Fairchild FXLH42245 Low voltage dual supply 8-bit signal translator with configurable voltage supplies and bushold data inputs and 3-state outputs and 26â ¦ series resisto Datasheet

Revised October 2004
FXLH42245
Low Voltage Dual Supply 8-Bit Signal Translator
with Configurable Voltage Supplies and
Bushold Data Inputs and 3-STATE Outputs and
26Ω Series Resistors in the B Port Outputs
General Description
Features
The FXLH42245 is a configurable dual-voltage-supply
translator designed for bi-directional voltage translation of
signals between two voltage levels. The device allows
translation between voltages as high as 3.6V to as low as
1.1V. The A Port tracks the VCCA level, and the B Port
tracks the VCCB level. Both ports are designed to accept
supply voltage levels from 1.1V to 3.6V. This allows for bidirectional voltage translation over a variety of voltage levels: 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V.
■ Bi-directional interface between any 2 levels from
1.1V to 3.6V
■ Fully configurable, inputs track VCC level
■ Non-preferential power-up sequencing; either VCC may
be powered-up first
■ Outputs remain in 3-STATE until active VCC level is
reached
■ Outputs switch to 3-STATE if either VCC is at GND
The device remains in 3-STATE until both VCCs reach
active levels allowing either VCC to be powered-up first.
The device also contains power down control circuits that
place the device in 3-STATE if either VCC is removed.
■ Bushold on data inputs eliminates the need for external
pull-up/pull-down resistors
The Transmit/Receive (T/R) input determines the direction
of data flow through the device. The OE input, when HIGH,
disables both the A and B Ports by placing them in a
3-STATE condition. The FXLH42245 is designed so that
the control pins (T/R and OE) are supplied by VCCA.
■ Power-off protection
■ 26Ω output series resistors on the B Port to reduce line
noise
■ Control inputs (T/R, OE) levels are referenced to VCCA
voltage
■ Packaged in 24-terminal MLP
■ ESD protection exceeds:
• 4kV HBM ESD
(per JESD22-A114 & Mil Std 883e 3015.7)
• 8kV HBM I/O to GND ESD
(per JESD22-A114 & Mil Std 883e 3015.7)
• 1kV CDM ESD (per ESD STM 5.3)
• 200V MM ESD (per JESD22-A115 & ESD STM5.2)
Ordering Code:
Order Number
Package Number
FXLH42245MPX
MLP024B
Package Description
24-Terminal Molded Leadless Package (MLP), JEDEC MO-220, 3.5mm x 4.5mm
© 2004 Fairchild Semiconductor Corporation
DS500882
www.fairchildsemi.com
FXLH42245 Low Voltage Dual Supply 8-Bit Signal Translator with Configurable Voltage Supplies and Bushold
Data Inputs and 3-STATE Outputs and 26Ω Series Resistors in the B Port Outputs
June 2004
FXLH42245
Pin Descriptions
Connection Diagram
Pin Names
Terminal Assignments for DQFN
Description
OE
Output Enable Input
T/R
Transmit/Receive Input
A0 - A7
Side A Input or 3-STATE Output
B0 - B7
Side B Input or 3-STATE Output
VCCA
Side A Power Supply
VCCB
Side B Power Supply
GND
Ground
Truth Table
Inputs
Outputs
OE
T/R
L
L
L
H
Bus A Data to Bus B
H
X
3-STATE
Bus B Data to Bus A
H = HIGH Voltage Level
L = LOW Voltage Level
X = Don’t Care
(Top Through View)
Pin Assignments
Pin Number
Pin Name
Pin Number
Pin Name
1
VCCA
13
GND
2
T/R
14
B7
3
A0
15
B6
4
A1
16
B5
5
A2
17
B4
6
A3
18
B3
7
A4
19
B2
8
A5
20
B1
9
A6
21
B0
10
A7
22
OE
11
GND
23
VCCB
12
GND
24
VCCB
Power-Up/Power-Down Sequencing
FXL translators offer an advantage in that either VCC may
be powered up first. This benefit derives from the chip
design. When either VCC is at 0 volts, outputs are in a
HIGH-Impedance state. The control inputs (T/R and OE)
are designed to track the VCCA supply. A pull-up resistor
tying OE to VCCA should be used to ensure that bus contention, excessive currents, or oscillations do not occur
during power-up/power-down. The size of the pull-up resistor is based upon the current-sinking capability of the OE
driver.
The recommended power-up sequence is the following:
1. Apply power to either VCC.
2. Apply power to the T/R input (Logic HIGH for A-to-B
operation; Logic LOW for B-to-A operation) and to the
respective data inputs (A Port or B Port). This may
occur at the same time as Step 1.
3. Apply power to the other VCC.
4. Drive the OE input LOW to enable the device.
The recommended power-down sequence is the following:
1. Drive OE input HIGH to disable the device.
2. Remove power from either VCC.
3. Remove power from the other VCC.
www.fairchildsemi.com
2
Recommended Operating
Conditions (Note 3)
Supply Voltage
VCCA
−0.5V to +4.6V
Power Supply Operating (VCCA or VCCB)
VCCB
−0.5V to +4.6V
Input Voltage
DC Input Voltage (VI)
I/O Port A
−0.5V to VCCA +0.5V
I/O Port B
−0.5V to VCCA +0.5V
Control Inputs (T/R, OE)
−0.5V to +4.6V
1.1V to 3.6V
Port A
0.0V to VCCA
Port B
0.0V to VCCB
Control Inputs (T/R, OE)
0.0V to VCCA
Output Current in IOH/IOL (A Port)
Output Voltage (VO) (Note 2)
VCCA
−0.5V to +4.6V
3.0V to 3.6V
±24 mA
Outputs Active (An)
−0.5V to VCCA + 0.5V
2.3V to 2.7V
±18 mA
Outputs Active (Bn)
−0.5V to VCCB + 0.5V
1.65V to 1.95V
Outputs 3-STATE
DC Input Diode Current (IIK) VI < 0V
−50 mA
DC Output Diode Current (IOK)
VO < 0V
−50 mA
+50 mA
Output Current in IOH/IOL (B Port)
VCCB
DC Output Source/Sink Current
−50 mA / +50 mA
DC VCC or Ground Current per
±100 mA
Supply Pin (ICC)
Storage Temperature Range (TSTG)
±2 mA
±0.5 mA
1.1V to 1.4V
VO > VCC
(IOH/IOL)
±6 mA
1.4V to 1.65V
−65°C to +150°C
3.0V to 3.6V
Resistor Outputs
±12 mA
2.3V to 2.7V
Resistor Outputs
±8 mA
1.65V to 1.95V
Resistor Outputs
±3 mA
1.4V to 1.65V
Resistor Outputs
±1 mA
1.1V to 1.4V
Resistor Outputs
±0.25 mA
−40°C to +85°C
Free Air Operating Temperature (TA)
Minimum Input Edge Rate (∆V/∆t)
VCCA/B = 1.1V to 3.6V
10 ns/V
Note 1: The “Absolute Maximum Ratings” are those values beyond which
the safety of the device cannot be guaranteed. The device should not be
operated at these limits. The parametric values defined in the Electrical
Characteristics tables are not guaranteed at the absolute maximum ratings.
The “Recommended Operating Conditions” table will define the conditions
for actual device operation.
Note 2: IO Absolute Maximum Rating must be observed.
Note 3: All unused inputs must be held at VCCI or GND.
DC Electrical Characteristics
Symbol
VIH
Parameter
High Level Input Voltage
Conditions
Data Inputs An, Bn
(Note 4)
VCCI
VCCO
(V)
(V)
Min
2.7 - 3.6
2.0
2.3 - 2.7
1.6
Typ
Max
Units
1.65 - 2.3 1.1 - 3.6 0.65 x VCCI
Control Pins/OE, T/R
(Referenced to VCCA)
1.4 - 1.65
0.65 x VCCI
1.1 - 1.4
0.9 x VCCI
2.7 - 3.6
2.0
2.3 - 2.7
1.6
V
1.65 - 2.3 1.1 - 3.6 0.65 x VCCA
3
1.4 - 1.65
0.65 x VCCA
1.1 - 1.4
0.9 x VCCA
www.fairchildsemi.com
FXLH42245
Absolute Maximum Ratings(Note 1)
FXLH42245
DC Electrical Characteristics
Symbol
VIL
Parameter
Low Level Input Voltage
(Continued)
Conditions
Data Inputs An, Bn
(Note 4)
Control Pins OE, T/R
(Referenced to VCCA)
VCCI
VCCO
(V)
(V)
Min
High Level Output Voltage
2.7 - 3.6
0.8
0.7
1.65 - 2.3 1.1 - 3.6
0.35 x VCCI
1.4 - 1.65
0.35 x VCCI
1.1 - 1.4
0.1 x VCCI
2.7 - 3.6
0.8
2.3 - 2.7
(Note 5)
B Port
IOH = −100 µA
Max
2.3 - 2.7
0.35 x VCCA
1.4 - 1.65
0.35 x VCCA
1.1 - 3.6
VCC0 - 0.2
IOH = −6 mA
2.7
2.7
2.2
3.0
3.0
2.4
IOH = −12 mA
3.0
3.0
2.2
IOH = −4 mA
2.3
2.3
2.0
IOH = −6 mA
2.3
2.3
1.8
IOH = −8 mA
2.3
2.3
1.7
IOH = −3 mA
1.65
1.65
1.25
IOH = −1 mA
1.4
1.4
1.05
IOH = −0.25 mA
1.1
1.1
0.75 x VCC0
VOH
High Level Output Voltage
IOH = −100 µA
1.1 - 3.6
1.1 - 3.6
VCC0 - 0.2
(Note 5)
A Port
IOH = −12 mA
2.7
2.7
2.2
IOH = −18 mA
3.0
3.0
2.4
IOH = −24 mA
3.0
3.0
2.2
IOH = −6 mA
2.3
2.3
2.0
IOH = −12 mA
2.3
2.3
1.8
IOH = −18 mA
2.3
2.3
1.7
IOH = −6 mA
1.65
1.65
1.25
IOH = −2 mA
1.4
1.4
1.05
IOH = −0.5 mA
1.1
1.1
0.75 x VCC0
V
V
VOL
Low Level Output Voltage
IOL = 100µA
1.1 - 3.6
1.1- 3.6
(Note 5)
B Port
IOL = 6 mA
2.7
2.7
0.4
IOL = 8 mA
3.0
3.0
0.55
IOL = 12 mA
3.0
3.0
0.8
IOL = 6 mA
2.3
2.3
0.4
IOL = 8 mA
2.3
2.3
0.6
IOL = 3 mA
1.65
1.65
0.3
IOL = 1 mA
1.4
1.4
0.35
0.3 x VCC0
0.2
1.1
1.1
VOL
Low Level Output Voltage
IOL = 100µA
1.1 - 3.6
1.1- 3.6
0.2
(Note 5)
A Port
IOL = 12 mA
2.7
2.7
0.4
IOL = 18 mA
3.0
3.0
0.4
IOL = 24 mA
3.0
3.0
0.55
IOL = 12 mA
2.3
2.3
0.4
IOL = 18 mA
2.3
2.3
0.6
IOL = 6 mA
1.65
1.65
0.3
IOL = 2 mA
1.4
1.4
0.35
1.1
1.1
0.3 x VCC0
1.1 - 3.6
3.6
±1.0
IOL = 0.5 mA
II
Input Leakage Current Control Pins VI = VCCA or GND
www.fairchildsemi.com
4
V
0.1 x VCCA
1.1 - 3.6
IOH = −8 mA
IOL = 0.25 mA
Units
0.7
1.65 - 2.3 1.1 - 3.6
1.1 - 1.4
VOH
Typ
V
V
µA
Symbol
II(HOLD)
Parameter
(Continued)
Conditions
VCCI
VCCO
(V)
(V)
Min
Bushold Input
VIN = 0.8
3.0
3.0
75.0
Minimum Drive Current
VIN = 2.0
3.0
3.0
−75.0
VIN = 0.7
2.3
2.3
45.0
VIN = 1.6
2.3
2.3
−45.0
VIN = 0.57
1.65
1.65
25.0
VIN = 1.07
1.65
1.65
−25.0
VIN = 0.49
1.4
1.4
11.0
−11.0
Typ
Max
µA
VIN = 0.91
1.4
1.4
VIN = 0.11
1.1
1.1
4.0
VIN = 0.99
1.1
1.1
−4.0
II(OD)
Bushold Input Over-drive
(Note 6)
3.6
3.6
450
(Note 6)
Current-to-Change State
(Note 7)
3.6
3.6
−450
(Note 6)
2.7
2.7
300
(Note 7)
2.7
2.7
−300
(Note 6)
1.95
1.95
200
(Note 7)
1.95
1.95
−200
(Note 6)
1.6
1.6
120
(Note 7)
1.6
1.6
−120
(Note 6)
1.4
1.4
80.0
(Note 7)
1.4
1.4
−80.0
An, VI or VO = 0V to 3.6V
0
3.6
±10.0
Bn, VI or VO = 0V to 3.6V
3.6
0
±10.0
(Note 7)
IOFF
Power Off Leakage Current
Units
µA
µA
IOZ
3-STATE Output Leakage
An, Bn
OE = VIH
3.6
3.6
±10.0
(Note 8)
VO, VCC or GND
Bn,
OE = Don’t Care
0
3.6
+10.0
VI = VIH or VIL
An,
OE = Don’t Care
3.6
0
+10.0
Quiescent Supply Current
VI = VCCI or GND; IO = 0
1.1 - 3.6
1.1 - 3.6
20.0
µA
Quiescent Supply Current
VI = VCCI or GND; IO = 0
1.1 - 3.6
1.1 - 3.6
20.0
µA
−10.0
ICCA/B
µA
(Note 9)
ICCZ
(Note 9)
ICCA
Quiescent Supply Current
ICCB
Quiescent Supply Current
∆ICCA/B
Increase in ICC per Input;
VI = VCCA or GND; IO = 0
0
1.1 - 3.6
VI = VCCA or GND; IO = 0
1.1 - 3.6
0
10.0
VI = VCCB or GND; IO = 0
1.1 - 3.6
0
−10.0
0
1.1 - 3.6
3.6
3.6
VI = VCCB or GND; IO = 0
VIH = 3.0
10.0
500
µA
µA
µA
Other Inputs at VCC or GND
Note 4: VCCI = the VCC associated with the data input under test.
Note 5: VCCO = the VCC associated with the output under test.
Note 6: An external driver must source at least the specified current to switch LOW-to-HIGH.
Note 7: An external driver must sink at least the specified current to switch HIGH-to-LOW.
Note 8: Don’t Care = Any valid logic level.
Note 9: Reflects current per supply, VCCA or VCCB.
5
www.fairchildsemi.com
FXLH42245
DC Electrical Characteristics
FXLH42245
AC Electrical Characteristics VCCA = 3.0V to 3.6V
TA = −40°C to +85°C
Symbol
Parameter
VCCB =
3.0V to 3.6V
VCCB =
2.3V to 2.7V
VCCB =
1.65V to 1.95V
VCCB =
1.4V to 1.6V
VCCB =
1.1V to 1.3V
Min
Max
Min
Max
Min
Max
Min
Max
Min
Max
tPLH
Propagation Delay A to B
0.5
3.9
0.5
4.5
0.9
5.9
1.0
7.4
1.6
22.0
tPHL
Propagation Delay B to A
0.2
3.5
0.2
3.8
0.3
4.0
0.5
4.3
0.8
13.0
tPZH
Output Enable OE to B
0.7
4.8
1.0
5.1
1.5
6.7
1.5
7.1
2.0
18.0
tPZL
Output Enable OE to A
0.5
4.0
0.5
4.0
0.5
4.0
0.5
4.0
0.5
4.0
tPHZ
Output Disable OE to B
0.4
4.3
0.4
4.4
0.9
5.2
1.7
6.8
2.0
19.0
tPLZ
Output Disable OE to A
0.2
3.7
0.2
3.7
0.2
3.7
0.2
3.7
0.2
3.7
Units
ns
ns
ns
AC Electrical Characteristics VCCA = 2.3V to 2.7V
TA = −40°C to +85°C
Symbol
Parameter
VCCB =
3.0V to 3.6V
VCCB =
2.3V to 2.7V
VCCB =
1.65V to 1.95V
VCCB =
1.4V to 1.6V
VCCB =
1.1V to 1.3V
Min
Max
Min
Max
Min
Max
Min
Max
Min
Max
tPLH
Propagation Delay A to B
0.5
4.3
0.6
4.8
0.9
6.0
1.0
7.6
1.6
22.0
tPHL
Propagation Delay B to A
0.3
3.9
0.4
4.2
0.5
4.5
0.5
4.8
1.0
7.0
tPZH
Output Enable OE to B
0.8
5.1
1.0
5.5
1.5
6.9
1.5
7.4
2.0
19.0
tPZL
Output Enable OE to A
0.6
4.5
0.6
4.5
0.6
4.5
0.6
4.5
0.6
4.5
tPHZ
Output Disable OE to B
0.4
4.6
0.4
4.8
0.9
5.3
1.7
7.1
2.0
19.0
tPLZ
Output Disable OE to A
0.2
4.0
0.2
4.0
0.2
4.0
0.2
4.0
0.2
4.0
Units
ns
ns
ns
AC Electrical Characteristics VCCA = 1.65V to 1.95V
TA = −40°C to +85°C
Symbol
Parameter
VCCB =
3.0V to 3.6V
VCCB =
2.3V to 2.7V
VCCB =
1.65V to 1.95V
VCCB =
1.4V to 1.6V
VCCB =
1.1V to 1.3V
Min
Max
Min
Max
Min
Max
Min
Max
Min
Max
tPLH
Propagation Delay A to B
0.5
4.6
0.7
5.1
1.1
6.2
1.1
7.8
1.7
22.0
tPHL
Propagation Delay B to A
0.5
5.4
0.5
5.6
0.8
5.7
1.0
6.0
1.2
8.0
tPZH
Output Enable OE to B
0.8
5.4
1.0
5.9
1.5
7.3
1.5
7.7
2.0
20.0
tPZL
Output Enable OE to A
1.0
6.7
1.0
6.7
1.0
6.7
1.0
6.7
1.0
6.7
tPHZ
Output Disable OE to B
0.4
4.7
0.4
4.9
1.0
5.4
1.7
7.2
2.0
19.0
tPLZ
Output Disable OE to A
0.5
5.0
0.5
5.0
0.5
5.0
0.5
5.0
0.5
5.0
Units
ns
ns
ns
AC Electrical Characteristics VCCA = 1.4V to 1.6V
TA = −40°C to +85°C
Symbol
Parameter
VCCB =
3.0V to 3.6V
VCCB =
2.3V to 2.7V
VCCB =
1.65V to 1.95V
VCCB =
1.4V to 1.6V
VCCB =
1.1V to 1.3V
Min
Max
Min
Max
Min
Max
Min
Max
Min
Max
tPLH
Propagation Delay A to B
0.7
4.8
0.8
5.3
1.2
6.4
1.3
7.9
2.0
22.0
tPHL
Propagation Delay B to A
0.6
6.8
0.8
6.9
0.9
7.1
1.0
7.3
1.3
9.5
tPZH
Output Enable OE to B
1.1
5.8
1.3
6.3
1.5
7.8
2.0
8.1
2.0
20.0
tPZL
Output Enable OE to A
1.0
7.5
1.0
7.5
1.0
7.5
1.0
7.5
1.0
7.5
tPHZ
Output Disable OE to B
0.6
4.8
0.6
5.1
1.1
5.8
2.0
7.7
2.0
20.0
tPLZ
Output Disable OE to A
1.0
6.0
1.0
6.0
1.0
6.0
1.0
6.0
1.0
6.0
www.fairchildsemi.com
6
Units
ns
ns
ns
TA = −40°C to +85°C
Symbol
VCCB =
3.0V to 3.6V
Parameter
VCCB =
2.3V to 2.7V
Min
Max
Min
VCCB =
1.65V to 1.95V
Max
Min
Max
VCCB =
1.4V to 1.6V
Min
VCCB =
1.1V to 1.3V
Max
Min
Max
tPLH
Propagation Delay A to B
1.0
13.8
1.0
7.8
1.0
8.4
1.0
10.4
2.0
24.0
tPHL
Propagation Delay B to A
1.4
22.0
1.4
22.0
1.5
22.0
1.5
22.0
2.0
24.0
tPZH
Output Enable OE to B
1.5
12.6
1.5
9.6
1.5
10.6
2.0
11.6
2.0
24.0
tPZL
Output Enable OE to A
2.0
22.0
2.0
22.0
2.0
22.0
2.0
22.0
2.0
22.0
tPHZ
Output Disable OE to B
1.2
15.0
0.9
7.6
1.2
8.6
2.0
10.6
3.0
21.0
tPLZ
Output Disable OE to A
2.0
15.0
2.0
12.0
2.0
12.0
2.0
12.0
2.0
12.0
Units
ns
ns
ns
Capacitance
Symbol
Parameter
Conditions
TA = +25°C
Units
Typical
CIN
Input Capacitance Control Pins (OE, T/R)
VCCA = VCCB = 3.3V, VI = 0V or VCCA/B
4.0
CI/O
Input/Output Capacitance An, Bn Port
VCCA = VCCB = 3.3V, VI = 0V or VCCA/B
5.0
pF
CPD
Power Dissipation Capacitance
VCCA = VCCB = 3.3V, VI = 0V or VCC, F = 10 MHz
20.0
pF
7
pF
www.fairchildsemi.com
FXLH42245
AC Electrical Characteristics VCCA = 1.1V to 1.3V
FXLH42245
AC Loading and Waveforms
Test
Switch
tPLH, tPHL
Open
tPLZ, tPZL
VCCO x 2 at VCCO = 3.3V ± 0.3V, 2.5V ± 0.2V,
1.8V ± 0.15V, 1.5V ± 0.1V, 1.2V ± 0.1V
tPHZ, tPZH
GND
FIGURE 1. AC Test Circuit
AC Load Table
VCCO
CL
RL
RTR1
1.2V ± 0.1V
15 pF
2kΩ
2kΩ
1.5V ± 0.1V
15 pF
2kΩ
2kΩ
1.8V ± 0.15V
30 pF
500Ω
500Ω
2.5V ± 0.2V
30 pF
500Ω
500Ω
3.3V ± 0.3V
30 pF
500Ω
500Ω
Note: Input t R = tF = 2.0 ns, 10% to 90%
Note: Input tR = tF = 2.0 ns, 10% to 90%
FIGURE 3. 3-STATE Output High Enable
and Disable Times for Low Voltage Logic
FIGURE 2. Waveform for Inverting
and Non-Inverting Functions
Note: Input tR = tF = 2.0 ns, 10% to 90%
FIGURE 4. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic
Symbol
VCC
Symbol
VCC
3.3V ± 0.3V
2.5V ± 0.2V
Vmi
VCCI/2
VCCI/2
Vmi
VCCI/2
VCCI/2
VCCI/2
Vmo
VCCO/2
VCCO/2
Vmo
VCCO/2
VCCO/2
VCCO/2
VX
VOH − 0.3V
VOH − 0.15V
VX
VOH − 0.15V
VOH − 0.1V
VOH − 0.1V
VY
VOL + 0.3V
VOL + 0.15V
VY
VOL + 0.15V
VOL + 0.1V
VOL + 0.1V
Note: For Vmi; VCCI = VCCA for control pins T/R and OE, or (VCCA/2).
www.fairchildsemi.com
8
1.8V ± 0.15V 1.5V ± 0.1V
1.2V ± 0.1V
Tape Format for MLP
Package
Designator
MPX
Tape
Number
Cavity
Section
Cavities
Status
Cover Tape
Status
Leader (Start End)
125 (typ)
Empty
Sealed
Carrier
3000
Filled
Sealed
Trailer (Hub End)
75 (typ)
Empty
Sealed
TAPE DIMENSIONS inches (millimeters)
REEL DIMENSIONS inches (millimeters)
Tape Size
12 mm
A
B
C
D
N
W1
W2
13.0
0.059
0.512
0.795
2.165
0.488
0.724
(330.0)
(1.50)
(13.00)
(20.20)
(55.00)
(12.4)
(18.4)
9
www.fairchildsemi.com
FXLH42245
Tape and Reel Specification
FXLH42245 Low Voltage Dual Supply 8-Bit Signal Translator with Configurable Voltage Supplies and Bushold
Data Inputs and 3-STATE Outputs and 26Ω Series Resistors in the B Port Outputs
Physical Dimensions inches (millimeters) unless otherwise noted
24-Terminal Molded Leadless Package (MLP), JEDEC MO-220, 3.5mm x 4.5mm
Package Number MLP024B
Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and
Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD
SEMICONDUCTOR CORPORATION. As used herein:
2. A critical component in any component of a life support
device or system whose failure to perform can be reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the
body, or (b) support or sustain life, and (c) whose failure
to perform when properly used in accordance with
instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the
user.
www.fairchildsemi.com
www.fairchildsemi.com
10
Similar pages