Hittite HMC528 Gaas mmic i/q mixer 11 - 16 ghz Datasheet

HMC528
v01.0907
MIXERS - I/Q MIXERS / IRM - CHIP
3
GaAs MMIC I/Q MIXER
11 - 16 GHz
Typical Applications
Features
The HMC528 is ideal for:
Wide IF Bandwidth: DC - 3.5 GHz
• Point-to-Point and Point-to-Multi-Point Radio
Image Rejection: 35 dB
• Military Radar
LO to RF Isolation: 45 dB
High Input IP3: +27 dBm
Functional Diagram
General Description
The HMC528 is a compact I/Q MMIC mixer which can
be used as either an Image Reject Mixer or a Single
Sideband Upconverter. The chip utilizes two standard
Hittite double balanced mixer cells and a 90 degree
hybrid fabricated in a GaAs MESFET process. All
data shown below is taken with the chip mounted in
a 50 Ohm test fixture and includes the effects of 1 mil
diameter x 20 mil length bond wires on each port. A
low frequency quadrature hybrid was used to produce
a 100 MHz USB IF output. This product is a much
smaller alternative to hybrid style Image Reject Mixers
and Single Sideband Upconverter assemblies.
Electrical Specifi cations, TA = +25° C, IF= 100 MHz, LO = +19 dBm*
Parameter
Min.
Frequency Range, RF/LO
Frequency Range, IF
Max.
Min.
8
17
1 dB Compression (Input)
25
Typ.
Max.
12.7 - 15.4
DC - 3.5
Conversion Loss (As IRM)
Image Rejection
Typ.
11 - 16
GHz
DC - 3.5
11
8
18
+21
GHz
10
dB
35
dB
+21
dBm
LO to RF Isolation
38
45
40
45
dB
LO to IF Isolation
18
22
20
24
dB
dBm
IP3 (Input)
+25
+27
Amplitude Balance
0.5
0.5
dB
8
5
Deg
Phase Balance
* Unless otherwise noted, all measurements performed as downconverter.
3 - 112
Units
For price, delivery, and to place orders, please contact Hittite Microwave Corporation:
20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373
Order On-line at www.hittite.com
HMC528
v01.0907
GaAs MMIC I/Q MIXER
11 - 16 GHz
Data taken as IRM with External IF Hybrid
Conversion Gain vs. Temperature
Image Rejection vs. Temperature
60
50
-5
-10
+25C
+85C
-55C
-15
3
40
30
20
+25C
+85C
-55C
10
-20
0
10
11
12
13
14
15
16
17
10
11
12
RF FREQUENCY (GHz)
13
14
15
16
17
15
16
17
15
16
17
RF FREQUENCY (GHz)
Conversion Gain vs. LO Drive
Return Loss
0
0
-5
RETURN LOSS (dB)
CONVERSION GAIN (dB)
RF
LO
-10
+17dBm
+19dBm
+21dBm
-15
-20
-5
-10
-15
-20
10
11
12
13
14
15
16
17
10
11
12
RF FREQUENCY (GHz)
13
14
FREQUENCY (GHz)
Input P1dB vs. Temperature
MIXERS - I/Q MIXERS / IRM - CHIP
IMAGE REJECTION (dB)
CONVERSION GAIN (dB)
0
Input IP3 vs. LO Drive
35
26
24
30
25
20
IP3 (dBm)
P1dB (dBm)
22
18
16
20
LO = +17 dBm
LO = +19 dBm
LO = +21 dBm
15
14
+25C
+85C
-55C
12
10
10
5
10
11
12
13
14
15
RF FREQUENCY (GHz)
16
17
10
11
12
13
14
RF FREQUENCY (GHz)
For price, delivery, and to place orders, please contact Hittite Microwave Corporation:
20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373
Order On-line at www.hittite.com
3 - 113
HMC528
v01.0907
GaAs MMIC I/Q MIXER
11 - 16 GHz
Quadrature Channel Data Taken Without IF Hybrid
Isolations
IF Bandwidth*
0
-10
LOF/IF2
RESPONSE (dB)
-5
LO/IF1
-30
RF/IF1
-40
LO/RF
-10
-15
-50
RF/IF2
RETURN LOSS
CONVERSION GAIN
-60
10
11
12
13
14
15
16
-20
0.5
17
1
1.5
RF FREQUENCY (GHz)
2.5
3
15
6
4
PHASE BALANCE (degrees)
LO = +17 dBm
LO = +19 dBm
LO = +21 dBm
2
0
-2
-4
-6
-8
LO = +17 dBm
LO = +19 dBm
LO = +21 dBm
10
5
0
-5
-10
-15
10
11
12
13
14
15
16
17
10
11
12
RF FREQUENCY (GHz)
13
14
15
16
17
RF FREQUENCY (GHz)
Upconverter Performance Conversion
Gain vs. LO Drive
Upconverter Performance Sideband
Rejection vs. LO Drive
0
SIDEBAND REJECTION (dBc)
0
-5
-10
LO = +17 dBm
-15
LO = +19 dBm
LO = +21 dBm
-20
LO = +17 dBm
LO = +19 dBm
LO = +21 dBm
-10
-20
-30
-40
-50
-60
10
11
12
13
14
15
RF FREQUENCY (GHz)
16
17
10
11
12
13
14
15
RF FREQUENCY (GHz)
* Conversion gain data taken with external IF hybrid
3 - 114
3.5
Phase Balance vs. LO Drive
8
CONVERSION GAIN (dB)
2
IF FREQUENCY (GHz)
Amplitude Balance vs. LO Drive
AMPLITUDE BALANCE (dB)
MIXERS - I/Q MIXERS / IRM - CHIP
3
ISOLATION (dB)
-20
For price, delivery, and to place orders, please contact Hittite Microwave Corporation:
20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373
Order On-line at www.hittite.com
16
17
HMC528
v01.0907
GaAs MMIC I/Q MIXER
11 - 16 GHz
Harmonics of LO
MxN Spurious Outputs
nLO Spur at RF Port
nLO
LO Freq. (GHz)
2
3
4
mRF
10.5
43
49
58
79
11.5
49
47
61
61
12.5
50
51
63
0
1
2
3
4
0
xx
-12
7
14
xx
1
24
0
51
59
70
53
2
79
73
74
79
91
13.5
49
52
67
xx
3
87
102
99
86
97
14.5
50
48
69
xx
4
xx
84
102
97
105
15.5
49
54
71
xx
LO = +19 dBm
Values in dBc below input LO level measured at RF Port.
RF = 13.6 GHz @ -10 dBm
LO = 13.5 GHz @ +19 dBm
Data taken without IF hybrid
All values in dBc below IF power level
Absolute Maximum Ratings
RF / IF Input
+20 dBm
LO Drive
27 dBm
Channel Temperature
150°C
Continuous Pdiss (T=85°C)
(derate 6.9 mW/°C above 85°C)
452 mW
Thermal Resistance (RTH)
(junction to die bottom)
150 °C/W
Storage Temperature
-65 to +150 °C
Operating Temperature
-55 to +85 deg °C
ELECTROSTATIC SENSITIVE DEVICE
OBSERVE HANDLING PRECAUTIONS
Die Packaging Information [1]
Standard
Alternate
GP-2 (Gel Pack)
[2]
[1] Refer to the “Packaging Information” section for die
packaging dimensions.
[2] For alternate packaging information contact Hittite
Microwave Corporation.
Outline Drawing
3
MIXERS - I/Q MIXERS / IRM - CHIP
1
NOTES:
1. ALL DIMENSIONS ARE IN INCHES [MM]
2. DIE THICKNESS IS .004”
3. TYPICAL BOND PAD IS .004”
4. BACKSIDE METALIZATION: GOLD
5. BOND PAD METALIZATION: GOLD
6. BACKSIDE METAL IS GROUND
7. CONNECTION NOT REQUIRED FOR
UNLABELED BOND PADS.
8. OVERALL DIE SIZE ±.002”
For price, delivery, and to place orders, please contact Hittite Microwave Corporation:
20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373
Order On-line at www.hittite.com
3 - 115
HMC528
v01.0907
GaAs MMIC I/Q MIXER
11 - 16 GHz
Pad Descriptions
Pad Number
Function
Description
1
RF
This pad is AC coupled
and matched to 50 Ohms.
4
LO
This pad is AC coupled
and matched to 50 Ohms.
2 (5)
IF2
3 (6)
IF1
MIXERS - I/Q MIXERS / IRM - CHIP
3
3 - 116
GND
Interface Schematic
This pad is DC coupled. For applications not
requiring operation to DC, this port should be DC
blocked externally using a series capacitor whose
value has been chosen to pass the necessary IF
frequency range. For operation to DC, this pad
must not source/sink more than 3mA of current or
die non-function and possible die failure will result.
Pads 5 and 6 are alternate IF ports.
The backside of the die must be connected
to RF/DC ground.
Assembly Diagrams
For price, delivery, and to place orders, please contact Hittite Microwave Corporation:
20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373
Order On-line at www.hittite.com
HMC528
v01.0907
GaAs MMIC I/Q MIXER
11 - 16 GHz
Mounting & Bonding Techniques for Millimeterwave GaAs MMICs
50 Ohm Microstrip transmission lines on 0.127mm (5 mil) thick alumina thin film
substrates are recommended for bringing RF to and from the chip (Figure 1). If
0.254mm (10 mil) thick alumina thin film substrates must be used, the die should
be raised 0.150mm (6 mils) so that the surface of the die is coplanar with the
surface of the substrate. One way to accomplish this is to attach the 0.102mm
(4 mil) thick die to a 0.150mm (6 mil) thick molybdenum heat spreader (moly-tab)
which is then attached to the ground plane (Figure 2).
0.102mm (0.004”) Thick GaAs MMIC
Wire Bond
0.076mm
(0.003”)
RF Ground Plane
Microstrip substrates should be brought as close to the die as possible in order
to minimize bond wire length. Typical die-to-substrate spacing is 0.076mm (3
mils).
Handling Precautions
0.127mm (0.005”) Thick Alumina
Thin Film Substrate
Follow these precautions to avoid permanent damage.
Figure 1.
Storage: All bare die are placed in either Waffle or Gel based ESD protective
containers, and then sealed in an ESD protective bag for shipment. Once the
sealed ESD protective bag has been opened, all die should be stored in a dry
nitrogen environment.
Cleanliness: Handle the chips in a clean environment. DO NOT attempt to clean
the chip using liquid cleaning systems.
Static Sensitivity: Follow ESD precautions to protect against ESD strikes.
Transients: Suppress instrument and bias supply transients while bias is applied.
Use shielded signal and bias cables to minimize inductive pick-up.
General Handling: Handle the chip along the edges with a vacuum collet or with
a sharp pair of bent tweezers. The surface of the chip has fragile air bridges and
should not be touched with vacuum collet, tweezers, or fingers.
0.102mm (0.004”) Thick GaAs MMIC
Wire Bond
0.076mm
(0.003”)
RF Ground Plane
0.150mm (0.005”) Thick
Moly Tab
Mounting
The chip is back-metallized and can be die mounted with AuSn eutectic preforms
or with electrically conductive epoxy. The mounting surface should be clean and
flat.
0.254mm (0.010”) Thick Alumina
Thin Film Substrate
Figure 2.
Eutectic Die Attach: A 80/20 gold tin preform is recommended with a work surface temperature of 255 °C and a tool temperature
of 265 °C. When hot 90/10 nitrogen/hydrogen gas is applied, tool tip temperature should be 290 °C. DO NOT expose the chip
to a temperature greater than 320 °C for more than 20 seconds. No more than 3 seconds of scrubbing should be required for
attachment.
Epoxy Die Attach: Apply a minimum amount of epoxy to the mounting surface so that a thin epoxy fillet is observed around the
perimeter of the chip once it is placed into position. Cure epoxy per the manufacturer’s schedule.
3
MIXERS - I/Q MIXERS / IRM - CHIP
The die should be attached directly to the ground plane eutectically or with
conductive epoxy (see HMC general Handling, Mounting, Bonding Note).
Wire Bonding
Ball or wedge bond with 0.025 mm (1 mil) diameter pure gold wire is recommended. Thermosonic wirebonding with a nominal stage
temperature of 150 °C and a ball bonding force of 40 to 50 grams or wedge bonding force of 18 to 22 grams is recommended. Use
the minimum level of ultrasonic energy to achieve reliable wirebonds. Wirebonds should be started on the chip and terminated on
the package or substrate. All bonds should be as short as possible <0.31 mm (12 mils).
For price, delivery, and to place orders, please contact Hittite Microwave Corporation:
20 Alpha Road, Chelmsford, MA 01824 Phone: 978-250-3343 Fax: 978-250-3373
Order On-line at www.hittite.com
3 - 117
Similar pages