January 2007 HYB25D C25616 3 CE- 4 HYB25D C25616 3 CE- 5 HYB25D C25616 3 CE- 6 2 5 6 - M b i t D o u b l e - D a t a - R a t e SG R A M Green Product Internet Data Sheet Rev. 1.1 Internet Data Sheet HYB25DC256163CE 256-Mbit Double-Data-Rate SGRAM HYB25DC256163CE-4, HYB25DC256163CE-5, HYB25DC256163CE-6 Revision History: 2007-01, Rev. 1.1 Page Subjects (major changes since last revision) All Adapted internet edition All Added new speedsort -4 Previous Revision: 2007-01, Rev. 1.0 We Listen to Your Comments Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: [email protected] qag_techdoc_rev400 / 3.2 QAG / 2006-08-01 03292006-SR4U-HULB 2 Internet Data Sheet HYB25DC256163CE 256-Mbit Double-Data-Rate SGRAM 1 Overview This chapter lists all main features of the product family HYB25DC256163CE and the ordering information. 1.1 • • • • • • • • • • • • • • • • • • Features Double data rate architecture: two data transfers per clock cycle Bidirectional data strobe (DQS) is transmitted and received with data, to be used in capturing data at the receiver DQS is edge-aligned with data for reads and is center-aligned with data for writes Differential clock inputs (CK and CK) Four internal banks for concurrent operation Data mask (DM) for write data DLL aligns DQ and DQS transitions with CK transitions Commands entered on each positive CK edge; data and data mask referenced to both edges of DQS Burst Lengths: 2, 4, or 8 CAS Latency: 3 Auto Precharge option for each burst access Auto Refresh and Self Refresh Modes 7.8 µs Maximum Average Periodic Refresh Interval 2.5 V (SSTL_2 compatible) I/O VDDQ = 2.5 V ± 0.2 V (DDR200, DDR266, DDR333); VDDQ = 2.6 V ± 0.1 V (DDR400, DDR500) VDD = 2.5 V ± 0.2 V (DDR200, DDR266, DDR333); VDD = 2.6 V ± 0.1 V (DDR400, DDR500) PG-TSOPII-66 package Lead- and halogene-free = green product TABLE 1 Performance Part Number Speed Code Speed Grade Max. Clock Frequency Rev. 1.1, 2007-01 03292006-SR4U-HULB @CL3 fCK3 3 –4 –5 –6 Unit DDR500 DDR400B DDR333 — 250 200 166 MHz Internet Data Sheet HYB25DC256163CE 256-Mbit Double-Data-Rate SGRAM 1.1.1 Description The 256-Mbit Double-Data-Rate SGRAM is a high-speed CMOS, dynamic random-access memory containing 268,435,456 bits. It is internally configured as a quad-bank DRAM. The 256-Mbit Double-Data-Rate SGRAM uses a double-data-rate architecture to achieve high-speed operation. The double data rate architecture is essentially a 2n prefetch architecture with an interface designed to transfer two data words per clock cycle at the I/O pins. A single read or write access for the 256-Mbit Double-Data-Rate SGRAM effectively consists of a single 2n-bit wide, one clock cycle data transfer at the internal DRAM core and two corresponding n-bit wide, one-half-clock-cycle data transfers at the I/O pins. A bidirectional data strobe (DQS) is transmitted externally, along with data, for use in data capture at the receiver. DQS is a strobe transmitted by the DDR SGRAM during Reads and by the memory controller during Writes. DQS is edge-aligned with data for Reads and center-aligned with data for Writes. The 256-Mbit Double-Data-Rate SGRAM operates from a differential clock (CK and CK; the crossing of CK going HIGH and CK going LOW is referred to as the positive edge of CK). Commands (address and control signals) are registered at every positive edge of CK. Input data is registered on both edges of DQS, and output data is referenced to both edges of DQS, as well as to both edges of CK.Read and write accesses to the DDR SGRAM are burst oriented; accesses start at a selected location and continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration of an Active command, which is then followed by a Read or Write command. The address bits registered coincident with the Active command are used to select the bank and row to be accessed. The address bits registered coincident with the Read or Write command are used to select the bank and the starting column location for the burst access. The DDR SGRAM provides for programmable Read or Write burst lengths of 2, 4 or 8 locations. An Auto Precharge function may be enabled to provide a self-timed row precharge that is initiated at the end of the burst access. As with standard SDRAMs, the pipelined, multibank architecture of DDR SGRAMs allows for concurrent operation, thereby providing high effective bandwidth by hiding row precharge and activation time. An auto refresh mode is provided along with a power-saving power-down mode. All inputs are compatible with the Industry Standard for SSTL_2. All outputs are SSTL_2, Class II compatible. Note: The functionality described and the timing specifications included in this data sheet are for the DLL Enabled mode of operation. TABLE 2 Ordering Information for Lead free Products Product Type Organisation Clock (MHz) Package Note HYB25DC256163CE-4 ×16 250 PG-TSOPII-66-2 1) HYB25DC256163CE-5 200 HYB25DC256163CE-6 166 1) RoHS Compliant Product: Restriction of the use of certain hazardous substances (RoHS) in electrical and electronic equipment as defined in the directive 2002/95/EC issued by the European Parliament and of the Council of 27 January 2003. These substances include mercury, lead, cadmium, hexavalent chromium, polybrominated biphenyls and polybrominated biphenyl ethers. Rev. 1.1, 2007-01 03292006-SR4U-HULB 4 Internet Data Sheet HYB25DC256163CE 256-Mbit Double-Data-Rate SGRAM 2 Chip Configuration The chip configuration of a DDR SGRAM is listed by function in Table 3. The abbreviations used in the Pin#/Buffer# column are explained in Table 4 and Table 5 respectively. The chip numbering for TSOP is depicted in Figure 1. TABLE 3 Chip Configuration Ball# Name Pin Type Buffer Type Function CK I SSTL Clock Signal Clock Signals 45 46 CK I SSTL Complementary Clock Signal 44 CKE I SSTL Clock Enable 23 RAS I SSTL Row Address Strobe 22 CAS I SSTL Column Address Strobe 21 WE I SSTL Write Enable 24 CS I SSTL Chip Select Bank Address Bus 2:0 Control Signals Address Signals 26 BA0 I SSTL 27 BA1 I SSTL 29 A0 I SSTL 30 A1 I SSTL 31 A2 I SSTL 32 A3 I SSTL 35 A4 I SSTL 36 A5 I SSTL 37 A6 I SSTL 38 A7 I SSTL 39 A8 I SSTL 40 A9 I SSTL 28 A10 I SSTL Address Bus 11:0 AP I SSTL 41 A11 I SSTL 42 A12 I SSTL Address Signal 12 Note: Module based on 256 Mbit or larger dies NC NC — Note: Module based on 128 Mbit or smaller dies 17 A13 I SSTL Address Signal 13 Note: 1 Gbit based module NC NC — Note: Module based on 512 Mbit or smaller dies Rev. 1.1, 2007-01 03292006-SR4U-HULB 5 Internet Data Sheet HYB25DC256163CE 256-Mbit Double-Data-Rate SGRAM Ball# Name Pin Type Buffer Type Function Data Signal 15:0 Data Signals ×16 Organization 2 DQ0 I/O SSTL 4 DQ1 I/O SSTL 5 DQ2 I/O SSTL 7 DQ3 I/O SSTL 8 DQ4 I/O SSTL 10 DQ5 I/O SSTL 11 DQ6 I/O SSTL 13 DQ7 I/O SSTL 54 DQ8 I/O SSTL 56 DQ9 I/O SSTL 57 DQ10 I/O SSTL 59 DQ11 I/O SSTL 60 DQ12 I/O SSTL 62 DQ13 I/O SSTL 63 DQ14 I/O SSTL 65 DQ15 I/O SSTL Data Strobe ×16 Organization 51 UDQS I/O SSTL Data Strobe Upper Byte 16 LDQS I/O SSTL Data Strobe Lower Byte Data Mask ×16 Organization 47 UDM I SSTL Data Mask Upper Byte 20 LDM I SSTL Data Mask Lower Byte AI — I/O Reference Voltage PWR — I/O Driver Power Supply PWR — Power Supply PWR — Power Supply PWR — Power Supply — Not Connected Power Supplies VREF 3, 9, 15, 55, 61 VDDQ 1, 18, 33 VDD 6, 12, 52, 58, 64 VSSQ VSS 34 49 Not Connected ×16 Organization 14, 17, 19, 25, 42, 43, 50, 53 NC Rev. 1.1, 2007-01 03292006-SR4U-HULB NC 6 Internet Data Sheet HYB25DC256163CE 256-Mbit Double-Data-Rate SGRAM TABLE 4 Abbreviations for Pin Type Abbreviation Description I Standard input-only pin. Digital levels O Output. Digital levels I/O I/O is a bidirectional input/output signal AI Input. Analog levels PWR Power GND Ground NC Not Connected TABLE 5 Abbreviations for Buffer Type Abbreviation Description SSTL Serial Stub Terminalted Logic (SSTL2) LV-CMOS Low Voltage CMOS CMOS CMOS Levels OD Open Drain. The corresponding pin has 2 operational states, active low and tristate, and allows multiple devices to share as a wire-OR Rev. 1.1, 2007-01 03292006-SR4U-HULB 7 Internet Data Sheet HYB25DC256163CE 256-Mbit Double-Data-Rate SGRAM FIGURE 1 Chip Configuration PG-TSOPII-66 [ 9'' 966 '4 '4 9''4 9664 '4 '4 '4 '4 9664 9''4 '4 '4 '4 '4 9''4 9664 '4 '4 '4 '4 9664 9''4 '4 '4 1& 1& 9''4 9664 /'46 8'46 1&$ 1& 9'' 95() 1& 966 /'0 8'0 :( &. &$6 &. 5$6 &.( &6 1& %$ 1& 1&$ $ %$ $ $$3 $ $ $ $ $ $ $ $ $ 9'' 966 033' Rev. 1.1, 2007-01 03292006-SR4U-HULB 8 Internet Data Sheet HYB25DC256163CE 256-Mbit Double-Data-Rate SGRAM 3 Functional Description %$ %$ $ $ $ $ $ $ $ 23(5$7,1*02'( $ &/ $ $ %7 $ $ $ %/ 03%' Field Bits Type1) Description BL [2:0] W Burst Length Number of sequential bits per DQ related to one read/write command. Note: All other bit combinations are RESERVED. 001 2 010 4 010 8 BT 3 Burst Type See Table 6 for internal address sequence of low order address bits. 0 Sequential 1 Sequential CL [6:4] CAS Latency Number of full clocks from read command to first data valid window. Note: All other bit combinations are RESERVED. 011 3 MODE [12:7] Operating Mode Note: All other bit combinations are RESERVED. 000000 Normal Operation without DLL Reset 000010 Normal Operation with DLL Reset 1) W = write only register bit Rev. 1.1, 2007-01 03292006-SR4U-HULB 9 Internet Data Sheet HYB25DC256163CE 256-Mbit Double-Data-Rate SGRAM TABLE 6 Burst Definition Burst Length Starting Column Address A2 A1 A0 Type = Sequential Type = Interleaved 0 0-1 0-1 1 1-0 1-0 0 0 0-1-2-3 0-1-2-3 0 1 1-2-3-0 1-0-3-2 1 0 2-3-0-1 2-3-0-1 2 4 8 Order of Accesses Within a Burst 1 1 3-0-1-2 3-2-1-0 0 0 0 0-1-2-3-4-5-6-7 0-1-2-3-4-5-6-7 0 0 1 1-2-3-4-5-6-7-0 1-0-3-2-5-4-7-6 0 1 0 2-3-4-5-6-7-0-1 2-3-0-1-6-7-4-5 0 1 1 3-4-5-6-7-0-1-2 3-2-1-0-7-6-5-4 1 0 0 4-5-6-7-0-1-2-3 4-5-6-7-0-1-2-3 1 0 1 5-6-7-0-1-2-3-4 5-4-7-6-1-0-3-2 1 1 0 6-7-0-1-2-3-4-5 6-7-4-5-2-3-0-1 1 1 1 7-0-1-2-3-4-5-6 7-6-5-4-3-2-1-0 Notes 1. 2. 3. 4. For a burst length of two, A1-Ai selects the two-data-element block; A0 selects the first access within the block. For a burst length of four, A2-Ai selects the four-data-element block; A0-A1 selects the first access within the block. For a burst length of eight, A3-Ai selects the eight-data-element block; A0-A2 selects the first access within the block. Whenever a boundary of the block is reached within a given sequence above, the following access wraps within the block. Rev. 1.1, 2007-01 03292006-SR4U-HULB 10 Internet Data Sheet HYB25DC256163CE 256-Mbit Double-Data-Rate SGRAM %$ %$ $ $ $ $ $ $ $ $ $ $ $ 23(5$7,1*02'( $ $ '6 '// 03%' Field Bits Type1) Description DLL 0 W DLL Status Enabled 0B 1B Disabled DS 1 Drive Strength 0B Normal Weak 1B MODE [12:2] Operating Mode Note: All other bit combinations are RESERVED. 00000000000B Normal Operation 1) W = write only register bit TABLE 7 Truth Table 1a: Commands Name (Function) CS RAS CAS WE Address MNE Note Deselect (NOP) H X X X X NOP 1)2) No Operation (NOP) L H H H X NOP 1)2) Active (Select Bank And Activate Row) L L H H Bank/Row ACT 1)3) Read (Select Bank And Column, And Start Read Burst) L H L H Bank/Col Read 1)4) Write (Select Bank And Column, And Start Write Burst) L H L L Bank/Col Write 1)4) Burst Terminate L H H L X BST 1)5) Precharge (Deactivate Row In Bank Or Banks) L L H L Code PRE 1)6) Auto Refresh Or Self Refresh (Enter Self Refresh Mode) L L L H X AR/SR 1)7)8) Mode Register Set L L L L Op-Code MRS 1)9) 1) 2) 3) 4) 5) 6) 7) 8) 9) CKE is HIGH for all commands shown except Self Refresh. VREF must be maintained during Self Refresh operation Deselect and NOP are functionally interchangeable. BA0-BA1 provide bank address and A0-A12 provide row address. BA0, BA1 provide bank address; A0-Ai provide column address (where i = 8 for x16);A10 HIGH enables the Auto Precharge feature (nonpersistent), A10 LOW disables the Auto Precharge feature. Applies only to read bursts with Auto Precharge disabled; this command is undefined (and should not be used) for read bursts with Auto Precharge enabled or for write bursts. A10 LOW: BA0, BA1 determine which bank is precharged. A10 HIGH: all banks are precharged and BA0, BA1 are “Don’t Care”. This command is Auto Refresh if CKE is HIGH; Self Refresh if CKE is LOW. Internal refresh counter controls row and bank addressing; all inputs and I/Os are “Don’t Care” except for CKE. BA0, BA1 select either the Base or the Extended Mode Register (BA0 = 0, BA1 = 0 selects Mode Register; BA0 = 1, BA1 = 0 selects Extended Mode Register; other combinations of BA0-BA1 are reserved; A0-A12 provide the op-code to be written to the selected Mode Register). Rev. 1.1, 2007-01 03292006-SR4U-HULB 11 Internet Data Sheet HYB25DC256163CE 256-Mbit Double-Data-Rate SGRAM TABLE 8 Truth Table 1b: DM Operation Name (Function) DM DQs Note Write Enable L Valid 1) Write Inhibit H X 1) Used to mask write data; provided coincident with the corresponding data. TABLE 9 Truth Table 2: Clock Enable (CKE) Current State CKE n-1 CKEn Command n Action n Note Previous Cycle Current Cycle Self Refresh L L X Maintain Self-Refresh 1) Self Refresh L H Deselect or NOP Exit Self-Refresh 2) Power Down L L X Maintain Power-Down – Power Down L H Deselect or NOP Exit Power-Down – All Banks Idle H L Deselect or NOP Precharge Power-Down Entry – All Banks Idle H L AUTO REFRESH Self Refresh Entry – Bank(s) Active H L Deselect or NOP Active Power-Down Entry – H H See Table 10 – – 1) VREF must be maintained during Self Refresh operation 2) Deselect or NOP commands should be issued on any clock edges occurring during the Self Refresh Exit (tXSNR) period. A minimum of 200 clock cycles are needed before applying a read command to allow the DLL to lock to the input clock. Notes 1. 2. 3. 4. CKEn is the logic state of CKE at clock edge n: CKE n-1 was the state of CKE at the previous clock edge. Current state is the state of the DDR SGRAM immediately prior to clock edge n. COMMAND n is the command registered at clock edge n, and ACTION n is a result of COMMAND n. All states and sequences not shown are illegal or reserved. Rev. 1.1, 2007-01 03292006-SR4U-HULB 12 Internet Data Sheet HYB25DC256163CE 256-Mbit Double-Data-Rate SGRAM TABLE 10 Truth Table 3: Current State Bank n - Command to Bank n (same bank) Current State CS RAS CAS WE Command Action Note Any H X X X Deselect NOP. Continue previous operation. 1)2)3)4)5)6) L H H H No Operation NOP. Continue previous operation. 1) to 6) L L H H Active Select and activate row 1) to 6) L L L H AUTO REFRESH – 1) to7) L L L L MODE REGISTER SET – 1) to 7) L H L H Read Select column and start Read burst 1) to 6),8) L H L L Write Select column and start Write burst 1) to 6),8) L L H L Precharge Deactivate row in bank(s) 1) to 6),9) Read (Auto Precharge Disabled) L H L H Read Select column and start new Read burst 1) to 6),8) L L H L Precharge Truncate Read burst, start Precharge 1) to 6),9) L H H L BURST TERMINATE BURST TERMINATE 1) to 6),10) Write (Auto Precharge Disabled) L H L H Read Select column and start Read burst 1) to 6), 8),11) L H L L Write Select column and start Write burst 1) to 6),8) Idle Row Active 1) to 6),9),11) Truncate Write burst, start Precharge 1) This table applies when CKE n-1 was HIGH and CKE n is HIGH (see Table 9 and after tXSNR/tXSRD has been met (if the previous state was L L H L Precharge self refresh). 2) This table is bank-specific, except where noted, i.e., the current state is for a specific bank and the commands shown are those allowed to be issued to that bank when in that state. Exceptions are covered in the notes below. 3) Current state definitions: Idle: The bank has been precharged, and tRP has been met. Row Active: A row in the bank has been activated, and tRCD has been met. No data bursts/accesses and no register accesses are in progress. Read: A Read burst has been initiated, with Auto Precharge disabled, and has not yet terminated or been terminated. Write: A Write burst has been initiated, with Auto Precharge disabled, and has not yet terminated or been terminated. 4) The following states must not be interrupted by a command issued to the same bank. Precharging: Starts with registration of a Precharge command and ends when tRP is met. Once tRP is met, the bank is in the idle state. Row Activating: Starts with registration of an Active command and ends when tRCD is met. Once tRCD is met, the bank is in the “row active” state. Read w/Auto Precharge Enabled: Starts with registration of a Read command with Auto Precharge enabled and ends when tRP has been met. Once tRP is met, the bank is in the idle state. Write w/Auto Precharge Enabled: Starts with registration of a Write command with Auto Precharge enabled and ends when tRP has been met. Once tRP is met, the bank is in the idle state. Deselect or NOP commands, or allowable commands to the other bank should be issued on any clock edge occurring during these states. Allowable commands to the other bank are determined by its current state and according to Table 11. 5) The following states must not be interrupted by any executable command; Deselect or NOP commands must be applied on each positive clock edge during these states. Refreshing: Starts with registration of an Auto Refresh command and ends when tRFC is met. Once tRFC is met, the DDR SGRAM is in the “all banks idle” state. Accessing Mode Register: Starts with registration of a Mode Register Set command and ends when tMRD has been met. Once tMRD is met, the DDR SGRAM is in the “all banks idle” state. Precharging All: Starts with registration of a Precharge All command and ends when tRP is met. Once tRP is met, all banks is in the idle state. 6) All states and sequences not shown are illegal or reserved. 7) Not bank-specific; requires that all banks are idle. 8) Reads or Writes listed in the Command/Action column include Reads or Writes with Auto Precharge enabled and Reads or Writes with Auto Precharge disabled. 9) May or may not be bank-specific; if all/any banks are to be precharged, all/any must be in a valid state for precharging. Rev. 1.1, 2007-01 03292006-SR4U-HULB 13 Internet Data Sheet HYB25DC256163CE 256-Mbit Double-Data-Rate SGRAM 10) Not bank-specific; BURST TERMINATE affects the most recent Read burst, regardless of bank. 11) Requires appropriate DM masking. TABLE 11 Truth Table 4: Current State Bank n - Command to Bank m (different bank) Current State CS RAS CAS WE Command Action Note H X X X Deselect NOP. Continue previous operation. 1)2)3)4)5)6) L H H H No Operation NOP. Continue previous operation. 1) to 6) Idle X X X X Any Command Otherwise Allowed to Bank m – 1) to 6) Row Activating, Active, or Precharging L L H H Active Select and activate row 1) to 6) L H L H Read Select column and start Read burst 1) to7) L H L L Write Select column and start Write burst 1) to 7) L L H L Precharge – 1) to 6) Read (Auto Precharge Disabled) L L H H Active Select and activate row 1) to 6) L H L H Read Select column and start new Read burst 1) to 7) L L H L Precharge – 1) to 6) Write (Auto Precharge Disabled) L L H H Active Select and activate row 1) to 6) L H L H Read Select column and start Read burst 1) to 8) L H L L Write Select column and start new Write burst 1) to 7) L L H L Precharge – 1) to 6) L L H H Active Select and activate row 1) to 6) L H L H Read Select column and start new Read burst 1) to 7),9) L H L L Write Select column and start Write burst 1) to 7),9),10) L L H L Precharge – 1) to 6) L L H H Active Select and activate row 1) to 6) L H L H Read Select column and start Read burst 1) to 7),9) L H L L Write Select column and start new Write burst 1) to 7),9) L L H L Precharge – 1) to 6) Any Read (With Auto Precharge) Write (With Auto Precharge) 1) This table applies when CKE n-1 was HIGH and CKE n is HIGH (see Table 9: Clock Enable (CKE) and after tXSNR/tXSRD has been met (if the previous state was self refresh). 2) This table describes alternate bank operation, except where noted, i.e., the current state is for bank n and the commands shown are those allowed to be issued to bank m (assuming that bank m is in such a state that the given command is allowable). Exceptions are covered in the notes below. 3) Current state definitions: Idle: The bank has been precharged, and tRP has been met. Row Active: A row in the bank has been activated, and tRCD has been met. No data bursts/accesses and no register accesses are in progress. Read: A Read burst has been initiated, with Auto Precharge disabled, and has not yet terminated or been terminated. Write: A Write burst has been initiated, with Auto Precharge disabled, and has not yet terminated or been terminated. Read with Auto Precharge Enabled: See 10). Write with Auto Precharge Enabled: See 10). 4) AUTO REFRESH and Mode Register Set commands may only be issued when all banks are idle. 5) A BURST TERMINATE command cannot be issued to another bank; it applies to the bank represented by the current state only. 6) All states and sequences not shown are illegal or reserved. 7) Reads or Writes listed in the Command/Action column include Reads or Writes with Auto Precharge enabled and Reads or Writes with Auto Precharge disabled. Rev. 1.1, 2007-01 03292006-SR4U-HULB 14 Internet Data Sheet HYB25DC256163CE 256-Mbit Double-Data-Rate SGRAM 8) Requires appropriate DM masking. 9) Concurrent Auto Precharge: This device supports “Concurrent Auto Precharge”. When a read with auto precharge or a write with auto precharge is enabled any command may follow to the other banks as long as that command does not interrupt the read or write data transfer and all other limitations apply (e.g. contention between READ data and WRITE data must be avoided). The minimum delay from a read or write command with auto precharge enable, to a command to a different banks is summarized in Table 12. 10) A Write command may be applied after the completion of data output. TABLE 12 Truth Table 5: Concurrent Auto Precharge From Command To Command (different bank) Minimum Delay with Concurrent Auto Unit Precharge Support WRITE w/AP Read or Read w/AP 1 + (BL/2) + tWTR Write to Write w/AP BL/2 Read w/AP Rev. 1.1, 2007-01 03292006-SR4U-HULB Precharge or Activate 1 Read or Read w/AP BL/2 Write or Write w/AP CL (rounded up) + BL/2 Precharge or Activate 1 15 tCK tCK tCK tCK tCK tCK Internet Data Sheet HYB25DC256163CE 256-Mbit Double-Data-Rate SGRAM 4 Electrical Characteristics 4.1 Operating Conditions TABLE 13 Absolute Maximum Ratings Parameter Voltage on I/O pins relative to VSS Voltage on inputs relative to VSS Voltage on VDD supply relative to VSS Voltage on VDDQ supply relative to VSS Operating temperature (ambient) Storage temperature (plastic) Power dissipation (per SDRAM component) Short circuit output current Symbol VIN, VOUT VIN VDD VDDQ TA TSTG PD IOUT Values Unit Note/ Test Condition Min. Typ. Max. –0.5 — VDDQ + 0.5 V — –1 — +3.6 V — –1 — +3.6 V — –1 — +3.6 V — 0 — +70 °C — –55 — +150 °C — — 1 — W — — 50 — mA — Attention: Stresses above the max. values listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. TABLE 14 Input and Output Capacitances Parameter Symbol Values Min. Typ. Max. Unit Note/ Test Condition Input Capacitance: CK, CK CI1 2.0 — 3.0 pF 1) Delta Input Capacitance CdI1 — — 0.25 pF 1) Input Capacitance: All other input-only pins CI2 2.0 — 3.0 pF 1) Delta Input Capacitance: All other input-only pins CdIO — — 0.5 pF 1) Input/Output Capacitance: DQ, DQS, DM CIO 4.0 — 5.0 pF 1)2) Delta Input/Output Capacitance: DQ, DQS, DM CdIO — — 0.5 pF 1) 1) These values are guaranteed by design and are tested on a sample base only. VDDQ = VDD = 2.5 V ± 0.2 V, f = 100 MHz, TA = 25 °C, VOUT(DC) = VDDQ/2, VOUT (Peak to Peak) 0.2 V. Unused pins are tied to ground. 2) DM inputs are grouped with I/O pins reflecting the fact that they are matched in loading to DQ and DQS to facilitate trace matching at the board level. Rev. 1.1, 2007-01 03292006-SR4U-HULB 16 Internet Data Sheet HYB25DC256163CE 256-Mbit Double-Data-Rate SGRAM TABLE 15 Electrical Characteristics and DC Operating Conditions Parameter Device Supply Voltage Device Supply Voltage Output Supply Voltage Output Supply Voltage Supply Voltage, I/O Supply Voltage Input Reference Voltage I/O Termination Voltage (System) Symbol Unit Note1)/Test Condition Values Min. Typ. Max. VDD VDD VDDQ VDDQ VSS, VSSQ 2.3 2.5 2.7 V 2.5 2.6 2.7 V 2.3 2.5 2.7 V 2.5 2.6 2.7 V fCK ≤ 166 MHz fCK > 166 MHz 2) fCK ≤ 166 MHz 3) fCK > 166 MHz 2)3) 0 V — VREF VTT 0.49 × VDDQ 0.5 × VDDQ 0.51 × VDDQ V 4) VREF – 0.04 — VREF + 0.04 V 5) VREF + 0.15 — V 6) –0.3 — V 6) –0.3 — VDDQ + 0.3 VREF – 0.15 VDDQ + 0.3 V 6) VIH(DC) Input Low (Logic0) Voltage VIL(DC) Input Voltage Level, CK and VIN(DC) Input High (Logic1) Voltage 0 CK Inputs Input Differential Voltage, CK and CK Inputs VID(DC) 0.36 — VDDQ + 0.6 V 6)7) VI-Matching Pull-up Current to Pull-down Current VIRatio 0.71 — 1.4 — 8) Input Leakage Current II –2 — 2 µA Any input 0 V ≤ VIN ≤ VDD; All other pins not under test = 0 V9) Output Leakage Current IOZ –5 — 5 µA Output High Current, Normal IOH Strength Driver — — Output Low Current, Normal IOL 16.2 — Strength Driver 1) 0 °C ≤ TA ≤ 70 °C; VDDQ = 2.5 V ± 0.2 V, VDD = +2.5 V ± 0.2 V. DQs are disabled; 0 V ≤ VOUT ≤ –16.2 mA VDDQ 9) VOUT = 1.95 V — mA VOUT = 0.35 V 2) DDR400 conditions apply for all clock frequencies above 166 MHz. 3) Under all conditions, VDDQ must be less than or equal to VDD. 4) Peak to peak AC noise on VREF may not exceed ± 2% VREF.DC. VREF is also expected to track noise variations in VDDQ. 5) VTT is not applied directly to the device. VTT is a system supply for signal termination resistors, is expected to be set equal to VREF, and must track variations in the DC level of VREF. 6) Inputs are not recognized as valid until VREF stabilizes. 7) VID is the magnitude of the difference between the input level on CK and the input level on CK. 8) The ratio of the pull-up current to the pull-down current is specified for the same temperature and voltage, over the entire temperature and voltage range, for device drain to source voltage from 0.25 to 1.0 V. For a given output, it represents the maximum difference between pull-up and pull-down drivers due to process variation. 9) Values are shown per pin. Rev. 1.1, 2007-01 03292006-SR4U-HULB 17 Internet Data Sheet HYB25DC256163CE 256-Mbit Double-Data-Rate SGRAM 4.2 AC Characteristics (Notes 1-5 apply to the following Tables; Electrical Characteristics and DC Operating Conditions, AC Operating Conditions, IDD Specifications and Conditions, and Electrical Characteristics and AC Timing.) Notes 1. All voltages referenced to VSS. 2. Tests for AC timing, IDD, and electrical, AC and DC characteristics, may be conducted at nominal reference/supply voltage levels, but the related specifications and device operation are guaranteed for the full voltage range specified. 3. Figure 2 represents the timing reference load used in defining the relevant timing parameters of the part. It is not intended to be either a precise representation of the typical system environment nor a depiction of the actual load presented by a production tester. System designers will use IBIS or other simulation tools to correlate the timing reference load to a system environment. Manufacturers will correlate to their production test conditions (generally a coaxial transmission line terminated at the tester electronics). 4. AC timing and IDD tests may use a VIL to VIH swing of up to 1.5 V in the test environment, but input timing is still referenced to VREF (or to the crossing point for CK, CK), and parameter specifications are guaranteed for the specified AC input levels under normal use conditions. The minimum slew rate for the input signals is 1 V/ns in the range between VIL(AC) and VIH(AC). 5. The AC and DC input level specifications are as defined in the SSTL_2 Standard (i.e. the receiver effectively switches as a result of the signal crossing the AC input level, and remains in that state as long as the signal does not ring back above (below) the DC input LOW (HIGH) level). 6. For System Characteristics like Setup & Holdtime Derating for Slew Rate, I/O Delta Rise/Fall Derating, DDR SGRAM Slew Rate Standards, Overshoot & Undershoot specification and Clamp V-I characteristics see the latest Industry specification for DDR components. FIGURE 2 AC Output Load Circuit Diagram / Timing Reference Load VTT 50 Ω Output (VOUT) Timing Reference Point 30 pF Rev. 1.1, 2007-01 03292006-SR4U-HULB 18 Internet Data Sheet HYB25DC256163CE 256-Mbit Double-Data-Rate SGRAM TABLE 16 AC Operating Conditions Parameter Symbol VIH(AC) VIL(AC) VID(AC) VIX(AC) Input High (Logic 1) Voltage, DQ, DQS and DM Signals Input Low (Logic 0) Voltage, DQ, DQS and DM Signals Input Differential Voltage, CK and CK Inputs Values Min. Max. VREF + 0.31 — Unit Note/ Test Condition V 1)2)3) VREF – 0.31 V 0.7 VDDQ + 0.6 V 0.5 × VDDQ– 0.2 0.5 × VDDQ+ 0.2 V 1)2)3) — 1)2)3)4) 1)2)3)5) Input Closing Point Voltage, CK and CK Inputs 1) VDDQ = 2.5 V ± 0.2 V, VDD = +2.5 V ± 0.2 V (DDR200 - DDR333); VDDQ = 2.6 V ± 0.1 V, VDD = +2.6 V ± 0.1 V (DDR400); 0 °C ≤ TA ≤ 70 °C 2) 3) 4) 5) Input slew rate = 1 V/ns. Inputs are not recognized as valid until VREF stabilizes. VID is the magnitude of the difference between the input level on CK and the input level on CK. The value of VIX is expected to equal 0.5 × VDDQ of the transmitting device and must track variations in the DC level of the same. TABLE 17 AC Timing - Absolute Specifications Parameter Symbol –4 DDR500 –5 –6 DDR400B DDR333 Unit Note1)/ Test Condition Min. Max. Min. Max. Min. Max. tAC –0.6 +0.6 –0.65 +0.65 –0.7 +0.7 ns 2)3)4)5) CK high-level width tCH 0.45 0.55 0.45 0.55 0.45 0.55 tCK 2)3)4)5) tCK 4 12 5 12 6 12 ns CL = 3.0 tCL tDAL 0.45 0.55 0.45 0.55 0.45 28 — 35 — DQ and DM input hold time tDH 0.4 — 0.4 DQ and DM input pulse width (each input) tDIPW 1.75 — –0.65 DQ output access time from CK/CK Clock cycle time CK low-level width Auto precharge write recovery + precharge time DQS output access tDQSCK time from CK/CK 2)3)4)5) 2)3)4)5) (tWR/tCK)+(tRP/tCK) tCK tCK — 0.45 — ns 2)3)4)5) 1.75 — 1.75 — ns 2)3)4)5)6) +0.65 –0.65 +0.65 –0.6 +0.6 ns 2)3)4)5) 0.55 2)3)4)5)6) DQS input low (high) pulse width (write cycle) tDQSL,H 0.35 — 0.35 — 0.35 — tCK 2)3)4)5) DQS-DQ skew (DQS and associated DQ signals) tDQSQ — 0.5 — 0.5 — 0.45 ns TSOPII Rev. 1.1, 2007-01 03292006-SR4U-HULB 2)3)4)5) 19 Internet Data Sheet HYB25DC256163CE 256-Mbit Double-Data-Rate SGRAM Parameter Symbol –4 DDR500 –5 –6 DDR400B DDR333 Unit Note1)/ Test Condition Min. Max. Min. Max. Min. Max. Write command to 1st DQS latching transition tDQSS 0.85 1.15 0.75 1.25 0.75 1.25 tCK 2)3)4)5) DQ and DM input setup time tDS 0.4 — 0.4 — 0.45 — ns 2)3)4)5) DQS falling edge hold time from CK (write cycle) tDSH 0.2 — 0.2 — 0.2 — tCK 2)3)4)5) DQS falling edge to tDSS CK setup time (write cycle) 0.2 — 0.2 — 0.2 — tCK 2)3)4)5) Clock Half Period tHP min. (tCL, tCH) — min. (tCL, tCH) — min. (tCL, tCH) — ns 2)3)4)5) Data-out highimpedance time from CK/CK tHZ — +0.7 — +0.7 — +0.7 ns 2)3)4)5)7) Address and control input hold time tIH 0.6 — 0.6 — 0.75 — ns fast slew rate Control and Addr. input pulse width (each input) 3)4)5)6)8) 0.7 — 0.7 — 0.8 — ns slow slew rate3)4)5)6)8) tIPW 2.2 — 2.2 — 2.2 — ns 2)3)4)5)9) Address and control input setup time tIS 0.6 — 0.6 — 0.75 — ns fast slew rate Data-out lowimpedance time from CK/CK Mode register set command cycle time 3)4)5)6)8) 0.7 — 0.7 — 0.8 — ns slow slew rate3)4)5)6)8) tLZ –0.7 +0.7 –0.7 +0.7 –0.7 +0.7 ns 2)3)4)5)7) tMRD 2 — 2 — 2 — tCK 2)3)4)5) tHP –tQHS — tHP –tQHS — tHP –tQHS — ns 2)3)4)5) DQ/DQS output tQH hold time from DQS Data hold skew factor tQHS — 0.4 — 0.5 — 0.55 ns TSOPII2)3)4)5) Active to Autoprecharge delay tRAP 16 — 20 — tRCD — ns 2)3)4)5) Active to Precharge tRAS command 36 70E+3 40 70E+3 42 70E+3 ns 2)3)4)5) Rev. 1.1, 2007-01 03292006-SR4U-HULB 20 Internet Data Sheet HYB25DC256163CE 256-Mbit Double-Data-Rate SGRAM Parameter Symbol –4 DDR500 Active to tRC Active/Auto-refresh command period –5 –6 DDR400B DDR333 Unit Note1)/ Test Condition Min. Max. Min. Max. Min. Max. 52 — 55 — 60 — ns 2)3)4)5) Active to Read delay tRCDRD 16 — 20 — 18 — ns 2)3)4)5) Active to Write delay tRCDWR 12 — 15 — 18 — ns 2)3)4)5) Average Periodic Refresh Interval tREFI — 7.8 — 7.8 — 7.8 µs 2)3)4)5)8) Precharge command period tRP 16 — 20 — 18 — ns 2)3)4)5) Read preamble tRPRE tRPST tRRD 0.9 1.1 0.9 1.1 0.9 1.1 2)3)4)5) 0.4 0.6 0.4 0.6 0.4 0.6 tCK tCK 8 — 10 — 12 — ns 2)3)4)5) tWPRE tWPRES 0.25 — 0.25 — 0.25 — tCK 2)3)4)5) Read postamble Active bank A to Active bank B command Write preamble 2)3)4)5) 0 — 0 — 0 — ns 2)3)4)5)10) tWPST Write recovery time tWR Internal write to tWTR 0.4 0.6 0.4 0.6 0.4 0.6 tCK 2)3)4)5)11) 15 — 15 — 15 — ns 2)3)4)5) 1 — 1 — 1 — tCK 2)3)4)5) Exit self-refresh to tXSNR non-read command 75 — 75 — 75 — ns 2)3)4)5) Write preamble setup time Write postamble read command delay Exit self-refresh to tXSRD 200 — 200 — 200 — tCK 2)3)4)5) read command 1) 0 °C ≤ TA ≤ 70 °C; VDDQ = 2.5 V ± 0.2 V, VDD = +2.5 V ± 0.2 V (DDR333); VDDQ = 2.6 V ± 0.1 V, VDD = +2.6 V ± 0.1 V (DDR400) 2) Input slew rate ≥ 1 V/ns for DDR400, DDR333 3) The CK/CK input reference level (for timing reference to CK/CK) is the point at which CK and CK cross: the input reference level for signals other than CK/CK, is VREF. CK/CK slew rate are ≥ 1.0 V/ns. 4) Inputs are not recognized as valid until VREF stabilizes. 5) The Output timing reference level, as measured at the timing reference point indicated in AC Characteristics (note 3) is VTT. 6) For each of the terms, if not already an integer, round to the next highest integer. tCK is equal to the actual system clock cycle time. 7) tHZ and tLZ transitions occur in the same access time windows as valid data transitions. These parameters are not referred to a specific voltage level, but specify when the device is no longer driving (HZ), or begins driving (LZ). 8) Fast slew rate ≥ 1.0 V/ns , slow slew rate ≥ 0.5 V/ns and < 1 V/ns for command/address and CK & CK slew rate > 1.0 V/ns, measured between VIH(ac) and VIL(ac). 9) These parameters guarantee device timing, but they are not necessarily tested on each device. 10) The specific requirement is that DQS be valid (HIGH,LOW, or some point on a valid transition) on or before this CK edge. A valid transition is defined as monotonic and meeting the input slew rate specificationsof the device. When no writes were previously in progress on the bus, DQS will be transitioning from Hi-Z to logic LOW. If a previous write was in progress, DQS could be HIGH, LOW at this time, depending on tDQSS. 11) The maximum limit for this parameter is not a device limit. The device operates with a greater value for this parameter, but system performance (bus turnaround) degrades accordingly. Rev. 1.1, 2007-01 03292006-SR4U-HULB 21 Internet Data Sheet HYB25DC256163CE 256-Mbit Double-Data-Rate SGRAM TABLE 18 IDD Conditions Parameter Symbol Operating Current: one bank; active/ precharge; tRC = tRCMIN; tCK = tCKMIN; DQ, DM, and DQS inputs changing once per clock cycle; address and control inputs changing once every two clock cycles. IDD0 Operating Current: one bank; active/read/precharge; Burst = 4; Refer to the following page for detailed test conditions. IDD1 Precharge Power-Down Standby Current: all banks idle; power-down mode; CKE ≤VILMAX; tCK = tCKMIN IDD2P IDD2F Precharge Floating Standby Current: CS ≥ VIHMIN, all banks idle; CKE ≥ VIHMIN; tCK = tCKMIN, address and other control inputs changing once per clock cycle, VIN = VREF for DQ, DQS and DM. Precharge Quiet Standby Current: CS ≥ VIHMIN, all banks idle; CKE ≥ VIHMIN; tCK = tCKMIN, address and other control inputs stable at ≥ VIHMIN or ≤ VILMAX; VIN=VREF for DQ, DQS and DM. IDD2Q Active Power-Down Standby Current: one bank active; power-down mode; CKE ≤ VILMAX; tCK= tCKMIN; VIN = VREF for DQ, DQS and DM. IDD3P Active Standby Current: one bank active; CS ≥ VIHMIN; CKE ≥ VIHMIN; tRC = tRASMAX; tCK = tCKMIN; DQ, DM and DQS IDD3N inputs changing twice per clock cycle; address and control inputs changing once per clock cycle Operating Current: one bank active; Burst = 2; reads; continuous burst; address and control inputs changing once per clock cycle; 50% of data outputs changing on every clock edge; CL = 2 for DDR200 and DDR266A, CL = 3 for DDR333; tCK = tCKMIN; IOUT = 0 mA IDD4R Operating Current: one bank active; Burst = 2; writes; continuous burst; address and control inputs changing once per clock cycle; 50% of data outputs changing on every clock edge; CL = 2 for DDR200 and DDR266A, CL = 3 for DDR333; tCK = tCKMIN IDD4W Auto-Refresh Current: tRC = tRFCMIN, burst refresh IDD5 IDD6 IDD7 Self-Refresh Current: CKE ≤ 0.2 V; external clock on; tCK = tCKMIN Operating Current: four bank; four bank interleaving with BL = 4; Refer to the following page for detailed test conditions. Rev. 1.1, 2007-01 03292006-SR4U-HULB 22 Internet Data Sheet HYB25DC256163CE 256-Mbit Double-Data-Rate SGRAM TABLE 19 IDD Specification Symbol IDD0 IDD1 IDD2P IDD2F IDD2Q IDD3P IDD3N IDD4R IDD4W IDD5 IDD6 IDD7 –4 –5 –6 1) Unit Note /Test Condition 115 75 65 mA 2)3) 135 95 80 mA 3) 6 4 4 mA 3) 45 30 25 mA 3) 35 20 17 mA 3) 23 13 11 mA 3) 65 43 36 mA 3) 150 100 85 mA 3) 160 100 90 mA 3) 240 140 120 mA 3) 2.8 1.4 1.4 mA 4) 315 210 180 mA 3) 1) Test conditions: VDD = 2.7 V, TA = 10 °C 2) IDD specifications are tested after the device is properly initialized and measured at 133 MHz for DDR266, 166 MHz for DDR333, and 200 MHz for DDR400, 250MHz for DDR500 3) Input slew rate = 1 V/ns 4) Enables on-chip refresh and address counters Rev. 1.1, 2007-01 03292006-SR4U-HULB 23 Internet Data Sheet HYB25DC256163CE 256-Mbit Double-Data-Rate SGRAM 4.3 Current Measurement Conditions Legend: A = Activate, R = Read, P = Precharge, N = NOP IDD1: Operating Current: One Bank Operation, ACT- RD- PRE 1. General test condition a) Only one bank is accessed with tRC,MIN b) Burst Mode, Address and Control inputs on NOP adge are changing once per clock cycle c) 50% of data changing at every burst d) IOUT = 0 mA 2. Timing patterns a) DDR333 (166 MHz, CL = 2.5): tCK = 6 ns, BL = 4, tRCD = 3 × tCK, tRC = 10 × tCK, tRAS = 7 × tCK Setup: A0 N N R0 N N N P0 N N Read : A0 N N R0 N N N P0 N N - repeat the same timing with random address changing b) DDR400A (200 MHz, CL = 2.5): tCK = 5 ns, BL = 4, tRCD = 3 × tCK, tRC = 11 × tCK, tRAS = 8 × tCK Setup: A0 N N R0 N N N N P0 N N Read : A0 N N R0 N N N N P0 N N - repeat the same timing with random address changing c) DDR500 (250 MHz, CL = 3): tCK =4 ns, BL =4, tRCD = 3 × tCK, tRC = 13 × tCK, tRAS = 10 × tCK Setup: A0 N N R0 N N N N N N P0 N N Read : A0 N N R0 N N N N N N P0 N N - repeat the same timing with random address changing IDD7: Operating Current: Four Bank Operation 1. General test condition a) Four banks are being interleaved with tRCMIN b) Burst Mode, Address and Control inputs on NOP edge are not changing c) 50% of data changing at every burst d) IOUT = 0 mA 2. Timing patterns a) DDR333 (166 MHz, CL = 2.5): tCK = 6 ns, BL = 4, tRRD = 2 × tCK, tRCD = 3 × tCK, tRAS = 7 × tCK, tRC = 10 × tCK Setup: A0 N A1 RA0 A2 RA1 A3 RA2 N RA3 Read : A0 N A1 RA0 A2 RA1 A3 RA2 N RA3 - repeat the same timing with random address changing b) DDR400A (200 MHz, CL = 2.5): tCK = 5 ns, BL = 4, tRRD = 2 × tCK, tRCD = 3 × tCK, tRAS = 8 × tCK, tRC = 11 × tCK Setup: A0 N A1 RA0 A2 RA1 A3 RA2 N RA3 N N N Read : A0 N A1 RA0 A2 RA1 A3 RA2 N RA3 N N N - repeat the same timing with random address changing c) DDR500 (250Mhz, CL=3): tCK = 4 ns, BL=4, tRRD = 2 × tCK, tRCD = 3 × tCK , tRAS = 10 × tCK, tRC = 13 × tCK Setup: A0 N A1 RA0 A2 RA1 A3 RA2 N RA3 N N N Read : A0 N A1 RA0 A2 RA1 A3 RA2 N RA3 N N N - repeat the same timing with random address changing Rev. 1.1, 2007-01 03292006-SR4U-HULB 24 Internet Data Sheet HYB25DC256163CE 256-Mbit Double-Data-Rate SGRAM 5 Package Outlines There is package TSOPII-66 type used for this product family. FIGURE 3 [ 0 [ 0 $; [ 0$; ,QGH [0 DUN LQJ ' RHV Q RWLQ FOX G HS OD VWLF RU P HWD OS UR WU XV LR QRI PD [S HUV LG H D[S HU V LGH ' RHV Q RWLQ FOX G HS OD VWLF SU RWUX VLR QR I P ' RHV Q RWLQ FOX G HG DP EDUS UR WU XV LR QRI PD[ Notes 1. Drawing according to ISO 8015 2. Dimensions in mm 3. General tolerances +/- 0.15 Rev. 1.1, 2007-01 03292006-SR4U-HULB 25 Package Outline PG-TSOPII-66 Internet Data Sheet HYB25DC256163CE 256-Mbit Double-Data-Rate SGRAM List of Figures Figure 1 Figure 2 Figure 3 Chip Configuration PG-TSOPII-66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 AC Output Load Circuit Diagram / Timing Reference Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Package Outline PG-TSOPII-66 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Rev. 1.1, 2007-01 03292006-SR4U-HULB 26 Internet Data Sheet HYB25DC256163CE 256-Mbit Double-Data-Rate SGRAM List of Tables Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8 Table 9 Table 10 Table 11 Table 12 Table 13 Table 14 Table 15 Table 16 Table 17 Table 18 Table 19 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Ordering Information for Lead free Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Chip Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Abbreviations for Pin Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Abbreviations for Buffer Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Burst Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Truth Table 1a: Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Truth Table 1b: DM Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Truth Table 2: Clock Enable (CKE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Truth Table 3: Current State Bank n - Command to Bank n (same bank) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Truth Table 4: Current State Bank n - Command to Bank m (different bank). . . . . . . . . . . . . . . . . . . . . . . . . . 14 Truth Table 5: Concurrent Auto Precharge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Input and Output Capacitances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Electrical Characteristics and DC Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 AC Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 AC Timing - Absolute Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 IDD Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 IDD Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Rev. 1.1, 2007-01 03292006-SR4U-HULB 27 Internet Data Sheet HYB25DC256163CE 256-Mbit Double-Data-Rate SGRAM Table of Contents 1 1.1 1.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Chip Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 4 4.1 4.2 4.3 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Current Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 16 16 18 24 List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Rev. 1.1, 2007-01 03292006-SR4U-HULB 28 Internet Data Sheet Edition 2007-01 Published by Qimonda AG Gustav-Heinemann-Ring 212 D-81739 München, Germany © Qimonda AG 2007. All Rights Reserved. Legal Disclaimer The information given in this Internet Data Sheet shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”). With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Qimonda hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Qimonda Office. Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Qimonda Office. Under no circumstances may the Qimonda product as referred to in this Internet Data Sheet be used in 1. Any applications that are intended for military usage (including but not limited to weaponry), or 2. Any applications, devices or systems which are safety critical or serve the purpose of supporting, maintaining, sustaining or protecting human life (such applications, devices and systems collectively referred to as "Critical Systems"), if a) A failure of the Qimonda product can reasonable be expected to - directly or indirectly (i) Have a detrimental effect on such Critical Systems in terms of reliability, effectiveness or safety; or (ii) Cause the failure of such Critical Systems; or b) A failure or malfunction of such Critical Systems can reasonably be expected to - directly or indirectly (i) Endanger the health or the life of the user of such Critical Systems or any other person; or (ii) Otherwise cause material damages (including but not limited to death, bodily injury or significant damages to property, whether tangible or intangible). www.qimonda.com