFIX
CASE 948E−02
ISSUE C
20X
0.15 (0.006) T U
2X
K REF
0.10 (0.004)
S
L/2
20
M
T U
S
V
K
K1
ÍÍÍÍ
ÍÍÍÍ
ÍÍÍÍ
S
J J1
11
B
−U−
L
PIN 1
IDENT
SECTION N−N
0.25 (0.010)
N
1
10
M
0.15 (0.006) T U
S
N
A
−V−
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION:
MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE
MOLD FLASH, PROTRUSIONS OR GATE
BURRS. MOLD FLASH OR GATE BURRS
SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION
SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE
DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08
(0.003) TOTAL IN EXCESS OF THE K
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE
DETERMINED AT DATUM PLANE −W−.
F
DETAIL E
−W−
C
G
D
H
DETAIL E
0.100 (0.004)
−T− SEATING
PLANE
DIM
A
B
C
D
F
G
H
J
J1
K
K1
L
M
SOLDERING FOOTPRINT*
7.06
1
0.65
PITCH
16X
0.36
16X
1.26
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
www.onsemi.com
7
MILLIMETERS
MIN
MAX
6.40
6.60
4.30
4.50
--1.20
0.05
0.15
0.50
0.75
0.65 BSC
0.27
0.37
0.09
0.20
0.09
0.16
0.19
0.30
0.19
0.25
6.40 BSC
0_
8_
INCHES
MIN
MAX
0.252
0.260
0.169
0.177
--0.047
0.002
0.006
0.020
0.030
0.026 BSC
0.011
0.015
0.004
0.008
0.004
0.006
0.007
0.012
0.007
0.010
0.252 BSC
0_
8_
MC74HC273A
PACKAGE DIMENSIONS
SOIC−20
DW SUFFIX
CASE 751D−05
ISSUE G
20
11
X 45 _
h
H
M
E
0.25
10X
NOTES:
1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES
PER ASME Y14.5M, 1994.
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE PROTRUSION
SHALL BE 0.13 TOTAL IN EXCESS OF B
DIMENSION AT MAXIMUM MATERIAL
CONDITION.
q
A
B
M
D
1
10
20X
B
B
0.25
M
T A
S
B
S
L
A
18X
e
A1
DIM
A
A1
B
C
D
E
e
H
h
L
q
MILLIMETERS
MIN
MAX
2.35
2.65
0.10
0.25
0.35
0.49
0.23
0.32
12.65
12.95
7.40
7.60
1.27 BSC
10.05
10.55
0.25
0.75
0.50
0.90
0_
7_
SEATING
PLANE
C
T
ON Semiconductor and the
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.
SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed
at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation
or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets
and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each
customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended,
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which
the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or
unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable
copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
www.onsemi.com
8
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
MC74HC273A/D
Similar pages