IRF IRFH4234PBF Secondary synchronous rectifier mosfet for isolated dc-dc converter Datasheet

FastIRFET™
IRFH4234PbF
HEXFET® Power MOSFET
VDSS
RDS(on) max
(@ VGS = 10V)
(@ VGS = 4.5V)
25
V
4.6
m
7.3
Qg (typical)
8.2
nC
ID
(@TC (Bottom) = 25°C)
60
A
PQFN 5X6 mm
Applications

Control MOSFET for Sync Buck Converters

Secondary Synchronous Rectifier MOSFET for isolated DC-DC converters
Features
Low Charge (typical 8.2 nC)
Low RDSon (<4.6 m)
Low Thermal Resistance to PCB (<4.6 °C/W)
Low Profile (<0.9 mm)
Industry-Standard Pinout
Compatible with Existing Surface Mount Techniques
RoHS Compliant, Halogen-Free
MSL1, Industrial Qualification
Base part number
Package Type
IRFH4234PbF
PQFN 5mm x 6 mm
Benefits
Low Switching Losses
Lower Conduction Losses
Enable better Thermal Dissipation
results in Increased Power Density
 Multi-Vendor Compatibility
Easier Manufacturing
Environmentally Friendlier
Increased Reliability
Standard Pack
Form
Quantity
Tape and Reel
4000
Orderable Part Number
IRFH4234TRPbF
Absolute Maximum Ratings
Parameter
Max.
Units
VGS
Gate-to-Source Voltage
± 20
V
ID @ TA = 25°C
Continuous Drain Current, VGS @ 10V
22
A
ID @ TC(Bottom) = 25°C
Continuous Drain Current, VGS @ 10V
60
ID @ TC(Bottom) = 100°C
Continuous Drain Current, VGS @ 10V
38
IDM
Pulsed Drain Current 
240
PD @TA = 25°C
Power Dissipation 
3.5
PD @TC(Bottom) = 25°C
Power Dissipation 
27
Linear Derating Factor 
TJ
Operating Junction and
TSTG
Storage Temperature Range
W
0.028
W/°C
-55 to + 150
°C
Notes  through  are on page 8
1
www.irf.com
© 2013 International Rectifier
August 16, 2013
IRFH4234PbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Drain-to-Source Breakdown Voltage
BVDSS
Breakdown Voltage Temp. Coefficient
BVDSS/TJ
RDS(on)
Static Drain-to-Source On-Resistance
VGS(th)
VGS(th)
IDSS
IGSS
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
gfs
Forward Transconductance
Qg
Total Gate Charge
Total Gate Charge
Qg
Qgs1
Pre-Vth Gate-to-Source Charge
Post-Vth Gate-to-Source Charge
Qgs2
Gate-to-Drain Charge
Qgd
Gate Charge Overdrive
Qgodr
Switch Charge (Qgs2 + Qgd)
Qsw
Output Charge
Qoss
RG
Gate Resistance
td(on)
Turn-On Delay Time
tr
Rise Time
Turn-Off Delay Time
td(off)
tf
Fall Time
Input Capacitance
Ciss
Output Capacitance
Coss
Reverse Transfer Capacitance
Crss
Avalanche Characteristics
Parameter
Single Pulse Avalanche Energy 
EAS
IAR
Avalanche Current 
Diode Characteristics
Parameter
Continuous Source Current
IS
(Body Diode)
Pulsed Source Current
ISM
(Body Diode) 
Diode Forward Voltage
VSD
trr
Reverse Recovery Time
Qrr
Reverse Recovery Charge
Min.
25
–––
–––
–––
1.1
–––
–––
–––
–––
60
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
20
3.5
5.6
1.6
-5.6
–––
–––
–––
–––
17
8.2
1.6
1.6
3.1
1.9
4.7
7.7
1.8
7.8
30
8.0
5.3
1011
286
83
Max.
–––
–––
4.6
7.3
2.1
–––
1.0
100
-100
–––
–––
12.3
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Units
Conditions
V
VGS = 0V, ID = 250µA
mV/°C Reference to 25°C, ID = 1mA
m VGS = 10V, ID = 30A 
VGS = 4.5V, ID = 30A 
V
VDS = VGS, ID = 25µA
mV/°C
µA VDS = 20V, VGS = 0V
nA VGS = 20V
VGS = -20V
S
VDS = 5.0V, ID = 30A
nC VGS = 10V, VDS = 13V, ID = 30A
nC
nC

VDS = 13V
VGS = 4.5V
ID = 30A
VDS = 16V, VGS = 0V
ns
VDD = 13V, VGS = 4.5V
ID = 30A
RG=1.8
pF
VGS = 0V
VDS = 13V
ƒ = 1.0MHz
Typ.
–––
–––
Min.
–––
Typ.
–––
Max.
60
–––
–––
240
Max.
42
30
Units
Conditions
A
MOSFET symbol
showing the
integral reverse
p-n junction diode.
V
TJ = 25°C, IS = 30A, VGS = 0V 
ns TJ = 25°C, IF = 30A, VDD = 13V
nC di/dt = 200A/µs 
D
G
S
–––
–––
–––
–––
10
11
1.0
15
17
Thermal Resistance
Parameter
RJC (Bottom) Junction-to-Case 
Junction-to-Case 
RJC (Top)
Typ.
–––
Max.
4.6
Units
–––
24
°C/W
RJA
Junction-to-Ambient 
–––
36
RJA (<10s)
Junction-to-Ambient 
–––
24
2
www.irf.com
© 2013 International Rectifier
August 16, 2013
IRFH4234PbF
1000
1000
100
BOTTOM
10
1
2.75V
60µs PULSE WIDTH
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.25V
3.0V
2.75V
100
BOTTOM
10
2.75V
60µs PULSE WIDTH
Tj = 150°C
Tj = 25°C
1
0.1
0.1
1
10
0.1
100
1
1000
2.0
100
TJ = 150°C
10
TJ = 25°C
V DS = 10V
60µs PULSE WIDTH
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
100
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
1.0
ID = 30A
V GS = 10V
1.8
1.6
1.4
1.2
1.0
0.8
0.6
1.0
2.0
3.0
4.0
5.0
6.0
7.0
-60 -40 -20 0
V GS, Gate-to-Source Voltage (V)
100000
Fig 4. Normalized On-Resistance vs. Temperature
14.0
VGS = 0V,
f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = C gd
V GS, Gate-to-Source Voltage (V)
ID= 30A
Coss = Cds + Cgd
10000
Ciss
Coss
1000
20 40 60 80 100 120 140 160
TJ , Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
C, Capacitance (pF)
10
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
Crss
100
12.0
V DS= 20V
10.0
V DS= 13V
8.0
V DS= 5.0V
6.0
4.0
2.0
0.0
10
1
10
100
V DS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
3
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.25V
3.0V
2.75V
www.irf.com
© 2013 International Rectifier
0
2
4
6
8
10
12
14
16
18
QG, Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
August 16, 2013
IRFH4234PbF
1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
100
TJ = 150°C
10
TJ = 25°C
1
100
100µsec
10
1msec
1
10msec
0.1
V GS = 0V
0.1
OPERATION IN THIS AREA
LIMITED BY R DS(on)
0.01
0.4
0.6
0.8
1.0
1.2
0.1
1.4
1
10
100
VDS, Drain-to-Source Voltage (V)
V SD, Source-to-Drain Voltage (V)
Fig 8. Maximum Safe Operating Area
Fig 7. Typical Source-Drain Diode Forward Voltage
2.8
V GS(th) , Gate threshold Voltage (V)
60
50
ID, Drain Current (A)
DC
Tc = 25°C
Tj = 150°C
Single Pulse
40
30
20
10
2.4
2.0
1.6
1.2
ID = 25µA
ID = 250µA
ID = 1.0mA
ID = 10mA
0.8
0
25
50
75
100
125
-75 -50 -25
150
0
25
50
75 100 125 150
TJ , Temperature ( °C )
TC , Case Temperature (°C)
Fig 10. Drain-to–Source Breakdown Voltage
Fig 9. Maximum Drain Current vs. Case Temperature
Thermal Response ( Z thJC ) °C/W
10
D = 0.50
1
0.20
0.10
0.05
0.02
0.01
0.1
0.01
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
© 2013 International Rectifier
August 16, 2013
IRFH4234PbF
RDS(on), Drain-to -Source On Resistance (m )
12.0
200
EAS , Single Pulse Avalanche Energy (mJ)
ID = 30A
10.0
8.0
TJ = 125°C
6.0
4.0
TJ = 25°C
2.0
ID
6.8A
12A
BOTTOM 30A
TOP
160
120
80
40
0
2
4
6
8
10
12
14
16
18
20
25
50
75
100
125
150
Starting TJ , Junction Temperature (°C)
V GS, Gate -to -Source Voltage (V)
Fig 13. Maximum Avalanche Energy vs. Drain Current
Fig 12. On– Resistance vs. Gate Voltage
Avalanche Current (A)
1000
100
Duty Cycle = Single Pulse
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming Tj = 125°C and
Tstart =25°C (Single Pulse)
10
1
0.1
1.0E-06
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming  j = 25°C and
Tstart = 125°C.
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
1.0E+00
1.0E+01
1.0E+02
1.0E+03
tav (sec)
Fig 14. Typical Avalanche Current vs. Pulsewidth
5
www.irf.com
© 2013 International Rectifier
August 16, 2013
IRFH4234PbF
Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
V(BR)DSS
tp
15V
L
VDS
D.U.T
RG
IAS
20V
tp
DRIVER
+
V
- DD
A
0.01
I AS
Fig 16b. Unclamped Inductive Waveforms
Fig 16a. Unclamped Inductive Test Circuit
Fig 17b. Switching Time Waveforms
Fig 17a. Switching Time Test Circuit
Id
Vds
Vgs
VDD
Vgs(th)
Qgs1 Qgs2
Fig 18. Gate Charge Test Circuit
6
www.irf.com
© 2013 International Rectifier
Qgd
Qgodr
Fig 19. Gate Charge Waveform
August 16, 2013
IRFH4234PbF
PQFN 5x6 Outline "B" Package Details
For more information on board mounting, including footprint and stencil recommendation, please refer to application note
AN-1136: http://www.irf.com/technical-info/appnotes/an-1136.pdf
For more information on package inspection techniques, please refer to application note AN-1154:
http://www.irf.com/technical-info/appnotes/an-1154.pdf
PQFN 5x6 Outline "B" Part Marking
INTERNATIONAL
RECTIFIER LOGO
DATE CODE
ASSEMBLY
SITE CODE
(Per SCOP 200-002)
PIN 1
IDENTIFIER
XXXX
XYWWX
XXXXX
PART NUMBER
(“4 or 5 digits”)
MARKING CODE
(Per Marking Spec)
LOT CODE
(Eng Mode - Min last 4 digits of EATI#)
(Prod Mode - 4 digits of SPN code)
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
7
www.irf.com
© 2013 International Rectifier
August 16, 2013
IRFH4234PbF
PQFN 5x6 Outline "B" Tape and Reel
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Qualification Information†
Industrial†
(per JEDEC JESD47F†† guidelines)
Qualification Level
Moisture Sensitivity Level
PQFN 5mm x 6mm
MSL1
(per JEDEC J-STD-020D††)
Yes
RoHS Compliant
† Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability
†† Applicable version of JEDEC standard at the time of product release.
Notes:
 Repetitive rating; pulse width limited by max. junction temperature.
 Starting TJ = 25°C, L = 0.093mH, RG = 50, IAS = 30A.
 Pulse width  400 µs; duty cycle  2%.
 R is measured at TJ of approximately 90°C.
 When mounted on 1 inch square PCB (FR-4). Please refer to AN-994 for more details:
http://www.irf.com/technical-info/appnotes/an-994.pdf
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/
8
www.irf.com
© 2013 International Rectifier
August 16, 2013
IRFH4234PbF
Revision History
Date
9
Comments
01/23/2013

Updated Rg typical from TBD to 1.8 .
05/15/2013





Remove note 6, on page 8.
Remove reference to note 6 on maximum current rating, on page 1.
Updated package 3D drawing, on page 1.
Updated IS rating from 30 A to 60 A, on page 2.
Updated package outline drawing, on page 7.
08/15/2013

Added “FastIRFET™” above the part number, on page 1.
www.irf.com
© 2013 International Rectifier
August 16, 2013
Similar pages