DOMINANT DWA-HKG-JL3-1 Power domiled Datasheet

DOMINANT
Opto Technologies
Innovating Illumination
TM
DATA SHEET:
Power DomiLED
AlInGaP : DWx-HKG
Power DomiLED
With its significant power in terms brightness, viewing angle and variety of
application possibilities, Power DomiLED™ truly is a standout performer!
Ideal for automotive interior lighting as well as home, office and industrial
applications, it is also a proven performer in electronic signs and signals.
Features:
>
>
>
>
>
>
>
>
High brightness surface mount LED using thin film technology.
120° viewing angle.
Small package outline (LxWxH) of 3.2 x 2.8 x 1.8mm.
Qualified according to JEDEC moisture sensitivity Level 2.
Compatible to IR reflow soldering.
Environmental friendly; RoHS compliance.
Superior corrosion resistance.
Compliance to automotive standard; AEC-Q101.
Applications:
> Automotive:
Interior applications, eg: switches, telematics, climate control system,
dashboard, etc.
Exterior applications, eg: signal lighting, Center High Mounted Stop Light
(CHMSL), Rear Combination Lamp (RCL).
> Signage: full colour display video notice board, signage, special effect
lighting.
© 2005 DomiLED is a trademark of DOMINANT Opto Technologies.
All rights reserved. Product specifications are subject to change without notice.
1
21/12/2017 V6.0
DOMINANT
TM
AlInGaP : DWx-HKG
Opto Technologies
Innovating Illumination
Optical Characteristics at Tj=25˚C
Part Ordering
Number
Color
DWA-HKG-JL3-1
Amber, 617nm
Viewing
Angle˚
Luminous Flux @ IF = 50mA (lm) Appx. 1.2
Min.
Typ.
Max.
6.30
120
13.90
9.35
Electrical Characteristics at Tj=25˚C
Vf @ If = 50mA Appx. 3.1
Part Number
Min. (V)
Typ. (V)
Max. (V)
Vr @ Ir = 10uA
Min. (V)
DWx-HKG
2.05
2.20
2.50
12
Absolute Maximum Ratings
Maximum Value
Unit
DC forward current
70
mA
Peak pulse current; (tp ≤ 10µs, Duty cycle = 0.1)
100
mA
Reverse voltage
12
V
ESD threshold (HBM)
2
kV
125
˚C
Operating temperature
-40 … +115
˚C
Storage temperature
-40 … +125
˚C
200
mW
LED junction temperature
Power dissipation (at room temperature)
Thermal resistance
- Real Thermal Resistance
Junction / ambient, Rth JA real
300
K/W
Junction / solder point, Rth JS real
- Electrical Thermal Resistance
90
K/W
Junction / ambient, Rth JA el
Junction / solder point, Rth JS el
240
K/W
65
K/W
(Mounting on FR4 PCB, pad size >= 16 mm2 per pad)
2
21/12/2017 V6.0
DOMINANT
TM
AlInGaP : DWx-HKG
Opto Technologies
Innovating Illumination
Wavelength Grouping at Tj= 25˚C
Color
Group
DWA; Amber
Wavelength distribution (nm) Appx. 2.2
Full
612 - 624
W
612 - 616
X
616 - 620
Y
620 - 624
Luminous Flux Group at Tj=25˚C
Luminous Flux Appx. 1.2
(lm)
Brightness Group
J2
6.30 ... 7.15
J3
7.15 ... 8.20
K2
8.20 ... 9.35
K3
9.35 ... 10.70
L2
10.70 ... 12.20
L3
12.20 ... 13.90
Vf Bining (Optional)
Vf @ If = 50mA
Forward Voltage (V) Appx. 3.1
V51
2.05 ... 2.20
V52
2.20 ... 2.35
V53
2.35 ... 2.50
Please consult sales and marketing for special part number to incorporate Vf binning.
3
21/12/2017 V6.0
DOMINANT
TM
AlInGaP : DWx-HKG
Opto Technologies
Innovating Illumination
Relative Luminous Flux Vs Forward Current
Relative Lumionous
Flux
Vs Forward
Current
Relative
Lumionous
Flux
Vs Forward Current
ФV/ФФV(50mA)
= Фf(I
); =T25°C
= 25°C
j
/Ф (50mA) = f(I
);F T(50mA)
/Ф
= f(I ); T = 25°C
V
Vj
F
j
80
0.4
1.0
0.2
0.8
0.0
0.6
0
0.8
1.0
0.6
0.8
0.4
0.6
0.2
0.4
0.0
10 0.2 20
0
30
10
40
20
50
30
60
40
70
50
80
60
Forward
Current
(mA)
Forward
Current
IIFF(mA)
Forward
Current IF (mA)
0.4
0.0
Maximum Current
Vs Temperature
Maximum
Current Vs Temperature
0
10 I = f20
30
40
50
60
(T)
IF = f (T)
F
0
100
80
Forward Forward
Current IFCurrent
(mA) I (mA)
F
70
80
120
60
Forward Current IF (mA)
120
Maximum
Current Vs
Temperature
Maximum Current Vs Temperature
Maximum Current
Vs Temperature
I
=f(T)
I = f (T) 70
10
20
30 I F=40
80
f (T) 50 F 60
F
100
120
Forward Current IF (mA)
TS
Maximum Current Vs Temperature
IF = f (T)
80
100
60
10050
40
40
80
30
20
60
20
TA
60
80
TATS
TA
40
60
TA
I (mA)
F F
50
80
Forward
CurrentCurrent
IFCurrent I
Forward
Forward
0.6
1.2
Forward Current IF
0.8
1.4
Forward Current IF
Relative Luminous
Flux Фrel Flux Ф
Relative Luminous
rel
1.0
1.6
80
60
1.2
Relative Lumionous Flux Vs Forward Current
1.4
ФV/ФV(50mA) = f(IF); Tj = 25°C
1.0
1.2
40
70
30
60
20
50
10
40
300
70
80
1.6
70
20
10
1.0
20
40
TA = Ambient Temperature
TA = Ambient Temperature
TS
TA
TS = Solder PointTSTemperature
= Solder Point Temperature
0
0
20
20
0 T 40
20 60 40 80 60 100 80 120 100
4010 0 T = Ambient
Temperature
A = Ambient Temperature
A
Solder Point Temperature
TS =Temperature
Temperature
T(°C)
TS = Solder Point
Temperature T(°C)
0
0
Allowable
Forward
Current
Vs DutyCurrent
Ratio Vs Duty Ratio
Allowable
Forward
20
40
60t ≤100
80 120 100
0
20 0
25°C;60
tp ≤ 10μs
(40
Tj = 20
25°C;
( Tj =)80
p 10μs )
TA = Ambient Temperature
Temperature T(°C)
Temperature
T(°C)
1000 TS = Solder
T(°C)
1000
Point Temperature
Temperature
Allowable Forward Current Vs Duty Ratio
0
25°C; tp ≤100
10μs ) 120
( Tj =80
0
20
40
60
1000
Temperature T(°C)
1.7
1.0
0.6
0.9
0.5
TS
0.8
0.4
0.7
TS0.3
0.6
0.2
0.5
0.1
0.2
40
50
30
40
20
30
10
20
100
100
10
0.1
350
120 400
120
2.3
2.1
2.4
2.2
2.3
2.4
1.9
2.3
2.4
2.0
2.1
2.2
2.3
2.4
Forward Voltage VF (V)
Relative Spectral Emission
0.9
0.7 Ф = f(λ); T = 25°C; I = 50mA
rel
j
F
0.8
0.6
0.7
0.5
0.6
0.4
0.5
0.3
0.4
0.2
0.3
0.1
0.2
0.0
450350
500400
550450
600500
650550
700600
750650
800700
850750 800 850
0.1
Wavelength λ (nm)
Wavelength λ (nm)
0.0
350 400 450 500 550 600 650 700 750 800 850
Wavelength λ
λ (nm)
Wavelength
(nm)
350
400
450
500
550
600
650
700
750
800
850
Wavelength λ (nm)
Radiation Pattern
30°
20°
10°
0°
1.0
40°
0.8
100
10
0.1
1
10
1
10 100
100
Duty Ratio, % Duty Ratio, %
0.1
1
1
10
50°
0.6
60°
0.4
70°
10
100
Duty Ratio, %
0.1
2.2
2.0
Relative Spectral Emission
Relative Spectral Emission
Фrel = f(λ);
Tj =Tj 25°C;
50mA
= 25°C; IFIF= =
50mA
Фrel = f(λ);
0.1
0.0
2.1
1.9
100
10
10
2.0
1.8
Forward Forward
Voltage
VF (V)
Voltage
(V)
Forward
VoltageVVFF (V)
0.9
1.8
1.0
0.8
Allowable Forward Current Vs Duty Ratio
Allowable Forward Current Vs Duty Ratio
( T( jT=j =25°C;
≤ 10μs
)
25°C; tp ≤tp10μs
)
1000
1.9
1.7
Relative Spectral
Emission
Relative
Spectral Emission
1.6 Ф 1.7
1.8
1.9 = 50mA
2.0
2.1
2.2
Tj = 25°C; IF = 50mA
Фrel =IFf(λ);
rel = f(λ); Tj = 25°C;
Forward
Voltage
V
(V)
F
1.0
0.7
0.3
60
Forward Current Vs Forward Voltage
70
IF = f(VF); Tj = 25°C
50
60
0
80
0.8
0.4
0.0
Forward Current Vs Forward Voltage
IF = f(VF); Tj = 25°C
70
80
0
1.7 10 1.8
1.6
0
0.9
1.6
Relative Luminous Flux Фrel
Relative Luminous
Relative Luminous
Flux Фrel Flux Фrel
1.2
Forward Current
IF (mA)
IF (mA)
Current
Forward
Forward
IF (mA)
Forward Current
IFCurrent
(mA)
F
V
Relative Lumionous Flux Vs Forward Current
ФV/ФV(50mA) = f(IF); Tj = 25°C
70
1.4
1.6
AllowableAllowable
Forward Forward
Current IFCurrent
( mA ) I ( mA )
F
Relative Luminous Flux Фrel
RelativeLuminous
Luminous Flux
Фrel
Flux
Relative
Фrel
1.4
0.2
120
0.0
Allowable
Forward Current
IF( mA
)
IF()mACurrent
Current
Forward
Allowable
Allowable
Forward
IF( mA )
V
1.6
Фrel Фrel
Flux
Relative
RelativeLuminous
Luminous
Flux
ФrelFlux
Relative Luminous
1.6
Forward Current Vs Forward Voltage
Forward Current
VsI Forward
Forward
= Current
f(VFVoltage
); Vs
Tj Forward
= 25°CVoltage
IF = f(VF); TjF= 25°C
IF = f(V
F); Tj = 25°C
80°
90°
100
0.2
0
Duty Ratio,
% %
Duty
Ratio,
4
21/12/2017 V6.0
DOMINANT
TM
AlInGaP : DWx-HKG
Opto Technologies
Innovating Illumination
Relative Luminious Flux Vs Junction Temperature
Relative
Luminious
Vs Junction
Temperature
Relative
Luminious
FluxFlux
Vs Junction
Temperature
ФV/ФV(25°C)
f(T
IF = 50mA
IF =j);
50mA
ФV/ФV(25°C)
I=
ФV/ФV(25°C)
= f(Tj=); f(T
j); 50mA
F=
2.0 2.0
0.4 0.4
1.8 1.8
0.3 0.3
Relative Luminious
Flux ФFlux
Фrel
Luminious
Relative
rel
0.5 0.5
1.6 1.6
Relative Forward Voltage ∆VF (V)
0.2 0.2
Relative Luminious Flux Фrel
Relative Forward
Voltage
∆VF (V)∆VF (V)
Voltage
Forward
Relative
Relative Forward Voltage Vs Junction Temperature
Relative
Forward
Voltage
Vs Junction
Temperature
Relative
Forward
Voltage
Vs Junction
Temperature
∆V∆V
= ∆V
VVFFF =-- VVF(25°C)
(25°C)
=50mA
); 50mA
IjF);= I50mA
= f(Tj=);=f(T
IFf(T
j=
F F=
F- VF(25°C)
F
0.1 0.1
0.0 0.0
-0.1 -0.1
-0.2 -0.2
-0.3 -0.3
-0.4 -0.4
1.4 1.4
1.2 1.2
1.0 1.0
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0.0 0.0
-50 -50
-30 -30
-10 -10
10 1030 3050 5070 7090 90
110 110
130 130
150 150
-0.5 -0.5
-50 -50
-30 -30
-10 -10
10 1030 3050 5070 7090 90
110 110
130 130
150 150
Junction
Temperature
T j(°C)
Junction
Temperature
T j(°C)
Junction
Temperature
Tj(°C)
Junction
Temperature
Junction
Temperature
T j(°C)
j(°C)
Junction
Temperature
TTj(°C)
Chromaticity Coordinate Shift Vs Junction Temperature
∆Cx, ∆Cy = f(Tj); IF = 50mA
10.0
0.05
8.0
0.04
6.0
0.03
4.0
0.02
2.0
0.01
∆Cx, ∆Cy
Relative Wavelength
∆λdom
(nm)
∆λdom(nm)
Wavelength
Relative
Relative
Wavelength Vs Junction Temperature
Relative Wavelength Vs Junction Temperature
λdom (25°C)
= f(Tj); =
IF =f(T
50mA
∆λdom =∆λλdom
- -λdom
(25°C)
); IF = 50mA
dom = λdom
j
0.0
-2.0
0.00
-0.01
-4.0
-0.02
-6.0
-0.03
-8.0
-0.04
-10.0
-50
-30
-10
10
30
50
70
90
110
130
-0.05
150
-50
-30
-10
10
30
50
70
90
110
130
150
Junction Temperature T j(°C)
Junction
Temperature T j(°C)
Junction
Temperature
T (°C)
j
5
21/12/2017 V6.0
DOMINANT
DOMINANT
TMTM
AlInGaP
AlInGaP: :DWx-HKG
DWx-MKG
Opto
OptoTechnologies
Technologies
Innovating
InnovatingIllumination
Illumination
Power
DomiLED
• AlInGaP
: DWx-HKG
Package
Outlines
DomiLED
• •AlInGaP
: :DWx-HKG
Package
Outlines
DomiLED
AlInGaP
DWx-MKG
Package
Outlines
TM TM
Note
Note: :Primary
Primarythermal
thermalpath
pathisisthrough
throughAnode
Anodelead
leadofofLED
LEDpackage.
package.
Material
Material
Material
Material
Lead-frame
Lead-frame
Cu
CuAlloy
AlloyWith
WithAu
AuPlating
Plating
Package
Package
High
HighTemperature
TemperatureResistant
ResistantPlastic,
Plastic,PPA
PPA
Encapsulant
Encapsulant
Silicone
Siliconeresin
resin
Soldering
SolderingLeads
Leads
Au
AuPlating
Plating
67
21/12/2017
V6.0
31/10/2016
V1.0
DOMINANT
Opto Technologies
DOMINANT
Innovating
Illumination
AlInGaP : DWx-MKG
TM
AlInGaP : DWx-HKG
Opto Technologies
Innovating Illumination
Recommended Solder Pad
Recommended Solder Pad
8
31/10/2016 V1.0
7
21/12/2017 V6.0
DOMINANT
TM
AlInGaP : DWx-HKG
Opto Technologies
Innovating Illumination
Taping and orientation
• Reels come in quantity of 2000 units.
• Reel diameter is 180 mm.
8
21/12/2017 V6.0
DOMINANT
TM
AlInGaP : DWx-HKG
Opto Technologies
Innovating Illumination
Packaging Specification
9
21/12/2017 V6.0
DOMINANT
TM
AlInGaP : DWx-HKG
Opto Technologies
Innovating Illumination
Packaging Specification
Moisture sensitivity level
Barcode label
DOMINANT Opto Technologies
(L) Lot No : lotno
ML TEMP
2 260˚C
RoHS Compliant
(P) Part No : partno
(C) Cust No : partno
(Q) Quantity : quantity
(G) Grouping : group
(D) D/C : date code
Made in Malaysia
(S) S/N : serial no
Reel
Moisture absorbent material +
Moisture indicator
Label
The reel, moisture absorbent material and moisture indicator are
sealed inside the moisture proof foil bag
Weight
Weight(gram)
(gram)
Average 1pc Power DomiLED
1 completed bag (2000pcs)
0.034
0.034
240 ± 10
190
10
Cardboard
Box
DOMINANT TM
For Power DomiLED
Cardboard Box
Size
Dimensions (mm)
Empty Box
Weight (kg)
Reel / Box
Super Small
325 x 225 x 190
0.38
9 reels MAX
Small
325 x 225 x 280
0.54
15 reels MAX
Medium
570 x 440 x 230
1.46
60 reels MAX
Large
570 x 440 x 460
1.92
120 reels MAX
10
21/12/2017 V6.0
DOMINANT
TM
AlInGaP : DWx-HKG
Opto Technologies
Innovating Illumination
Recommended Pb-free Soldering Profile
Classification Reflow Profile (JEDEC J-STD-020C)
300
255-260˚C
10-30s
275
250
225
Temperature (˚C)
Ramp-up
3˚C/sec max.
217˚C
200
60-150s
175
150
125
Rampdown
6˚C/sec
max.
100
75
Preheat 60-180s
50
25
480s max
0
50
100
150
200
Time (sec)
11
21/12/2017 V6.0
DOMINANT
TM
AlInGaP : DWx-HKG
Opto Technologies
Innovating Illumination
Appendix
1)
Brightness:
1.1
Luminous intensity is measured with an internal reproducibility of ± 8 % and an expanded uncertainty of
± 11 % (according to GUM with a coverage factor of k=3).
1.2
Luminous flux is measured with an internal reproducibility of ± 8 % and an expanded uncertainty of ± 11 %
(according to GUM with a coverage factor of k=3).
2)
Color:
2.1
Chromaticity coordinate groups are measured with an internal reproducibility of ± 0.005 and an expanded
uncertainty of ± 0.01 (accordingly to GUM with a coverage factor of k=3).
2.2
DOMINANT wavelength is measured with an internal reproducibility of ± 0.5nm and an expanded uncertainty
of ± 1nm (accordingly to GUM with a coverage factor of k=3).
3)
Voltage:
3.1
Forward Voltage, Vf is measured with an internal reproducibility of ± 0.05V and an expanded uncertainty of
± 0.1V (accordingly to GUM with a coverage factor of k=3).
12
21/12/2017 V6.0
DOMINANT
TM
AlInGaP : DWx-HKG
Opto Technologies
Innovating Illumination
Revision History
Page
Subjects
Date of Modification
-
Initial release
13 Nov 2015
2, 4, 5
Update Thermal Resistance
Update Graph: Relative Luminous Flux Vs Forward Current
Forward Current Vs Forward Voltage
Relative Intensity Vs Wavelength
Add Graph: Temperature Coefficient
24 Mar 2016
3
Update Vf Binning Naming
09 May 2016
1, 5, 12
Update Product Photo
Update Applications
Update Graph: Relative Forward Voltage Vs Junction Temperature
Add Appendix
16 Dec 2016
5
Update Graph:
- Relative Forward Voltage Vs Junction Temperature
- Relative Luminous Intensity Vs Junction Temperature
- Relative Wavelength Vs Junction Temperature
2, 4
Update Thermal Resistance
Update Thermal Resistance Graph
14 Sep 2017
21 Dec 2017
NOTE
All the information contained in this document is considered to be reliable at the time of publishing. However, DOMINANT
Opto Technologies does not assume any liability arising out of the application or use of any product described herein.
DOMINANT Opto Technologies reserves the right to make changes to any products in order to improve reliability, function
or design.
DOMINANT Opto Technologies products are not authorized for use as critical components in life support devices or systems
without the express written approval from the Managing Director of DOMINANT Opto Technologies.
13
21/12/2017 V6.0
DOMINANT
TM
Opto Technologies
Innovating Illumination
AlInGaP : DWx-HKG
About Us
DOMINANT Opto Technologies is a dynamic company that is amongst the world’s leading automotive LED manufacturers. With an extensive industry experience and relentless pursuit of innovation, DOMINANT’s state-of-art
manufacturing and development capabilities have become a trusted and reliable brand across the globe. More information about DOMINANT Opto Technologies, a ISO/TS 16949 and ISO 14001 certified company, can be found
under http://www.dominant-semi.com.
Please contact us for more information:
DOMINANT Opto Technologies Sdn. Bhd
Lot 6, Batu Berendam, FTZ Phase III, 75350 Melaka, Malaysia.
Tel: +606 283 3566 Fax: +606 283 0566
E-mail: [email protected]
Similar pages