DOMINANT Opto Technologies Innovating Illumination TM DATA SHEET: Power DomiLED AlInGaP : DWx-HKG Power DomiLED With its significant power in terms brightness, viewing angle and variety of application possibilities, Power DomiLED™ truly is a standout performer! Ideal for automotive interior lighting as well as home, office and industrial applications, it is also a proven performer in electronic signs and signals. Features: > > > > > > > > High brightness surface mount LED using thin film technology. 120° viewing angle. Small package outline (LxWxH) of 3.2 x 2.8 x 1.8mm. Qualified according to JEDEC moisture sensitivity Level 2. Compatible to IR reflow soldering. Environmental friendly; RoHS compliance. Superior corrosion resistance. Compliance to automotive standard; AEC-Q101. Applications: > Automotive: Interior applications, eg: switches, telematics, climate control system, dashboard, etc. Exterior applications, eg: signal lighting, Center High Mounted Stop Light (CHMSL), Rear Combination Lamp (RCL). > Signage: full colour display video notice board, signage, special effect lighting. © 2005 DomiLED is a trademark of DOMINANT Opto Technologies. All rights reserved. Product specifications are subject to change without notice. 1 21/12/2017 V6.0 DOMINANT TM AlInGaP : DWx-HKG Opto Technologies Innovating Illumination Optical Characteristics at Tj=25˚C Part Ordering Number Color DWA-HKG-JL3-1 Amber, 617nm Viewing Angle˚ Luminous Flux @ IF = 50mA (lm) Appx. 1.2 Min. Typ. Max. 6.30 120 13.90 9.35 Electrical Characteristics at Tj=25˚C Vf @ If = 50mA Appx. 3.1 Part Number Min. (V) Typ. (V) Max. (V) Vr @ Ir = 10uA Min. (V) DWx-HKG 2.05 2.20 2.50 12 Absolute Maximum Ratings Maximum Value Unit DC forward current 70 mA Peak pulse current; (tp ≤ 10µs, Duty cycle = 0.1) 100 mA Reverse voltage 12 V ESD threshold (HBM) 2 kV 125 ˚C Operating temperature -40 … +115 ˚C Storage temperature -40 … +125 ˚C 200 mW LED junction temperature Power dissipation (at room temperature) Thermal resistance - Real Thermal Resistance Junction / ambient, Rth JA real 300 K/W Junction / solder point, Rth JS real - Electrical Thermal Resistance 90 K/W Junction / ambient, Rth JA el Junction / solder point, Rth JS el 240 K/W 65 K/W (Mounting on FR4 PCB, pad size >= 16 mm2 per pad) 2 21/12/2017 V6.0 DOMINANT TM AlInGaP : DWx-HKG Opto Technologies Innovating Illumination Wavelength Grouping at Tj= 25˚C Color Group DWA; Amber Wavelength distribution (nm) Appx. 2.2 Full 612 - 624 W 612 - 616 X 616 - 620 Y 620 - 624 Luminous Flux Group at Tj=25˚C Luminous Flux Appx. 1.2 (lm) Brightness Group J2 6.30 ... 7.15 J3 7.15 ... 8.20 K2 8.20 ... 9.35 K3 9.35 ... 10.70 L2 10.70 ... 12.20 L3 12.20 ... 13.90 Vf Bining (Optional) Vf @ If = 50mA Forward Voltage (V) Appx. 3.1 V51 2.05 ... 2.20 V52 2.20 ... 2.35 V53 2.35 ... 2.50 Please consult sales and marketing for special part number to incorporate Vf binning. 3 21/12/2017 V6.0 DOMINANT TM AlInGaP : DWx-HKG Opto Technologies Innovating Illumination Relative Luminous Flux Vs Forward Current Relative Lumionous Flux Vs Forward Current Relative Lumionous Flux Vs Forward Current ФV/ФФV(50mA) = Фf(I ); =T25°C = 25°C j /Ф (50mA) = f(I );F T(50mA) /Ф = f(I ); T = 25°C V Vj F j 80 0.4 1.0 0.2 0.8 0.0 0.6 0 0.8 1.0 0.6 0.8 0.4 0.6 0.2 0.4 0.0 10 0.2 20 0 30 10 40 20 50 30 60 40 70 50 80 60 Forward Current (mA) Forward Current IIFF(mA) Forward Current IF (mA) 0.4 0.0 Maximum Current Vs Temperature Maximum Current Vs Temperature 0 10 I = f20 30 40 50 60 (T) IF = f (T) F 0 100 80 Forward Forward Current IFCurrent (mA) I (mA) F 70 80 120 60 Forward Current IF (mA) 120 Maximum Current Vs Temperature Maximum Current Vs Temperature Maximum Current Vs Temperature I =f(T) I = f (T) 70 10 20 30 I F=40 80 f (T) 50 F 60 F 100 120 Forward Current IF (mA) TS Maximum Current Vs Temperature IF = f (T) 80 100 60 10050 40 40 80 30 20 60 20 TA 60 80 TATS TA 40 60 TA I (mA) F F 50 80 Forward CurrentCurrent IFCurrent I Forward Forward 0.6 1.2 Forward Current IF 0.8 1.4 Forward Current IF Relative Luminous Flux Фrel Flux Ф Relative Luminous rel 1.0 1.6 80 60 1.2 Relative Lumionous Flux Vs Forward Current 1.4 ФV/ФV(50mA) = f(IF); Tj = 25°C 1.0 1.2 40 70 30 60 20 50 10 40 300 70 80 1.6 70 20 10 1.0 20 40 TA = Ambient Temperature TA = Ambient Temperature TS TA TS = Solder PointTSTemperature = Solder Point Temperature 0 0 20 20 0 T 40 20 60 40 80 60 100 80 120 100 4010 0 T = Ambient Temperature A = Ambient Temperature A Solder Point Temperature TS =Temperature Temperature T(°C) TS = Solder Point Temperature T(°C) 0 0 Allowable Forward Current Vs DutyCurrent Ratio Vs Duty Ratio Allowable Forward 20 40 60t ≤100 80 120 100 0 20 0 25°C;60 tp ≤ 10μs (40 Tj = 20 25°C; ( Tj =)80 p 10μs ) TA = Ambient Temperature Temperature T(°C) Temperature T(°C) 1000 TS = Solder T(°C) 1000 Point Temperature Temperature Allowable Forward Current Vs Duty Ratio 0 25°C; tp ≤100 10μs ) 120 ( Tj =80 0 20 40 60 1000 Temperature T(°C) 1.7 1.0 0.6 0.9 0.5 TS 0.8 0.4 0.7 TS0.3 0.6 0.2 0.5 0.1 0.2 40 50 30 40 20 30 10 20 100 100 10 0.1 350 120 400 120 2.3 2.1 2.4 2.2 2.3 2.4 1.9 2.3 2.4 2.0 2.1 2.2 2.3 2.4 Forward Voltage VF (V) Relative Spectral Emission 0.9 0.7 Ф = f(λ); T = 25°C; I = 50mA rel j F 0.8 0.6 0.7 0.5 0.6 0.4 0.5 0.3 0.4 0.2 0.3 0.1 0.2 0.0 450350 500400 550450 600500 650550 700600 750650 800700 850750 800 850 0.1 Wavelength λ (nm) Wavelength λ (nm) 0.0 350 400 450 500 550 600 650 700 750 800 850 Wavelength λ λ (nm) Wavelength (nm) 350 400 450 500 550 600 650 700 750 800 850 Wavelength λ (nm) Radiation Pattern 30° 20° 10° 0° 1.0 40° 0.8 100 10 0.1 1 10 1 10 100 100 Duty Ratio, % Duty Ratio, % 0.1 1 1 10 50° 0.6 60° 0.4 70° 10 100 Duty Ratio, % 0.1 2.2 2.0 Relative Spectral Emission Relative Spectral Emission Фrel = f(λ); Tj =Tj 25°C; 50mA = 25°C; IFIF= = 50mA Фrel = f(λ); 0.1 0.0 2.1 1.9 100 10 10 2.0 1.8 Forward Forward Voltage VF (V) Voltage (V) Forward VoltageVVFF (V) 0.9 1.8 1.0 0.8 Allowable Forward Current Vs Duty Ratio Allowable Forward Current Vs Duty Ratio ( T( jT=j =25°C; ≤ 10μs ) 25°C; tp ≤tp10μs ) 1000 1.9 1.7 Relative Spectral Emission Relative Spectral Emission 1.6 Ф 1.7 1.8 1.9 = 50mA 2.0 2.1 2.2 Tj = 25°C; IF = 50mA Фrel =IFf(λ); rel = f(λ); Tj = 25°C; Forward Voltage V (V) F 1.0 0.7 0.3 60 Forward Current Vs Forward Voltage 70 IF = f(VF); Tj = 25°C 50 60 0 80 0.8 0.4 0.0 Forward Current Vs Forward Voltage IF = f(VF); Tj = 25°C 70 80 0 1.7 10 1.8 1.6 0 0.9 1.6 Relative Luminous Flux Фrel Relative Luminous Relative Luminous Flux Фrel Flux Фrel 1.2 Forward Current IF (mA) IF (mA) Current Forward Forward IF (mA) Forward Current IFCurrent (mA) F V Relative Lumionous Flux Vs Forward Current ФV/ФV(50mA) = f(IF); Tj = 25°C 70 1.4 1.6 AllowableAllowable Forward Forward Current IFCurrent ( mA ) I ( mA ) F Relative Luminous Flux Фrel RelativeLuminous Luminous Flux Фrel Flux Relative Фrel 1.4 0.2 120 0.0 Allowable Forward Current IF( mA ) IF()mACurrent Current Forward Allowable Allowable Forward IF( mA ) V 1.6 Фrel Фrel Flux Relative RelativeLuminous Luminous Flux ФrelFlux Relative Luminous 1.6 Forward Current Vs Forward Voltage Forward Current VsI Forward Forward = Current f(VFVoltage ); Vs Tj Forward = 25°CVoltage IF = f(VF); TjF= 25°C IF = f(V F); Tj = 25°C 80° 90° 100 0.2 0 Duty Ratio, % % Duty Ratio, 4 21/12/2017 V6.0 DOMINANT TM AlInGaP : DWx-HKG Opto Technologies Innovating Illumination Relative Luminious Flux Vs Junction Temperature Relative Luminious Vs Junction Temperature Relative Luminious FluxFlux Vs Junction Temperature ФV/ФV(25°C) f(T IF = 50mA IF =j); 50mA ФV/ФV(25°C) I= ФV/ФV(25°C) = f(Tj=); f(T j); 50mA F= 2.0 2.0 0.4 0.4 1.8 1.8 0.3 0.3 Relative Luminious Flux ФFlux Фrel Luminious Relative rel 0.5 0.5 1.6 1.6 Relative Forward Voltage ∆VF (V) 0.2 0.2 Relative Luminious Flux Фrel Relative Forward Voltage ∆VF (V)∆VF (V) Voltage Forward Relative Relative Forward Voltage Vs Junction Temperature Relative Forward Voltage Vs Junction Temperature Relative Forward Voltage Vs Junction Temperature ∆V∆V = ∆V VVFFF =-- VVF(25°C) (25°C) =50mA ); 50mA IjF);= I50mA = f(Tj=);=f(T IFf(T j= F F= F- VF(25°C) F 0.1 0.1 0.0 0.0 -0.1 -0.1 -0.2 -0.2 -0.3 -0.3 -0.4 -0.4 1.4 1.4 1.2 1.2 1.0 1.0 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0.0 0.0 -50 -50 -30 -30 -10 -10 10 1030 3050 5070 7090 90 110 110 130 130 150 150 -0.5 -0.5 -50 -50 -30 -30 -10 -10 10 1030 3050 5070 7090 90 110 110 130 130 150 150 Junction Temperature T j(°C) Junction Temperature T j(°C) Junction Temperature Tj(°C) Junction Temperature Junction Temperature T j(°C) j(°C) Junction Temperature TTj(°C) Chromaticity Coordinate Shift Vs Junction Temperature ∆Cx, ∆Cy = f(Tj); IF = 50mA 10.0 0.05 8.0 0.04 6.0 0.03 4.0 0.02 2.0 0.01 ∆Cx, ∆Cy Relative Wavelength ∆λdom (nm) ∆λdom(nm) Wavelength Relative Relative Wavelength Vs Junction Temperature Relative Wavelength Vs Junction Temperature λdom (25°C) = f(Tj); = IF =f(T 50mA ∆λdom =∆λλdom - -λdom (25°C) ); IF = 50mA dom = λdom j 0.0 -2.0 0.00 -0.01 -4.0 -0.02 -6.0 -0.03 -8.0 -0.04 -10.0 -50 -30 -10 10 30 50 70 90 110 130 -0.05 150 -50 -30 -10 10 30 50 70 90 110 130 150 Junction Temperature T j(°C) Junction Temperature T j(°C) Junction Temperature T (°C) j 5 21/12/2017 V6.0 DOMINANT DOMINANT TMTM AlInGaP AlInGaP: :DWx-HKG DWx-MKG Opto OptoTechnologies Technologies Innovating InnovatingIllumination Illumination Power DomiLED • AlInGaP : DWx-HKG Package Outlines DomiLED • •AlInGaP : :DWx-HKG Package Outlines DomiLED AlInGaP DWx-MKG Package Outlines TM TM Note Note: :Primary Primarythermal thermalpath pathisisthrough throughAnode Anodelead leadofofLED LEDpackage. package. Material Material Material Material Lead-frame Lead-frame Cu CuAlloy AlloyWith WithAu AuPlating Plating Package Package High HighTemperature TemperatureResistant ResistantPlastic, Plastic,PPA PPA Encapsulant Encapsulant Silicone Siliconeresin resin Soldering SolderingLeads Leads Au AuPlating Plating 67 21/12/2017 V6.0 31/10/2016 V1.0 DOMINANT Opto Technologies DOMINANT Innovating Illumination AlInGaP : DWx-MKG TM AlInGaP : DWx-HKG Opto Technologies Innovating Illumination Recommended Solder Pad Recommended Solder Pad 8 31/10/2016 V1.0 7 21/12/2017 V6.0 DOMINANT TM AlInGaP : DWx-HKG Opto Technologies Innovating Illumination Taping and orientation • Reels come in quantity of 2000 units. • Reel diameter is 180 mm. 8 21/12/2017 V6.0 DOMINANT TM AlInGaP : DWx-HKG Opto Technologies Innovating Illumination Packaging Specification 9 21/12/2017 V6.0 DOMINANT TM AlInGaP : DWx-HKG Opto Technologies Innovating Illumination Packaging Specification Moisture sensitivity level Barcode label DOMINANT Opto Technologies (L) Lot No : lotno ML TEMP 2 260˚C RoHS Compliant (P) Part No : partno (C) Cust No : partno (Q) Quantity : quantity (G) Grouping : group (D) D/C : date code Made in Malaysia (S) S/N : serial no Reel Moisture absorbent material + Moisture indicator Label The reel, moisture absorbent material and moisture indicator are sealed inside the moisture proof foil bag Weight Weight(gram) (gram) Average 1pc Power DomiLED 1 completed bag (2000pcs) 0.034 0.034 240 ± 10 190 10 Cardboard Box DOMINANT TM For Power DomiLED Cardboard Box Size Dimensions (mm) Empty Box Weight (kg) Reel / Box Super Small 325 x 225 x 190 0.38 9 reels MAX Small 325 x 225 x 280 0.54 15 reels MAX Medium 570 x 440 x 230 1.46 60 reels MAX Large 570 x 440 x 460 1.92 120 reels MAX 10 21/12/2017 V6.0 DOMINANT TM AlInGaP : DWx-HKG Opto Technologies Innovating Illumination Recommended Pb-free Soldering Profile Classification Reflow Profile (JEDEC J-STD-020C) 300 255-260˚C 10-30s 275 250 225 Temperature (˚C) Ramp-up 3˚C/sec max. 217˚C 200 60-150s 175 150 125 Rampdown 6˚C/sec max. 100 75 Preheat 60-180s 50 25 480s max 0 50 100 150 200 Time (sec) 11 21/12/2017 V6.0 DOMINANT TM AlInGaP : DWx-HKG Opto Technologies Innovating Illumination Appendix 1) Brightness: 1.1 Luminous intensity is measured with an internal reproducibility of ± 8 % and an expanded uncertainty of ± 11 % (according to GUM with a coverage factor of k=3). 1.2 Luminous flux is measured with an internal reproducibility of ± 8 % and an expanded uncertainty of ± 11 % (according to GUM with a coverage factor of k=3). 2) Color: 2.1 Chromaticity coordinate groups are measured with an internal reproducibility of ± 0.005 and an expanded uncertainty of ± 0.01 (accordingly to GUM with a coverage factor of k=3). 2.2 DOMINANT wavelength is measured with an internal reproducibility of ± 0.5nm and an expanded uncertainty of ± 1nm (accordingly to GUM with a coverage factor of k=3). 3) Voltage: 3.1 Forward Voltage, Vf is measured with an internal reproducibility of ± 0.05V and an expanded uncertainty of ± 0.1V (accordingly to GUM with a coverage factor of k=3). 12 21/12/2017 V6.0 DOMINANT TM AlInGaP : DWx-HKG Opto Technologies Innovating Illumination Revision History Page Subjects Date of Modification - Initial release 13 Nov 2015 2, 4, 5 Update Thermal Resistance Update Graph: Relative Luminous Flux Vs Forward Current Forward Current Vs Forward Voltage Relative Intensity Vs Wavelength Add Graph: Temperature Coefficient 24 Mar 2016 3 Update Vf Binning Naming 09 May 2016 1, 5, 12 Update Product Photo Update Applications Update Graph: Relative Forward Voltage Vs Junction Temperature Add Appendix 16 Dec 2016 5 Update Graph: - Relative Forward Voltage Vs Junction Temperature - Relative Luminous Intensity Vs Junction Temperature - Relative Wavelength Vs Junction Temperature 2, 4 Update Thermal Resistance Update Thermal Resistance Graph 14 Sep 2017 21 Dec 2017 NOTE All the information contained in this document is considered to be reliable at the time of publishing. However, DOMINANT Opto Technologies does not assume any liability arising out of the application or use of any product described herein. DOMINANT Opto Technologies reserves the right to make changes to any products in order to improve reliability, function or design. DOMINANT Opto Technologies products are not authorized for use as critical components in life support devices or systems without the express written approval from the Managing Director of DOMINANT Opto Technologies. 13 21/12/2017 V6.0 DOMINANT TM Opto Technologies Innovating Illumination AlInGaP : DWx-HKG About Us DOMINANT Opto Technologies is a dynamic company that is amongst the world’s leading automotive LED manufacturers. With an extensive industry experience and relentless pursuit of innovation, DOMINANT’s state-of-art manufacturing and development capabilities have become a trusted and reliable brand across the globe. More information about DOMINANT Opto Technologies, a ISO/TS 16949 and ISO 14001 certified company, can be found under http://www.dominant-semi.com. Please contact us for more information: DOMINANT Opto Technologies Sdn. Bhd Lot 6, Batu Berendam, FTZ Phase III, 75350 Melaka, Malaysia. Tel: +606 283 3566 Fax: +606 283 0566 E-mail: [email protected]