Revised October 2004 FXLH42245 Low Voltage Dual Supply 8-Bit Signal Translator with Configurable Voltage Supplies and Bushold Data Inputs and 3-STATE Outputs and 26Ω Series Resistors in the B Port Outputs General Description Features The FXLH42245 is a configurable dual-voltage-supply translator designed for bi-directional voltage translation of signals between two voltage levels. The device allows translation between voltages as high as 3.6V to as low as 1.1V. The A Port tracks the VCCA level, and the B Port tracks the VCCB level. Both ports are designed to accept supply voltage levels from 1.1V to 3.6V. This allows for bidirectional voltage translation over a variety of voltage levels: 1.2V, 1.5V, 1.8V, 2.5V, and 3.3V. ■ Bi-directional interface between any 2 levels from 1.1V to 3.6V ■ Fully configurable, inputs track VCC level ■ Non-preferential power-up sequencing; either VCC may be powered-up first ■ Outputs remain in 3-STATE until active VCC level is reached ■ Outputs switch to 3-STATE if either VCC is at GND The device remains in 3-STATE until both VCCs reach active levels allowing either VCC to be powered-up first. The device also contains power down control circuits that place the device in 3-STATE if either VCC is removed. ■ Bushold on data inputs eliminates the need for external pull-up/pull-down resistors The Transmit/Receive (T/R) input determines the direction of data flow through the device. The OE input, when HIGH, disables both the A and B Ports by placing them in a 3-STATE condition. The FXLH42245 is designed so that the control pins (T/R and OE) are supplied by VCCA. ■ Power-off protection ■ 26Ω output series resistors on the B Port to reduce line noise ■ Control inputs (T/R, OE) levels are referenced to VCCA voltage ■ Packaged in 24-terminal MLP ■ ESD protection exceeds: • 4kV HBM ESD (per JESD22-A114 & Mil Std 883e 3015.7) • 8kV HBM I/O to GND ESD (per JESD22-A114 & Mil Std 883e 3015.7) • 1kV CDM ESD (per ESD STM 5.3) • 200V MM ESD (per JESD22-A115 & ESD STM5.2) Ordering Code: Order Number Package Number FXLH42245MPX MLP024B Package Description 24-Terminal Molded Leadless Package (MLP), JEDEC MO-220, 3.5mm x 4.5mm © 2004 Fairchild Semiconductor Corporation DS500882 www.fairchildsemi.com FXLH42245 Low Voltage Dual Supply 8-Bit Signal Translator with Configurable Voltage Supplies and Bushold Data Inputs and 3-STATE Outputs and 26Ω Series Resistors in the B Port Outputs June 2004 FXLH42245 Pin Descriptions Connection Diagram Pin Names Terminal Assignments for DQFN Description OE Output Enable Input T/R Transmit/Receive Input A0 - A7 Side A Input or 3-STATE Output B0 - B7 Side B Input or 3-STATE Output VCCA Side A Power Supply VCCB Side B Power Supply GND Ground Truth Table Inputs Outputs OE T/R L L L H Bus A Data to Bus B H X 3-STATE Bus B Data to Bus A H = HIGH Voltage Level L = LOW Voltage Level X = Don’t Care (Top Through View) Pin Assignments Pin Number Pin Name Pin Number Pin Name 1 VCCA 13 GND 2 T/R 14 B7 3 A0 15 B6 4 A1 16 B5 5 A2 17 B4 6 A3 18 B3 7 A4 19 B2 8 A5 20 B1 9 A6 21 B0 10 A7 22 OE 11 GND 23 VCCB 12 GND 24 VCCB Power-Up/Power-Down Sequencing FXL translators offer an advantage in that either VCC may be powered up first. This benefit derives from the chip design. When either VCC is at 0 volts, outputs are in a HIGH-Impedance state. The control inputs (T/R and OE) are designed to track the VCCA supply. A pull-up resistor tying OE to VCCA should be used to ensure that bus contention, excessive currents, or oscillations do not occur during power-up/power-down. The size of the pull-up resistor is based upon the current-sinking capability of the OE driver. The recommended power-up sequence is the following: 1. Apply power to either VCC. 2. Apply power to the T/R input (Logic HIGH for A-to-B operation; Logic LOW for B-to-A operation) and to the respective data inputs (A Port or B Port). This may occur at the same time as Step 1. 3. Apply power to the other VCC. 4. Drive the OE input LOW to enable the device. The recommended power-down sequence is the following: 1. Drive OE input HIGH to disable the device. 2. Remove power from either VCC. 3. Remove power from the other VCC. www.fairchildsemi.com 2 Recommended Operating Conditions (Note 3) Supply Voltage VCCA −0.5V to +4.6V Power Supply Operating (VCCA or VCCB) VCCB −0.5V to +4.6V Input Voltage DC Input Voltage (VI) I/O Port A −0.5V to VCCA +0.5V I/O Port B −0.5V to VCCA +0.5V Control Inputs (T/R, OE) −0.5V to +4.6V 1.1V to 3.6V Port A 0.0V to VCCA Port B 0.0V to VCCB Control Inputs (T/R, OE) 0.0V to VCCA Output Current in IOH/IOL (A Port) Output Voltage (VO) (Note 2) VCCA −0.5V to +4.6V 3.0V to 3.6V ±24 mA Outputs Active (An) −0.5V to VCCA + 0.5V 2.3V to 2.7V ±18 mA Outputs Active (Bn) −0.5V to VCCB + 0.5V 1.65V to 1.95V Outputs 3-STATE DC Input Diode Current (IIK) VI < 0V −50 mA DC Output Diode Current (IOK) VO < 0V −50 mA +50 mA Output Current in IOH/IOL (B Port) VCCB DC Output Source/Sink Current −50 mA / +50 mA DC VCC or Ground Current per ±100 mA Supply Pin (ICC) Storage Temperature Range (TSTG) ±2 mA ±0.5 mA 1.1V to 1.4V VO > VCC (IOH/IOL) ±6 mA 1.4V to 1.65V −65°C to +150°C 3.0V to 3.6V Resistor Outputs ±12 mA 2.3V to 2.7V Resistor Outputs ±8 mA 1.65V to 1.95V Resistor Outputs ±3 mA 1.4V to 1.65V Resistor Outputs ±1 mA 1.1V to 1.4V Resistor Outputs ±0.25 mA −40°C to +85°C Free Air Operating Temperature (TA) Minimum Input Edge Rate (∆V/∆t) VCCA/B = 1.1V to 3.6V 10 ns/V Note 1: The “Absolute Maximum Ratings” are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The “Recommended Operating Conditions” table will define the conditions for actual device operation. Note 2: IO Absolute Maximum Rating must be observed. Note 3: All unused inputs must be held at VCCI or GND. DC Electrical Characteristics Symbol VIH Parameter High Level Input Voltage Conditions Data Inputs An, Bn (Note 4) VCCI VCCO (V) (V) Min 2.7 - 3.6 2.0 2.3 - 2.7 1.6 Typ Max Units 1.65 - 2.3 1.1 - 3.6 0.65 x VCCI Control Pins/OE, T/R (Referenced to VCCA) 1.4 - 1.65 0.65 x VCCI 1.1 - 1.4 0.9 x VCCI 2.7 - 3.6 2.0 2.3 - 2.7 1.6 V 1.65 - 2.3 1.1 - 3.6 0.65 x VCCA 3 1.4 - 1.65 0.65 x VCCA 1.1 - 1.4 0.9 x VCCA www.fairchildsemi.com FXLH42245 Absolute Maximum Ratings(Note 1) FXLH42245 DC Electrical Characteristics Symbol VIL Parameter Low Level Input Voltage (Continued) Conditions Data Inputs An, Bn (Note 4) Control Pins OE, T/R (Referenced to VCCA) VCCI VCCO (V) (V) Min High Level Output Voltage 2.7 - 3.6 0.8 0.7 1.65 - 2.3 1.1 - 3.6 0.35 x VCCI 1.4 - 1.65 0.35 x VCCI 1.1 - 1.4 0.1 x VCCI 2.7 - 3.6 0.8 2.3 - 2.7 (Note 5) B Port IOH = −100 µA Max 2.3 - 2.7 0.35 x VCCA 1.4 - 1.65 0.35 x VCCA 1.1 - 3.6 VCC0 - 0.2 IOH = −6 mA 2.7 2.7 2.2 3.0 3.0 2.4 IOH = −12 mA 3.0 3.0 2.2 IOH = −4 mA 2.3 2.3 2.0 IOH = −6 mA 2.3 2.3 1.8 IOH = −8 mA 2.3 2.3 1.7 IOH = −3 mA 1.65 1.65 1.25 IOH = −1 mA 1.4 1.4 1.05 IOH = −0.25 mA 1.1 1.1 0.75 x VCC0 VOH High Level Output Voltage IOH = −100 µA 1.1 - 3.6 1.1 - 3.6 VCC0 - 0.2 (Note 5) A Port IOH = −12 mA 2.7 2.7 2.2 IOH = −18 mA 3.0 3.0 2.4 IOH = −24 mA 3.0 3.0 2.2 IOH = −6 mA 2.3 2.3 2.0 IOH = −12 mA 2.3 2.3 1.8 IOH = −18 mA 2.3 2.3 1.7 IOH = −6 mA 1.65 1.65 1.25 IOH = −2 mA 1.4 1.4 1.05 IOH = −0.5 mA 1.1 1.1 0.75 x VCC0 V V VOL Low Level Output Voltage IOL = 100µA 1.1 - 3.6 1.1- 3.6 (Note 5) B Port IOL = 6 mA 2.7 2.7 0.4 IOL = 8 mA 3.0 3.0 0.55 IOL = 12 mA 3.0 3.0 0.8 IOL = 6 mA 2.3 2.3 0.4 IOL = 8 mA 2.3 2.3 0.6 IOL = 3 mA 1.65 1.65 0.3 IOL = 1 mA 1.4 1.4 0.35 0.3 x VCC0 0.2 1.1 1.1 VOL Low Level Output Voltage IOL = 100µA 1.1 - 3.6 1.1- 3.6 0.2 (Note 5) A Port IOL = 12 mA 2.7 2.7 0.4 IOL = 18 mA 3.0 3.0 0.4 IOL = 24 mA 3.0 3.0 0.55 IOL = 12 mA 2.3 2.3 0.4 IOL = 18 mA 2.3 2.3 0.6 IOL = 6 mA 1.65 1.65 0.3 IOL = 2 mA 1.4 1.4 0.35 1.1 1.1 0.3 x VCC0 1.1 - 3.6 3.6 ±1.0 IOL = 0.5 mA II Input Leakage Current Control Pins VI = VCCA or GND www.fairchildsemi.com 4 V 0.1 x VCCA 1.1 - 3.6 IOH = −8 mA IOL = 0.25 mA Units 0.7 1.65 - 2.3 1.1 - 3.6 1.1 - 1.4 VOH Typ V V µA Symbol II(HOLD) Parameter (Continued) Conditions VCCI VCCO (V) (V) Min Bushold Input VIN = 0.8 3.0 3.0 75.0 Minimum Drive Current VIN = 2.0 3.0 3.0 −75.0 VIN = 0.7 2.3 2.3 45.0 VIN = 1.6 2.3 2.3 −45.0 VIN = 0.57 1.65 1.65 25.0 VIN = 1.07 1.65 1.65 −25.0 VIN = 0.49 1.4 1.4 11.0 −11.0 Typ Max µA VIN = 0.91 1.4 1.4 VIN = 0.11 1.1 1.1 4.0 VIN = 0.99 1.1 1.1 −4.0 II(OD) Bushold Input Over-drive (Note 6) 3.6 3.6 450 (Note 6) Current-to-Change State (Note 7) 3.6 3.6 −450 (Note 6) 2.7 2.7 300 (Note 7) 2.7 2.7 −300 (Note 6) 1.95 1.95 200 (Note 7) 1.95 1.95 −200 (Note 6) 1.6 1.6 120 (Note 7) 1.6 1.6 −120 (Note 6) 1.4 1.4 80.0 (Note 7) 1.4 1.4 −80.0 An, VI or VO = 0V to 3.6V 0 3.6 ±10.0 Bn, VI or VO = 0V to 3.6V 3.6 0 ±10.0 (Note 7) IOFF Power Off Leakage Current Units µA µA IOZ 3-STATE Output Leakage An, Bn OE = VIH 3.6 3.6 ±10.0 (Note 8) VO, VCC or GND Bn, OE = Don’t Care 0 3.6 +10.0 VI = VIH or VIL An, OE = Don’t Care 3.6 0 +10.0 Quiescent Supply Current VI = VCCI or GND; IO = 0 1.1 - 3.6 1.1 - 3.6 20.0 µA Quiescent Supply Current VI = VCCI or GND; IO = 0 1.1 - 3.6 1.1 - 3.6 20.0 µA −10.0 ICCA/B µA (Note 9) ICCZ (Note 9) ICCA Quiescent Supply Current ICCB Quiescent Supply Current ∆ICCA/B Increase in ICC per Input; VI = VCCA or GND; IO = 0 0 1.1 - 3.6 VI = VCCA or GND; IO = 0 1.1 - 3.6 0 10.0 VI = VCCB or GND; IO = 0 1.1 - 3.6 0 −10.0 0 1.1 - 3.6 3.6 3.6 VI = VCCB or GND; IO = 0 VIH = 3.0 10.0 500 µA µA µA Other Inputs at VCC or GND Note 4: VCCI = the VCC associated with the data input under test. Note 5: VCCO = the VCC associated with the output under test. Note 6: An external driver must source at least the specified current to switch LOW-to-HIGH. Note 7: An external driver must sink at least the specified current to switch HIGH-to-LOW. Note 8: Don’t Care = Any valid logic level. Note 9: Reflects current per supply, VCCA or VCCB. 5 www.fairchildsemi.com FXLH42245 DC Electrical Characteristics FXLH42245 AC Electrical Characteristics VCCA = 3.0V to 3.6V TA = −40°C to +85°C Symbol Parameter VCCB = 3.0V to 3.6V VCCB = 2.3V to 2.7V VCCB = 1.65V to 1.95V VCCB = 1.4V to 1.6V VCCB = 1.1V to 1.3V Min Max Min Max Min Max Min Max Min Max tPLH Propagation Delay A to B 0.5 3.9 0.5 4.5 0.9 5.9 1.0 7.4 1.6 22.0 tPHL Propagation Delay B to A 0.2 3.5 0.2 3.8 0.3 4.0 0.5 4.3 0.8 13.0 tPZH Output Enable OE to B 0.7 4.8 1.0 5.1 1.5 6.7 1.5 7.1 2.0 18.0 tPZL Output Enable OE to A 0.5 4.0 0.5 4.0 0.5 4.0 0.5 4.0 0.5 4.0 tPHZ Output Disable OE to B 0.4 4.3 0.4 4.4 0.9 5.2 1.7 6.8 2.0 19.0 tPLZ Output Disable OE to A 0.2 3.7 0.2 3.7 0.2 3.7 0.2 3.7 0.2 3.7 Units ns ns ns AC Electrical Characteristics VCCA = 2.3V to 2.7V TA = −40°C to +85°C Symbol Parameter VCCB = 3.0V to 3.6V VCCB = 2.3V to 2.7V VCCB = 1.65V to 1.95V VCCB = 1.4V to 1.6V VCCB = 1.1V to 1.3V Min Max Min Max Min Max Min Max Min Max tPLH Propagation Delay A to B 0.5 4.3 0.6 4.8 0.9 6.0 1.0 7.6 1.6 22.0 tPHL Propagation Delay B to A 0.3 3.9 0.4 4.2 0.5 4.5 0.5 4.8 1.0 7.0 tPZH Output Enable OE to B 0.8 5.1 1.0 5.5 1.5 6.9 1.5 7.4 2.0 19.0 tPZL Output Enable OE to A 0.6 4.5 0.6 4.5 0.6 4.5 0.6 4.5 0.6 4.5 tPHZ Output Disable OE to B 0.4 4.6 0.4 4.8 0.9 5.3 1.7 7.1 2.0 19.0 tPLZ Output Disable OE to A 0.2 4.0 0.2 4.0 0.2 4.0 0.2 4.0 0.2 4.0 Units ns ns ns AC Electrical Characteristics VCCA = 1.65V to 1.95V TA = −40°C to +85°C Symbol Parameter VCCB = 3.0V to 3.6V VCCB = 2.3V to 2.7V VCCB = 1.65V to 1.95V VCCB = 1.4V to 1.6V VCCB = 1.1V to 1.3V Min Max Min Max Min Max Min Max Min Max tPLH Propagation Delay A to B 0.5 4.6 0.7 5.1 1.1 6.2 1.1 7.8 1.7 22.0 tPHL Propagation Delay B to A 0.5 5.4 0.5 5.6 0.8 5.7 1.0 6.0 1.2 8.0 tPZH Output Enable OE to B 0.8 5.4 1.0 5.9 1.5 7.3 1.5 7.7 2.0 20.0 tPZL Output Enable OE to A 1.0 6.7 1.0 6.7 1.0 6.7 1.0 6.7 1.0 6.7 tPHZ Output Disable OE to B 0.4 4.7 0.4 4.9 1.0 5.4 1.7 7.2 2.0 19.0 tPLZ Output Disable OE to A 0.5 5.0 0.5 5.0 0.5 5.0 0.5 5.0 0.5 5.0 Units ns ns ns AC Electrical Characteristics VCCA = 1.4V to 1.6V TA = −40°C to +85°C Symbol Parameter VCCB = 3.0V to 3.6V VCCB = 2.3V to 2.7V VCCB = 1.65V to 1.95V VCCB = 1.4V to 1.6V VCCB = 1.1V to 1.3V Min Max Min Max Min Max Min Max Min Max tPLH Propagation Delay A to B 0.7 4.8 0.8 5.3 1.2 6.4 1.3 7.9 2.0 22.0 tPHL Propagation Delay B to A 0.6 6.8 0.8 6.9 0.9 7.1 1.0 7.3 1.3 9.5 tPZH Output Enable OE to B 1.1 5.8 1.3 6.3 1.5 7.8 2.0 8.1 2.0 20.0 tPZL Output Enable OE to A 1.0 7.5 1.0 7.5 1.0 7.5 1.0 7.5 1.0 7.5 tPHZ Output Disable OE to B 0.6 4.8 0.6 5.1 1.1 5.8 2.0 7.7 2.0 20.0 tPLZ Output Disable OE to A 1.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0 1.0 6.0 www.fairchildsemi.com 6 Units ns ns ns TA = −40°C to +85°C Symbol VCCB = 3.0V to 3.6V Parameter VCCB = 2.3V to 2.7V Min Max Min VCCB = 1.65V to 1.95V Max Min Max VCCB = 1.4V to 1.6V Min VCCB = 1.1V to 1.3V Max Min Max tPLH Propagation Delay A to B 1.0 13.8 1.0 7.8 1.0 8.4 1.0 10.4 2.0 24.0 tPHL Propagation Delay B to A 1.4 22.0 1.4 22.0 1.5 22.0 1.5 22.0 2.0 24.0 tPZH Output Enable OE to B 1.5 12.6 1.5 9.6 1.5 10.6 2.0 11.6 2.0 24.0 tPZL Output Enable OE to A 2.0 22.0 2.0 22.0 2.0 22.0 2.0 22.0 2.0 22.0 tPHZ Output Disable OE to B 1.2 15.0 0.9 7.6 1.2 8.6 2.0 10.6 3.0 21.0 tPLZ Output Disable OE to A 2.0 15.0 2.0 12.0 2.0 12.0 2.0 12.0 2.0 12.0 Units ns ns ns Capacitance Symbol Parameter Conditions TA = +25°C Units Typical CIN Input Capacitance Control Pins (OE, T/R) VCCA = VCCB = 3.3V, VI = 0V or VCCA/B 4.0 CI/O Input/Output Capacitance An, Bn Port VCCA = VCCB = 3.3V, VI = 0V or VCCA/B 5.0 pF CPD Power Dissipation Capacitance VCCA = VCCB = 3.3V, VI = 0V or VCC, F = 10 MHz 20.0 pF 7 pF www.fairchildsemi.com FXLH42245 AC Electrical Characteristics VCCA = 1.1V to 1.3V FXLH42245 AC Loading and Waveforms Test Switch tPLH, tPHL Open tPLZ, tPZL VCCO x 2 at VCCO = 3.3V ± 0.3V, 2.5V ± 0.2V, 1.8V ± 0.15V, 1.5V ± 0.1V, 1.2V ± 0.1V tPHZ, tPZH GND FIGURE 1. AC Test Circuit AC Load Table VCCO CL RL RTR1 1.2V ± 0.1V 15 pF 2kΩ 2kΩ 1.5V ± 0.1V 15 pF 2kΩ 2kΩ 1.8V ± 0.15V 30 pF 500Ω 500Ω 2.5V ± 0.2V 30 pF 500Ω 500Ω 3.3V ± 0.3V 30 pF 500Ω 500Ω Note: Input t R = tF = 2.0 ns, 10% to 90% Note: Input tR = tF = 2.0 ns, 10% to 90% FIGURE 3. 3-STATE Output High Enable and Disable Times for Low Voltage Logic FIGURE 2. Waveform for Inverting and Non-Inverting Functions Note: Input tR = tF = 2.0 ns, 10% to 90% FIGURE 4. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic Symbol VCC Symbol VCC 3.3V ± 0.3V 2.5V ± 0.2V Vmi VCCI/2 VCCI/2 Vmi VCCI/2 VCCI/2 VCCI/2 Vmo VCCO/2 VCCO/2 Vmo VCCO/2 VCCO/2 VCCO/2 VX VOH − 0.3V VOH − 0.15V VX VOH − 0.15V VOH − 0.1V VOH − 0.1V VY VOL + 0.3V VOL + 0.15V VY VOL + 0.15V VOL + 0.1V VOL + 0.1V Note: For Vmi; VCCI = VCCA for control pins T/R and OE, or (VCCA/2). www.fairchildsemi.com 8 1.8V ± 0.15V 1.5V ± 0.1V 1.2V ± 0.1V Tape Format for MLP Package Designator MPX Tape Number Cavity Section Cavities Status Cover Tape Status Leader (Start End) 125 (typ) Empty Sealed Carrier 3000 Filled Sealed Trailer (Hub End) 75 (typ) Empty Sealed TAPE DIMENSIONS inches (millimeters) REEL DIMENSIONS inches (millimeters) Tape Size 12 mm A B C D N W1 W2 13.0 0.059 0.512 0.795 2.165 0.488 0.724 (330.0) (1.50) (13.00) (20.20) (55.00) (12.4) (18.4) 9 www.fairchildsemi.com FXLH42245 Tape and Reel Specification FXLH42245 Low Voltage Dual Supply 8-Bit Signal Translator with Configurable Voltage Supplies and Bushold Data Inputs and 3-STATE Outputs and 26Ω Series Resistors in the B Port Outputs Physical Dimensions inches (millimeters) unless otherwise noted 24-Terminal Molded Leadless Package (MLP), JEDEC MO-220, 3.5mm x 4.5mm Package Number MLP024B Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. www.fairchildsemi.com www.fairchildsemi.com 10