TI ISO7241MDWG4 High speed quad digital isolator Datasheet

ISO7240CF, ISO7240C,, ISO7240M
ISO7241C, ISO7241M
ISO7242C, ISO7242M
www.ti.com........................................................................................................................................ SLLS868I – SEPTEMBER 2007 – REVISED DECEMBER 2008
HIGH SPEED QUAD DIGITAL ISOLATORS
FEATURES
1
•
•
•
•
•
•
•
Selectable Failsafe Output (ISO7240CF)
25 and 150-Mbps Signaling Rate Options
– Low Channel-to-Channel Output Skew;
1 ns Max
– Low Pulse-Width Distortion (PWD);
2 ns Max
– Low Jitter Content; 1 ns Typ at 150 Mbps
Typical 25-Year Life at Rated Working Voltage
(see application note SLLA197 and Figure 17)
4000-Vpeak Isolation, 560-Vpeak VIORM
– UL 1577 , IEC 60747-5-2 (VDE 0884, Rev 2),
IEC 61010-1, IEC 60950-1 and CSA
Approved
•
4 kV ESD Protection
Operate With 3.3-V or 5-V Supplies
High Electromagnetic Immunity
(see application report SLLA181)
–40°C to 125°C Operating Range
APPLICATIONS
•
•
•
•
Industrial Fieldbus
Computer Peripheral Interface
Servo Control Interface
Data Acquisition
DESCRIPTION
The ISO7240, ISO7241 and ISO7242 are quad-channel digital isolators with multiple channel configurations and
output enable functions. These devices have logic input and output buffers separated by TI’s silicon dioxide
(SiO2) isolation barrier. Used in conjunction with isolated power supplies, these devices block high voltage,
isolate grounds, and prevent noise currents from entering the local ground and interfering with or damaging
sensitive circuitry.
The ISO7240 has all four channels in the same direction while the ISO7241 has three channels the same
direction and one channel in opposition. The ISO7242 has two channels in each direction.
The C option devices have TTL input thresholds and a noise-filter at the input that prevents transient pulses from
being passed to the output of the device. The M option devices have CMOS Vcc/2 input thresholds and do not
have the input noise-filter or the additional propagation delay.
The ISO7240CF has an input disable function on pin 7, and a selectable high or low failsafe-output function with
the CTRL pin (pin 10). The failsafe-output is a logic high when a logic-high is placed on the CTRL pin or it is left
unconnected. If a logic-low signal is applied to the CTRL pin, the failsafe-output becomes a logic-low output
state. The ISO7240CF input disable function prevents data from being passed across the isolation barrier to the
output. When the inputs are disabled, the outputs are set by the CTRL pin.
These devices may be powered from either 3.3-V or 5-V supplies on either side in any 3.3-V / 3.3-V, 5-V / 5-V,
5-V / 3.3-V, or 3.3-V / 5-V combination. Note that the signal input pins are 5-V tolerant regardless of the voltage
supply level being used.
These devices are characterized for operation over the ambient temperature range of –40°C to 125°C.
VCC1
GND1
INA
INB
INC
IND
DISABLE
GND1
ISO7240CF
1
16
2
15
3
14
4
13
5
12
6
11
7
10
8
9
ISO7240
VCC2 VCC1
GND2 GND1
OUTA
INA
INB
OUTB
INC
OUTC
OUTD
IND
CTRL
NC
GND2 GND1
1
2
3
4
5
6
7
8
ISO7241
16
15
14
13
12
11
10
9
VCC2
GND2
OUTA
OUTB
OUTC
OUTD
EN
GND2
VCC1
GND1
INA
INB
INC
OUTD
EN1
GND1
1
2
3
4
5
6
7
8
ISO7242
16
15
14
13
12
11
10
9
VCC2
GND2
OUTA
OUTB
OUTC
IND
EN2
GND2
VCC1
GND1
INA
INB
OUTC
OUTD
EN1
GND1
1
2
3
4
5
6
7
8
16
15
14
13
12
11
10
9
VCC2
GND2
OUTA
OUTB
INC
IND
EN2
GND2
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2007–2008, Texas Instruments Incorporated
ISO7240CF, ISO7240C,, ISO7240M
ISO7241C, ISO7241M
ISO7242C, ISO7242M
SLLS868I – SEPTEMBER 2007 – REVISED DECEMBER 2008........................................................................................................................................ www.ti.com
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
Table 1. Device Function Table ISO724x
INPUT VCC
OUTPUT VCC
PU
(1)
(1)
INPUT
(IN)
OUTPUT ENABLE
(EN)
OUTPUT
(OUT)
H
H or Open
H
L
H or Open
L
PU
X
L
Z
Open
H or Open
H
PD
PU
X
H or Open
H
PD
PU
X
L
Z
PU = Powered Up; PD = Powered Down ; X = Irrelevant; H = High Level; L = Low Level
Table 2. ISO7240CF Function Table
VCC1
VCC2
DATA INPUT
(IN)
DISABLE INPUT
(DISABLE)
FAILSAFE CONTROL INPUT
(CTRL)
DATA OUTPUT
(OUT)
PU
PU
H
L or Open
X
H
PU
PU
L
L or Open
X
L
X
PU
X
H
H or Open
H
X
PU
X
H
L
L
PD
PU
X
X
H or Open
H
PD
PU
X
X
L
L
AVAILABLE OPTIONS
PRODUCT
SIGNALING
RATE
INPUT
THRESHOLD
CHANNEL
CONFIGURATION
MARKED
AS
ISO7240CDW
25 Mbps
~1.5 V (TTL)
(CMOS compatible)
ISO7240CF
25 Mbps
~1.5 V (TTL)
(CMOS compatible)
ISO7240MDW
150 Mbps
Vcc/2 (CMOS)
ISO7240M
ISO7241CDW
25 Mbps
~1.5 V (TTL)
(CMOS compatible)
ISO7241C
ISO7241MDW
150 Mbps
Vcc/2 (CMOS)
ISO7241M
ISO7242CDW
25 Mbps
~1.5 V (TTL)
(CMOS compatible)
ISO7242C
ISO7240C
4/0
ISO7240CF
3/1
2/2
ISO7242MDW
(1)
2
150 Mbps
Vcc/2 (CMOS)
ISO7242M
ORDERING
NUMBER (1)
ISO7240CDW (rail)
ISO7240CDWR (reel)
ISO7240CFDW (rail)
ISO7240CFDWR (reel)
ISO7240MDW (rail)
ISO7240MDWR (reel)
ISO7241CDW (rail)
ISO7241CDWR (reel)
ISO7241MDW (rail)
ISO7241MDWR (reel)
ISO7242CDW (rail)
ISO7242CDWR (reel)
ISO7242MDW (rail)
ISO7242MDWR (reel)
For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI
website at www.ti.com.
Submit Documentation Feedback
Copyright © 2007–2008, Texas Instruments Incorporated
Product Folder Link(s): ISO7240CF, ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M
ISO7240CF, ISO7240C,, ISO7240M
ISO7241C, ISO7241M
ISO7242C, ISO7242M
www.ti.com........................................................................................................................................ SLLS868I – SEPTEMBER 2007 – REVISED DECEMBER 2008
ABSOLUTE MAXIMUM RATINGS (1)
(2)
VCC
Supply voltage
VI
Voltage at IN, OUT, EN, DISABLE, CTRL
, VCC1, VCC2
IO
Output current
ESD
Electrostatic Field-Induced-Charged Device
discharge
Model
TJ
Maximum junction temperature
Human Body Model
Machine Model
(1)
(2)
JEDEC Standard 22, Test Method A114-C.01
JEDEC Standard 22, Test Method C101
VALUE
UNIT
–0.5 to 6
V
–0.5 to 6
V
±15
mA
±4
All pins
kV
±1
ANSI/ESDS5.2-1996
±200
V
170
°C
Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltage values are with respect to network ground terminal and are peak voltage values.
RECOMMENDED OPERATING CONDITIONS
MIN
(1)
VCC
Supply voltage
IOH
High-level output current
IOL
Low-level output current
tui
Input pulse width
1/tui
Signaling rate
VIH
High-level input voltage (IN)
VIL
Low-level input voltage (IN)
VIH
High-level input voltage (IN, DISABLE, CTRL, EN)
VIL
Low-level input voltage (IN, DISABLE, CTRL, EN)
TJ
Junction temperature
H
External magnetic field-strength immunity per IEC 61000-4-8 and IEC 61000-4-9
certification
(1)
(2)
, VCC1, VCC2
TYP
MAX
3.15
5.5
4
–4
40
ISO724xM
6.67
5
ISO724xC
0
30 (2)
25
ISO724xM
0
200 (2)
150
ISO724xC
V
mA
mA
ISO724xC
ISO724xM
UNIT
ns
Mbps
0.7 VCC
VCC
V
0
0.3 VCC
V
2
VCC
V
0
0.8
V
150
°C
1000
A/m
For the 5-V operation, VCC1 or VCC2 is specified from 4.5 V to 5.5 V.
For the 3-V operation, VCC1 or VCC2 is specified from 3.15 V to 3.6 V.
Typical value at room temperature and well-regulated power supply.
Copyright © 2007–2008, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): ISO7240CF, ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M
3
ISO7240CF, ISO7240C,, ISO7240M
ISO7241C, ISO7241M
ISO7242C, ISO7242M
SLLS868I – SEPTEMBER 2007 – REVISED DECEMBER 2008........................................................................................................................................ www.ti.com
ELECTRICAL CHARACTERISTICS: VCC1 and VCC2 at 5-V (1) OPERATION
, over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
VI = VCC or 0 V, All channels, no load,
EN2 at 3 V
1
3
7
10.5
VI = VCC or 0 V, All channels, no load,
EN1 at 3 V, EN2 at 3 V
6.5
10
12
18
VI = VCC or 0 V, All channels, no load,
EN1 at 3 V, EN2 at 3 V
10
16
15
24
VI = VCC or 0 V, All channels, no load,
EN2 at 3 V
15
22
17
25
VI = VCC or 0 V, All channels, no load,
EN1 at 3 V, EN2 at 3 V
13
20
18
28
VI = VCC or 0 V, All channels, no load,
EN1 at 3 V, EN2 at 3 V
10
16
15
24
UNIT
SUPPLY CURRENT
ISO7240C/M
ICC1
ISO7241C/M
ISO7242C/M
ISO7240C/M
ICC2
ISO7241C/M
ISO7242C/M
Quiescent
25 Mbps
Quiescent
25 Mbps
Quiescent
25 Mbps
Quiescent
25 Mbps
Quiescent
25 Mbps
Quiescent
25 Mbps
mA
mA
mA
mA
mA
mA
ELECTRICAL CHARACTERISTICS
IOFF
Sleep mode output current
VOH
High-level output voltage
VOL
Low-level output voltage
VI(HYS)
Input voltage hysteresis
IIH
High-level input current
IIL
Low-level input current
CI
Input capacitance to ground
IN at VCC, VI = 0.4 sin (4E6πt)
CMTI
Common-mode transient immunity
VI = VCC or 0 V, See Figure 5
(1)
4
EN at 0 V, Single channel
µA
0
IOH = –4 mA, See Figure 1
VCC – 0.8
IOH = –20 µA, See Figure 1
VCC – 0.1
V
IOL = 4 mA, See Figure 1
0.4
IOL = 20 µA, See Figure 1
0.1
150
IN from 0 V to VCC
mV
10
–10
25
V
µA
2
pF
50
kV/µs
For the 5-V operation, VCC1 or VCC2 is specified from 4.5 V to 5.5 V.
For the 3-V operation, VCC1 or VCC2 is specified from 3.15 V to 3.6 V.
Submit Documentation Feedback
Copyright © 2007–2008, Texas Instruments Incorporated
Product Folder Link(s): ISO7240CF, ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M
ISO7240CF, ISO7240C,, ISO7240M
ISO7241C, ISO7241M
ISO7242C, ISO7242M
www.ti.com........................................................................................................................................ SLLS868I – SEPTEMBER 2007 – REVISED DECEMBER 2008
SWITCHING CHARACTERISTICS: VCC1 and VCC2 at 5-V OPERATION
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
PWD
Pulse-width distortion (1) |tPHL – tPLH|
tPLH, tPHL
Propagation delay
PWD
Pulse-width distortion (1) |tPHL – tPLH|
tsk(pp)
Part-to-part skew
tsk(o)
Channel-to-channel output skew
tr
Output signal rise time
tf
Output signal fall time
tPHZ
Propagation delay, high-level-to-high-impedance output
15
20
tPZH
Propagation delay, high-impedance-to-high-level output
15
20
tPLZ
Propagation delay, low-level-to-high-impedance output
15
20
tPZL
Propagation delay, high-impedance-to-low-level output
15
20
tfs
Failsafe output delay time from input power loss
See Figure 3
12
µs
twake
Wake time from input disable
See Figure 4
15
µs
Peak-to-peak eye-pattern jitter
150 Mbps NRZ data input, Same
polarity input on all channels, See
Figure 6
1
ns
(1)
(2)
(3)
ISO724xC
42
UNIT
Propagation delay
tjit(pp)
18
MAX
tPLH, tPHL
2.5
See Figure 1
10
ISO724xM
23
1
ISO724xC
(2)
8
ISO724xM
(3)
0
ISO724xC
3
2
ISO724xM
0
1
2
See Figure 1
ISO724xM
2
ns
ns
ns
ns
2
See Figure 2
ns
ns
Also referred to as pulse skew.
tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.
tsk(o) is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the
same direction while driving identical specified loads.
Copyright © 2007–2008, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): ISO7240CF, ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M
5
ISO7240CF, ISO7240C,, ISO7240M
ISO7241C, ISO7241M
ISO7242C, ISO7242M
SLLS868I – SEPTEMBER 2007 – REVISED DECEMBER 2008........................................................................................................................................ www.ti.com
ELECTRICAL CHARACTERISTICS: VCC1 at 5-V, VCC2 at 3.3-V (1) OPERATION
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
1
3
7
10.5
VI = VCC or 0 V, All channels, no load, EN1 at 3 V,
EN2 at 3 V
6.5
10
12
18
VI = VCC or 0 V, All channels, no load, EN1 at 3 V,
EN2 at 3 V
10
16
15
24
9.5
15
10.5
17
UNIT
SUPPLY CURRENT
ISO7240C/M
ICC1
ISO7241C/M
ISO7242C/M
ISO7240C/M
ICC2
ISO7241C/M
ISO7242C/M
Quiescent
25 Mbps
Quiescent
25 Mbps
Quiescent
25 Mbps
Quiescent
25 Mbps
Quiescent
25 Mbps
Quiescent
25 Mbps
VI = VCC or 0 V, All channels, no load, EN2 at 3 V
VI = VCC or 0 V, All channels, no load, EN2 at 3 V
8
13
11.5
18
VI = VCC or 0 V, All channels, no load, EN1 at 3 V,
EN2 at 3 V
6
10
9
14
EN at 0 V, Single channel
0
VI = VCC or 0 V, All channels, no load, EN1 at 3 V,
EN2 at 3 V
mA
mA
mA
mA
mA
mA
ELECTRICAL CHARACTERISTICS
IOFF
Sleep mode output current
VOH
High-level output voltage
IOH = –4 mA, See Figure 1
IOH = –20 µA, See Figure 1
VCC – 0.8
V
VCC – 0.1
0.4
IOL = 20 µA, See Figure 1
0.1
Low-level output voltage
VI(HYS)
Input voltage hysteresis
IIH
High-level input current
IIL
Low-level input current
CI
Input capacitance to ground
IN at VCC, VI = 0.4 sin (4E6πt)
CMTI
Common-mode transient
immunity
VI = VCC or 0 V, See Figure 5
6
VCC – 0.4
ISO724x (5-V
side)
IOL = 4 mA, See Figure 1
VOL
(1)
ISO7240
µA
150
IN from 0 V to VCC
mV
10
–10
25
V
µA
2
pF
50
kV/µs
For the 5-V operation, VCC1 or VCC2 is specified from 4.5 V to 5.5 V.
For the 3-V operation, VCC1 or VCC2 is specified from 3.15 V to 3.6 V.
Submit Documentation Feedback
Copyright © 2007–2008, Texas Instruments Incorporated
Product Folder Link(s): ISO7240CF, ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M
ISO7240CF, ISO7240C,, ISO7240M
ISO7241C, ISO7241M
ISO7242C, ISO7242M
www.ti.com........................................................................................................................................ SLLS868I – SEPTEMBER 2007 – REVISED DECEMBER 2008
SWITCHING CHARACTERISTICS: VCC1 at 5-V, VCC2 at 3.3-V OPERATION
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TYP
Pulse-width distortion (1) |tPHL – tPLH|
tPLH, tPHL
Propagation delay
PWD
Pulse-width distortion(1) |tPHL – tPLH|
tsk(pp)
Part-to-part skew
tsk(o)
Channel-to-channel output skew
tr
Output signal rise time
tf
Output signal fall time
tPHZ
Propagation delay, high-level-to-high-impedance output
15
20
tPZH
Propagation delay, high-impedance-to-high-level output
15
20
tPLZ
Propagation delay, low-level-to-high-impedance output
15
20
tPZL
Propagation delay, high-impedance-to-low-level output
15
20
tfs
Failsafe output delay time from input power loss
See Figure 3
18
µs
twake
Wake time from input disable
See Figure 4
15
µs
Peak-to-peak eye-pattern jitter
150 Mbps PRBS NRZ data
input, Same polarity input on
all channels, See Figure 6
1
ns
(1)
(2)
(3)
50
UNIT
PWD
tjit(pp)
20
MAX
Propagation delay
ISO724xC
See Figure 1
MIN
tPLH, tPHL
3
ISO724xM
12
29
1
ISO724xC
(2)
10
ISO724xM
(3)
0
ISO724xC
5
3
ISO724xM
0
1
2
See Figure 1
ISO724xM
2
ns
ns
ns
ns
2
See Figure 2
ns
ns
Also known as pulse skew
tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.
tsk(o) is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the
same direction while driving identical specified loads.
Copyright © 2007–2008, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): ISO7240CF, ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M
7
ISO7240CF, ISO7240C,, ISO7240M
ISO7241C, ISO7241M
ISO7242C, ISO7242M
SLLS868I – SEPTEMBER 2007 – REVISED DECEMBER 2008........................................................................................................................................ www.ti.com
ELECTRICAL CHARACTERISTICS: VCC1 at 3.3-V, VCC2 at 5-V (1) OPERATION
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
0.5
1
3
5
4
7
6.5
11
6
10
9
14
15
22
17
25
13
20
18
28
10
16
15
24
UNIT
SUPPLY CURRENT
ISO7240C/M
ISO7241C/M
ICC1
Quiescent
VI = VCC or 0 V, All channels, no load, EN2 at 3 V
25 Mbps
Quiescent
VI = VCC or 0 V, All channels, no load, EN1 at 3 V,
EN2 at 3 V
25 Mbps
ISO724C/M
Quiescent
VI = VCC or 0 V, All channels, no load, EN1 at 3 V,
EN2 at 3 V
25 Mbps
ISO7240C/M
ISO7241C/M
ICC2
Quiescent
VI = VCC or 0 V, All channels, no load, EN2 at 3 V
25 Mbps
Quiescent
VI = VCC or 0 V, All channels, no load, EN1 at 3 V,
EN2 at 3 V
25 Mbps
ISO7242C/M
Quiescent
VI = VCC or 0 V, All channels, no load, EN1 at 3 V,
EN2 at 3 V
25 Mbps
mA
mA
mA
mA
mA
mA
ELECTRICAL CHARACTERISTICS
IOFF
Sleep mode output current
VOH
High-level output voltage
EN at 0 V, Single channel
IOH = –4 mA, See Figure 1
IOH = –20 µA, See Figure 1
VCC – 0.4
ISO724x (5-V side)
VCC – 0.8
V
VCC – 0.1
0.4
IOL = 20 µA, See Figure 1
0.1
Low-level output voltage
VI(HYS)
Input voltage hysteresis
IIH
High-level input current
IIL
Low-level input current
CI
Input capacitance to ground
IN at VCC, VI = 0.4 sin (4E6πt)
CMTI
Common-mode transient
immunity
VI = VCC or 0 V, See Figure 5
8
ISO7240
IOL = 4 mA, See Figure 1
VOL
(1)
µA
0
150
IN from 0 V to VCC
mV
10
–10
25
V
µA
2
pF
50
kV/µs
For the 5-V operation, VCC1 or VCC2 is specified from 4.5 V to 5.5 V.
For the 3-V operation, VCC1 or VCC2 is specified from 3.15 V to 3.6 V.
Submit Documentation Feedback
Copyright © 2007–2008, Texas Instruments Incorporated
Product Folder Link(s): ISO7240CF, ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M
ISO7240CF, ISO7240C,, ISO7240M
ISO7241C, ISO7241M
ISO7242C, ISO7242M
www.ti.com........................................................................................................................................ SLLS868I – SEPTEMBER 2007 – REVISED DECEMBER 2008
SWITCHING CHARACTERISTICS: VCC1 at 3.3-V and VCC2 at 5-V OPERATION
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP MAX
22
51
UNIT
tPLH, tPHL
Propagation delay
PWD
Pulse-width distortion (1) |tPHL – tPLH|
tPLH, tPHL
Propagation delay
PWD
Pulse-width distortion(1) |tPHL – tPLH|
tsk(pp)
Part-to-part skew
tsk(o)
Channel-to-channel output skew
tr
Output signal rise time
tf
Output signal fall time
tPHZ
Propagation delay, high-level-to-high-impedance output
15
20
tPZH
Propagation delay, high-impedance-to-high-level output
15
20
tPLZ
Propagation delay, low-level-to-high-impedance output
15
20
tPZL
Propagation delay, high-impedance-to-low-level output
15
20
tfs
Failsafe output delay time from input power loss
See Figure 3
12
µs
twake
Wake time from input disable
See Figure 4
15
µs
Peak-to-peak eye-pattern jitter
150 Mbps NRZ data input, Same
polarity input on all channels, See
Figure 6
1
ns
tjit(pp)
(1)
(2)
(3)
ISO724xC
3
See Figure 1
12
ISO724xM
30
1
ISO724xC
(2)
10
ISO724xM
(3)
0
ISO724xC
5
2.5
ISO724xM
0
1
2
See Figure 1
ISO724xM
2
ns
ns
ns
ns
2
See Figure 2
ns
ns
Also known as pulse skew
tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.
tsk(o) is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the
same direction while driving identical specified loads.
Copyright © 2007–2008, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): ISO7240CF, ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M
9
ISO7240CF, ISO7240C,, ISO7240M
ISO7241C, ISO7241M
ISO7242C, ISO7242M
SLLS868I – SEPTEMBER 2007 – REVISED DECEMBER 2008........................................................................................................................................ www.ti.com
ELECTRICAL CHARACTERISTICS: VCC1 and VCC2 at 3.3 V (1) OPERATION
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP MAX
UNIT
SUPPLY CURRENT
ISO7240C/M
ISO7241C/M
ICC1
Quiescent
25 Mbps
Quiescent
25 Mbps
ISO7242C/M
Quiescent
25 Mbps
ISO7240C/M
ISO7241C/M
ICC2
Quiescent
25 Mbps
Quiescent
25 Mbps
ISO7242C/M
Quiescent
25 Mbps
VI = VCC or 0 V, all channels, no load,
EN2 at 3 V
0.5
1
3
5
4
7
6.5
11
VI = VCC or 0 V, all channels, no load,
EN1 at 3 V, EN2 at 3 V
6
10
9
14
VI = VCC or 0 V, all channels, no load,
EN2 at 3 V
9.5
15
10.5
17
VI = VCC or 0 V, all channels, no load,
EN1 at 3 V, EN2 at 3 V
8
13
11.5
18
VI = VCC or 0 V, all channels, no load,
EN1 at 3 V, EN2 at 3 V
6
10
9
14
EN at 0 V, single channel
0
VI = VCC or 0 V, all channels, no load,
EN1 at 3 V, EN2 at 3 V
mA
mA
mA
mA
ELECTRICAL CHARACTERISTICS
IOFF
Sleep mode output current
VOH
High-level output voltage
VOL
Low-level output voltage
VI(HYS)
Input voltage hysteresis
IIH
High-level input current
IIL
Low-level input current
CI
Input capacitance to ground
IN at VCC, VI = 0.4 sin (4E6πt)
CMTI
Common-mode transient immunity
VI = VCC or 0 V, See Figure 5
(1)
10
IOH = –4 mA, See Figure 1
VCC – 0.4
IOH = –20 µA, See Figure 1
VCC – 0.1
µA
V
IOL = 4 mA, See Figure 1
0.4
IOL = 20 µA, See Figure 1
0.1
150
IN from 0 V or VCC
mV
10
–10
25
V
µA
2
pF
50
kV/µs
For the 5-V operation, VCC1 or VCC2 is specified from 4.5 V to 5.5 V.
For the 3-V operation, VCC1 or VCC2 is specified from 3.15 V to 3.6 V.
Submit Documentation Feedback
Copyright © 2007–2008, Texas Instruments Incorporated
Product Folder Link(s): ISO7240CF, ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M
ISO7240CF, ISO7240C,, ISO7240M
ISO7241C, ISO7241M
ISO7242C, ISO7242M
www.ti.com........................................................................................................................................ SLLS868I – SEPTEMBER 2007 – REVISED DECEMBER 2008
SWITCHING CHARACTERISTICS: VCC1 and VCC2 at 3.3-V OPERATION
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP MAX
25
56
UNIT
tPLH, tPHL
Propagation delay
PWD
Pulse-width distortion |tPHL – tPLH| (1)
tPLH, tPHL
Propagation delay
PWD
Pulse-width distortion |tPHL – tPLH| (1)
tsk(pp)
Part-to-part skew
tsk(o)
Channel-to-channel output skew
tr
Output signal rise time
tf
Output signal fall time
tPHZ
Propagation delay, high-level-to-high-impedance output
tPZH
Propagation delay, high-impedance-to-high-level output
tPLZ
Propagation delay, low-level-to-high-impedance output
tPZL
Propagation delay, high-impedance-to-low-level output
tfs
Failsafe output delay time from input power loss
See Figure 3
18
µs
twake
Wake time from input disable
See Figure 4
15
µs
Peak-to-peak eye-pattern jitter
150 Mbps PRBS NRZ data input,
same polarity input on all channels,
See Figure 6
1
ns
tjit(pp)
(1)
(2)
(3)
ISO724xC
4
See Figure 1
12
ISO724xM
34
1
ISO724xC
(2)
10
ISO724xM
(3)
0
ISO724xC
5
3.5
ISO724xM
0
1
2
See Figure 1
ISO724xM
2
ns
ns
ns
ns
2
See Figure 2
ns
ns
15
20
15
20
15
20
15
20
ns
Also referred to as pulse skew.
tsk(pp) is the magnitude of the difference in propagation delay times between any specified terminals of two devices when both devices
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.
tsk(o) is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the
same direction while driving identical specified loads.
Copyright © 2007–2008, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): ISO7240CF, ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M
11
ISO7240CF, ISO7240C,, ISO7240M
ISO7241C, ISO7241M
ISO7242C, ISO7242M
SLLS868I – SEPTEMBER 2007 – REVISED DECEMBER 2008........................................................................................................................................ www.ti.com
ISOLATION BARRIER
PARAMETER MEASUREMENT INFORMATION
IN
Input
Generator
VI
50 W
NOTE A
VCC1
VI
VCC1/2
VCC1/2
OUT
0V
tPHL
tPLH
CL
NOTE B
VO
VO
VOH
90%
50%
50%
10%
tr
VOL
tf
A.
The input pulse is supplied by a generator having the following characteristics: PRR ≤ 50 kHz, 50% duty cycle, tr ≤ 3
ns, tf ≤ 3 ns, ZO = 50Ω.
B.
CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.
Figure 1. Switching Characteristic Test Circuit and Voltage Waveforms
Vcc
Vcc
ISOLATION BARRIER
0V
RL = 1 kW ±1%
IN
Input
Generator
VI
OUT
EN
Vcc/2
VI
t PZL
VO
VO
CL
Vcc/2
0V
t PLZ
Vcc
0.5 V
50%
NOTE
B
50 W
VOL
3V
ISOLATION BARRIER
NOTE A
IN
Input
Generator
VI
Vcc
OUT
VO
Vcc/2
VI
Vcc/2
0V
EN
50 W
t PZH
CL
NOTE
B
RL = 1 kW ±1%
VO
VOH
50%
0.5 V
t PHZ
0V
NOTE A
A.
The input pulse is supplied by a generator having the following characteristics: PRR ≤ 50 kHz, 50% duty cycle, tr ≤ 3
ns, tf ≤ 3 ns, ZO = 50Ω.
B.
CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.
Figure 2. Enable/Disable Propagation Delay Time Test Circuit and Waveform
12
Submit Documentation Feedback
Copyright © 2007–2008, Texas Instruments Incorporated
Product Folder Link(s): ISO7240CF, ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M
ISO7240CF, ISO7240C,, ISO7240M
ISO7241C, ISO7241M
ISO7242C, ISO7242M
www.ti.com........................................................................................................................................ SLLS868I – SEPTEMBER 2007 – REVISED DECEMBER 2008
PARAMETER MEASUREMENT INFORMATION (continued)
VI
0V
or
VCC1
VCC1
ISOLATION BARRIER
VCC1
IN
2.7 V
VI
OUT
0V
VO
tfs
VOH
CL
NOTE B
VO
50%
fs low
VOL
A.
CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.
B.
The input pulse is supplied by a generator having the following characteristics: PRR ≤ 50 kHz, 50% duty cycle, tr ≤ 3
ns, tf ≤ 3 ns, ZO = 50Ω.
3V
Generator
IN
( Note A)
DISABLE
ISOLATION BARRIER
Figure 3. Failsafe Delay Time Test Circuit and Voltage Waveforms
OUT
t wake
ISOLATION BARRIER
DISABLE
( Note B)
50 %
VO
0V
V CC 2
OUT
VO
VI
V CC2/2
0V
t wake
CTRL
CL
Input
Generator
VCC2
CL
50 W
IN
VCC2/2
0V
0V
0V
VI
CTRL
Input
VI
VCC2
VO
VI
3V
V CC2
(Note B )
50 W
VO
( Note A )
50 %
0V
NOTE: Which ever test yields the longest time is used in this datasheet
A.
Whichever test yields the longest time is used in this data sheet.
Figure 4. Wake Time From Input Disable Test Circuit and Voltage Waveforms
Copyright © 2007–2008, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): ISO7240CF, ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M
13
ISO7240CF, ISO7240C,, ISO7240M
ISO7241C, ISO7241M
ISO7242C, ISO7242M
SLLS868I – SEPTEMBER 2007 – REVISED DECEMBER 2008........................................................................................................................................ www.ti.com
PARAMETER MEASUREMENT INFORMATION (continued)
VCC1
VCC2
ISOLATION BARRIER
C = 0.1 mF± 1%
IN
S1
GND1
C = 0.1 mF± 1%
OUT
NOTE B
Pass-fail criteria:
Output must
remain stable
VOH or VOL
GND2
VCM
A.
CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.
B.
The input pulse is supplied by a generator having the following characteristics: PRR ≤ 50 kHz, 50% duty cycle, tr ≤ 3
ns, tf ≤ 3 ns, ZO = 50Ω.
Figure 5. Common-Mode Transient Immunity Test Circuit and Voltage Waveform
VCC1
DUT
Tektronix
HFS9009
IN
OUT
0V
Tektronix
784D
PATTERN
GENERATOR
VCC/2
Jitter
NOTE: PRBS bit pattern run length is 216 – 1. Transition time is 800 ps. NRZ data input has no more than five consecutive 1s
or 0s.
Figure 6. Peak-to-Peak Eye-Pattern Jitter Test Circuit and Voltage Waveform
14
Submit Documentation Feedback
Copyright © 2007–2008, Texas Instruments Incorporated
Product Folder Link(s): ISO7240CF, ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M
ISO7240CF, ISO7240C,, ISO7240M
ISO7241C, ISO7241M
ISO7242C, ISO7242M
www.ti.com........................................................................................................................................ SLLS868I – SEPTEMBER 2007 – REVISED DECEMBER 2008
DEVICE INFORMATION
PACKAGE CHARACTERISTICS
PARAMETER
L(I01)
TEST CONDITIONS
MIN
TYP MAX
UNIT
Minimum air gap (Clearance)
Shortest terminal-to-terminal distance through air
8.34
mm
Minimum external tracking (Creepage)
Shortest terminal-to-terminal distance across the
package surface
8.1
mm
Minimum Internal Gap (Internal
Clearance)
Distance through the insulation
0.008
mm
RIO
Isolation resistance
Input to output, VIO = 500 V, all pins on each side of the
barrier tied together creating a two-terminal device
CIO
Barrier capacitance Input to output
CI
Input capacitance to ground
L(I02)
>1012
Ω
VI = 0.4 sin (4E6πt)
2
pF
VI = 0.4 sin (4E6πt)
2
pF
DEVICE I/O SCHEMATICS
Enable
VCC
Output
Input
VCC
VCC
VCC
VCC
VCC
1 MW
500 W
IN
EN
8W
500 W
OUT
13 W
1 MW
REGULATORY INFORMATION
VDE
CSA
UL
Certified according to IEC
60747-5-2
Approved under CSA Component
Acceptance Notice
Recognized under 1577
Component Recognition
Program (1)
File Number: 40016131
File Number: 1698195
File Number: E181974
(1)
Production tested ≥ 3000 Vrms for 1 second in accordance with UL 1577.
THERMAL CHARACTERISTICS
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP MAX
Low-K Thermal Resistance (1)
168
High-K Thermal Resistance
96.1
UNIT
θJA
Junction-to-air
θJB
Junction-to-Board Thermal Resistance
61
°C/W
θJC
Junction-to-Case Thermal Resistance
48
°C/W
PD
(1)
Device Power Dissipation
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF,
Input a 50% duty cycle square wave
°C/W
220
mW
Tested in accordance with the Low-K or High-K thermal metric definitions of EIA/JESD51-3 for leaded surface mount packages.
Copyright © 2007–2008, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): ISO7240CF, ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M
15
ISO7240CF, ISO7240C,, ISO7240M
ISO7241C, ISO7241M
ISO7242C, ISO7242M
SLLS868I – SEPTEMBER 2007 – REVISED DECEMBER 2008........................................................................................................................................ www.ti.com
TYPICAL CHARACTERISTIC CURVES
ISO7240C/M RMS SUPPLY CURRENT
vs
SIGNALING RATE
ISO7241C/M RMS SUPPLY CURRENT
vs
SIGNALING RATE
45
45
TA = 25°C,
Load = 15 pF,
All Channels
40
ICC - Supply Current - mA/RMS
ICC - Supply Current - mA/RMS
40
35
5-V ICC2
30
3.3-V ICC2
25
20
5-V ICC1
15
10
5
35
5-V ICC2
30
20
3.3-V ICC2
15
50
75
100
Signaling Rate - Mbps
125
5
0
0
150
75
100
Figure 8.
ISO7242C/M RMS SUPPLY CURRENT
vs
SIGNALING RATE
PROPAGATION DELAY
vs
FREE-AIR TEMPERATURE
125
150
45
TA = 25°C,
Load = 15 pF,
All Channels
40
C 3.3-V tpLH, tpHL
35
30
Propagation Delay - ns
ICC - Supply Current - mA/RMS
16
50
Figure 7.
35
5-V ICC1,ICC2
25
20
15
3.3-V ICC1,ICC2
C 5-V tpLH, tpHL
30
25
M 3.3-V tpLH, tpHL
20
15
M 5-V tpLH, tpHL
10
10
5
5
0
0
25
Signaling Rate - Mbps
45
40
3.3-V ICC1
10
3.3-V ICC1
25
5-V ICC1
25
0
0
TA = 25°C,
Load = 15 pF,
All Channels
TA = 25°C,
Load = 15 pF,
All Channels
0
25
50
75
100
125
150
Signaling Rate - Mbps
80
65
35
20
50
TA - Free-Air Temperature - °C
Figure 9.
Figure 10.
Submit Documentation Feedback
-40
-25
-10
5
95
110
125
Copyright © 2007–2008, Texas Instruments Incorporated
Product Folder Link(s): ISO7240CF, ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M
ISO7240CF, ISO7240C,, ISO7240M
ISO7241C, ISO7241M
ISO7242C, ISO7242M
www.ti.com........................................................................................................................................ SLLS868I – SEPTEMBER 2007 – REVISED DECEMBER 2008
TYPICAL CHARACTERISTIC CURVES (continued)
INPUT VOLTAGE THRESHOLD
vs
FREE-AIR TEMPERATURE
VCC1 FAILSAFE THRESHOLD
vs
FREE-AIR TEMPERATURE
1.4
3
5 V Vth+
1.3
2.9
VCC1 - Failsafe Threshold - V
Input Voltage Threshold - V
1.35
3.3 V Vth+
1.25
1.2
Air Flow at 7 cf/m,
Low_K Board
1.15
5 V Vth1.1
2.8
VCC at 5 V or 3.3 V,
Load = 15 pF,
Air Flow at 7/cf/m,
Low-K Board
2.7
Vfs+
2.6
2.5
Vfs-
2.4
2.3
2.2
1.05
1
-40
3.3 V Vth-25
-10
2.1
5
20
35
50
65
80
TA - Free-Air Temperature - °C
95
110
2
-40
125
-10
5
20
35
50
65
80
95
110
125
TA - Free-Air Temperature - °C
Figure 11.
Figure 12.
HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
50
50
VCC = 5 V
Load = 15 pF,
TA = 25°C
Load = 15 pF,
TA = 25°C
45
40
IO - Output Current - mA
40
IO - Output Current - mA
-25
VCC = 3.3 V
30
20
35
VCC = 3.3 V
30
25
VCC = 5 V
20
15
10
10
5
0
0
0
2
4
VO - Output Voltage - V
Figure 13.
Copyright © 2007–2008, Texas Instruments Incorporated
6
0
1
2
3
VO - Output Voltage - V
4
5
Figure 14.
Submit Documentation Feedback
Product Folder Link(s): ISO7240CF, ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M
17
ISO7240CF, ISO7240C,, ISO7240M
ISO7241C, ISO7241M
ISO7242C, ISO7242M
SLLS868I – SEPTEMBER 2007 – REVISED DECEMBER 2008........................................................................................................................................ www.ti.com
APPLICATION INFORMATION
2 mm
max. from
VCC1
VCC1
2 mm
max. from
VCC2
VCC2
0.1 mF
0.1 mF
1
16
2
15
IN A
3
14
OUT A
IN B
4
13
OUT B
IN C
5
12
OUT C
IN D
6
11
OUT D
7
10
8
9
GND1
GND2
NC
EN
GND2
GND1
ISO7240x
Figure 15. Typical ISO7240x Application Circuit
2 mm
max. from
VCC1
VCC1
2 mm
max. from
VCC2
VCC2
0.1 mF
0.1 mF
1
16
2
15
IN A
3
14
OUT A
IN B
4
13
OUT B
IN C
5
12
OUT C
6
11
GND1
IN D
GND2
DISABLE
OUT D
CTRL
7
10
8
9
GND2
GND1
ISO7240CF
Figure 16. Typical ISO7240CF Failsafe-Low Application Circuit
18
Submit Documentation Feedback
Copyright © 2007–2008, Texas Instruments Incorporated
Product Folder Link(s): ISO7240CF, ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M
ISO7240CF, ISO7240C,, ISO7240M
ISO7241C, ISO7241M
ISO7242C, ISO7242M
www.ti.com........................................................................................................................................ SLLS868I – SEPTEMBER 2007 – REVISED DECEMBER 2008
LIFE EXPECTANCY vs. WORKING VOLTAGE
WORKING LIFE -- YEARS
100
VIORM at 560-V
28 Years
10
0
120
250
500
750
880
1000
WORKING VOLTAGE (VIORM) -- V
Figure 17. Time-Dependant Dielectric Breakdown Testing Results
Copyright © 2007–2008, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Link(s): ISO7240CF, ISO7240C ISO7240M ISO7241C ISO7241M ISO7242C ISO7242M
19
PACKAGE OPTION ADDENDUM
www.ti.com
5-Dec-2008
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
ISO7240CDW
ACTIVE
SOIC
DW
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
ISO7240CDWG4
ACTIVE
SOIC
DW
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
ISO7240CDWR
ACTIVE
SOIC
DW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
ISO7240CDWRG4
ACTIVE
SOIC
DW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
ISO7240CFDW
ACTIVE
SOIC
DW
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
ISO7240CFDWG4
ACTIVE
SOIC
DW
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
ISO7240CFDWR
ACTIVE
SOIC
DW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
ISO7240CFDWRG4
ACTIVE
SOIC
DW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
ISO7240MDW
ACTIVE
SOIC
DW
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
ISO7240MDWG4
ACTIVE
SOIC
DW
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
ISO7240MDWR
ACTIVE
SOIC
DW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
ISO7240MDWRG4
ACTIVE
SOIC
DW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
ISO7241CDW
ACTIVE
SOIC
DW
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
ISO7241CDWG4
ACTIVE
SOIC
DW
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
ISO7241CDWR
ACTIVE
SOIC
DW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
ISO7241CDWRG4
ACTIVE
SOIC
DW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
ISO7241MDW
ACTIVE
SOIC
DW
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
ISO7241MDWG4
ACTIVE
SOIC
DW
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
ISO7241MDWR
ACTIVE
SOIC
DW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
ISO7241MDWRG4
ACTIVE
SOIC
DW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
ISO7242CDW
ACTIVE
SOIC
DW
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
ISO7242CDWG4
ACTIVE
SOIC
DW
16
40
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
ISO7242CDWR
ACTIVE
SOIC
DW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
ISO7242CDWRG4
ACTIVE
SOIC
DW
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
ISO7242MDW
ACTIVE
SOIC
DW
16
CU NIPDAU
Level-3-260C-168 HR
40
Addendum-Page 1
Green (RoHS &
no Sb/Br)
Lead/Ball Finish
MSL Peak Temp (3)
PACKAGE OPTION ADDENDUM
www.ti.com
5-Dec-2008
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
ISO7242MDWG4
ACTIVE
SOIC
DW
16
ISO7242MDWR
ACTIVE
SOIC
DW
ISO7242MDWRG4
ACTIVE
SOIC
DW
40
Lead/Ball Finish
MSL Peak Temp (3)
Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
16
2000 Green (RoHS &
no Sb/Br)
CU NIPDAU
Level-3-260C-168 HR
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
5-Dec-2008
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
Diameter Width
(mm) W1 (mm)
A0 (mm)
B0 (mm)
K0 (mm)
P1
(mm)
W
Pin1
(mm) Quadrant
10.75
10.7
2.7
12.0
16.0
Q1
ISO7240CDWR
SOIC
DW
16
2000
330.0
16.4
ISO7240CFDWR
SOIC
DW
16
2000
330.0
16.4
10.9
10.78
3.0
12.0
16.0
Q1
ISO7240MDWR
SOIC
DW
16
2000
330.0
16.4
10.75
10.7
2.7
12.0
16.0
Q1
ISO7241CDWR
SOIC
DW
16
2000
330.0
16.4
10.75
10.7
2.7
12.0
16.0
Q1
ISO7241MDWR
SOIC
DW
16
2000
330.0
16.4
10.75
10.7
2.7
12.0
16.0
Q1
ISO7242CDWR
SOIC
DW
16
2000
330.0
16.4
10.75
10.7
2.7
12.0
16.0
Q1
ISO7242MDWR
SOIC
DW
16
2000
330.0
16.4
10.75
10.7
2.7
12.0
16.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
5-Dec-2008
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
ISO7240CDWR
SOIC
DW
16
2000
358.0
335.0
35.0
ISO7240CFDWR
SOIC
DW
16
2000
358.0
335.0
35.0
ISO7240MDWR
SOIC
DW
16
2000
358.0
335.0
35.0
ISO7241CDWR
SOIC
DW
16
2000
358.0
335.0
35.0
ISO7241MDWR
SOIC
DW
16
2000
358.0
335.0
35.0
ISO7242CDWR
SOIC
DW
16
2000
358.0
335.0
35.0
ISO7242MDWR
SOIC
DW
16
2000
358.0
335.0
35.0
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Amplifiers
Data Converters
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
RF/IF and ZigBee® Solutions
amplifier.ti.com
dataconverter.ti.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprf
Applications
Audio
Automotive
Broadband
Digital Control
Medical
Military
Optical Networking
Security
Telephony
Video & Imaging
Wireless
www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated
Similar pages