LINER LT1212 14mhz, 7v/us, single supply dual and quad precision op amp Datasheet

LT1211/LT1212
14MHz, 7V/µs, Single Supply
Dual and Quad
Precision Op Amps
U
DESCRIPTIO
■
■
■
■
■
■
■
■
■
■
■
■
Slew Rate: 7V/µs Typ
Gain-Bandwidth Product: 14MHz Typ
Fast Settling to 0.01%
2V Step to 200µV: 900ns Typ
10V Step to 1mV: 2.2µs Typ
Excellent DC Precision in All Packages
Input Offset Voltage: 275µV Max
Input Offset Voltage Drift: 6µV/°C Max
Input Offset Current: 30nA Max
Input Bias Current: 125nA Max
Open-Loop Gain: 1200V/mV Min
Single Supply Operation
Input Voltage Range Includes Ground
Output Swings to Ground While Sinking Current
Low Input Noise Voltage: 12nV/√Hz Typ
Low Input Noise Current: 0.2pA/√Hz Typ
Specified on 3.3V, 5V and ±15V
Large Output Drive Current: 20mA Min
Low Supply Current per Amplifier: 1.8mA Max
Dual in 8-Pin DIP and SO-8
Quad in 14-Pin DIP and Narrow SO-16
Note: For applications requiring higher slew rate, see the LT1213/LT1214 and
LT1215/LT1216 data sheets.
, LTC and LT are registered trademarks of Linear Technology Corporation.
The LT®1211 is a dual, single supply precision op amp with
a 14MHz gain-bandwidth product and a 7V/µs slew rate.
The LT1212 is a quad version of the same amplifier. The
DC precision of the LT1211/LT1212 eliminates trims in
most systems while providing high frequency performance not usually found in single supply amplifiers.
The LT1211/LT1212 will operate on any supply greater
than 2.5V and less than 36V total. These amplifiers are
specified on single 3.3V, single 5V and ±15V supplies, and
only require 1.3mA of quiescent supply current per amplifier. The inputs can be driven beyond the supplies without
damage or phase reversal of the output. The minimum
output drive is 20mA, ideal for driving low impedance
loads.
UO
FEATURES
APPLICATI
■
■
■
■
■
■
S
2.5V Full-Scale 12-Bit Systems: VOS ≤ 0.45LSB
10V Full-Scale 16-Bit Systems: VOS ≤ 1.8LSB
Active Filters
Photo Diode Amplifiers
DAC Current-to-Voltage Amplifiers
Battery-Powered Systems
UO
TYPICAL APPLICATI
Input Bias Current Cancellation
RG
Input Current vs Input Voltage
RF
100
90
V+
1/2
LT1211
+
VIN
VOUT
SIGNAL AMP
1M
+
22pF
1/2
LT1211
CANCELLATION
AMP
–
70
RIN = 300M
60
50
40
WITH CANCELLATION
30
20
10
0
0.01
1211/12 TA01
1M
INPUT CURRENT (nA)
80
–
VS = 5V, VOUT IN
LINEAR REGION
WITHOUT CANCELLATION
RIN = 2.4G
0.1
1
INPUT VOLTAGE (V)
10
1211/12 TA02
1
LT1211/LT1212
W W
W
AXI U
U
ABSOLUTE
RATI GS
Total Supply Voltage (V + to V –) ............................. 36V
Input Current ..................................................... ±15mA
Output Short-Circuit Duration (Note 1) ........ Continuous
Operating Temperature Range
LT1211C/LT1212C ............................ – 40°C to 85°C
LT1211I/LT1212I ............................... – 40°C to 85°C
LT1211M ......................................... – 55°C to 125°C
Specified Temperature Range
LT1211C/LT1212C/
LT1211I/LT1212I (Note 5) ................... –40°C to 85°C
LT1211M ......................................... – 55°C to 125°C
Storage Temperature Range ................ – 65°C to 150°C
Junction Temperature (Note 2)
Plastic Package (N8, S8, N, S) ........................ 150°C
Ceramic Package (J8)...................................... 175°C
Lead Temperature (Soldering, 10 sec)................. 300°C
U
W
U
PACKAGE/ORDER I FOR ATIO
ORDER PART
NUMBER
TOP VIEW
OUT A 1
8 V+
–IN A 2
7 OUT B
A
+IN A 3
LT1211CN8
LT1211ACN8
LT1211IN8
LT1211MJ8
LT1211AMJ8
6 –IN B
B
V– 4
J8 PACKAGE
8-LEAD CERDIP
5 +IN B
N8 PACKAGE
8-LEAD PDIP
+IN A 3
13 –IN D
+IN A 3
A
D
V+ 4
+IN B 5
6 –IN B
B
5 +IN B
1211
1211I
TOP VIEW
16 OUT D
OUT A 1
–IN A 2
+IN A 3
V+
11 V –
A
D
14 +IN D
13
4
+IN B 5
15 –IN D
B
C
V–
–IN B 6
11 –IN C
9
–IN C
OUT B 7
10 OUT C
OUT B 7
8
OUT C
NC 8
C
N PACKAGE
14-LEAD PDIP
ORDER PART
NUMBER
LT1212CS
LT1212IS
12 +IN C
–IN B 6
B
S8 PART MARKING
S8 PACKAGE
8-LEAD PLASTIC SO
LT1212CN
LT1212IN
12 +IN D
10 +IN C
LT1211CS8
LT1211IS8
7 OUT B
A
V– 4
ORDER PART
NUMBER
14 OUT D
8
V+
TJMAX = 150°C, θJA = 150°C/W
TOP VIEW
–IN A 2
OUT A 1
–IN A 2
TJMAX = 175°C, θJA = 100°C/W (J)
TJMAX = 150°C, θJA = 100°C/W (N)
OUT A 1
ORDER PART
NUMBER
TOP VIEW
9
NC
S PACKAGE
16-LEAD PLASTIC SO
TJMAX = 150°C, θJA = 100°C/W
TJMAX = 150°C, θJA = 70°C/W
U
AVAILABLE OPTIO S
NUMBER OF
OP AMPS
Two (Dual)
2
TA RANGE
– 40°C to 85°C
MAX VOS (25°C)
150µV
275µV
MAX TC VOS
(∆VOS /∆T)
1.5µV/°C
3µV/°C
275µV
6µV/°C
CERAMIC
(J)
PACKAGE
PLASTIC DIP
(N)
LT1211ACN8
LT1211CN8,
LT1211IN8
SURFACE MOUNT
(S)
LT1211CS8,
LT1211IS8
LT1211/LT1212
U
AVAILABLE OPTIO S
NUMBER OF
OP AMPS
Two (Dual)
TA RANGE
– 55°C to 125°C
Four (Quad)
– 40°C to 85°C
MAX VOS (25°C)
150µV
275µV
275µV
MAX TC VOS
(∆VOS /∆T)
1.5µV/°C
3µV/°C
6µV/°C
CERAMIC
(J)
LT1211AMJ8
LT1211MJ8
PACKAGE
PLASTIC DIP
(N)
SURFACE MOUNT
(S)
LT1212CN,
LT1212IN
LT1212CS,
LT1212IS
5V ELECTRICAL CHARACTERISTICS
VS = 5V, VCM = 0.5V, VOUT = 0.5V, TA = 25°C, unless otherwise noted.
SYMBOL
VOS
∆VOS
∆Time
IOS
IB
en
PARAMETER
Input Offset Voltage
Long-Term Input Offset
Voltage Stability
Input Offset Current
Input Bias Current
Input Noise Voltage
Input Noise Voltage Density
in
Input Noise Current Density
Input Resistance (Note 3)
Input Capacitance
Input Voltage Range
CMRR
PSRR
AVOL
IO
SR
GBW
IS
tr, tf
OS
tPD
tS
THD
Common-Mode Rejection Ratio
Power Supply Rejection Ratio
Large-Signal Voltage Gain
Maximum Output Voltage Swing
(Note 4)
Maximum Output Current
Slew Rate
Gain-Bandwidth Product
Supply Current per Amplifier
Minimum Supply Voltage
Full Power Bandwidth
Rise Time, Fall Time
Overshoot
Propagation Delay
Settling Time
Open-Loop Output Resistance
Total Harmonic Distortion
CONDITIONS
0.1Hz to 10Hz
fO = 10Hz
fO = 1000Hz
fO = 10Hz
fO = 1000Hz
Differential Mode
Common Mode
f = 1MHz
VCM = 0V to 3.5V
VS = 2.5V to 12.5V
VO = 0.05V to 3.7V, RL = 500Ω
Output High, No Load
Output High, ISOURCE = 1mA
Output High, ISOURCE = 15mA
Output Low, No Load
Output Low, ISINK = 1mA
Output Low, ISINK = 15mA
(Note 9)
AV = – 2
f = 100kHz
LT1211AC
LT1211AM
MIN
TYP
MAX
75
150
0.5
LT1211C/LT1211M
LT1212C
MIN
TYP
MAX
100
275
0.6
5
50
250
12.5
12.0
0.9
0.2
40
500
10
3.8
– 0.3
105
115
560
4.40
4.30
4.00
0.003
0.047
0.362
±50
4
13
1.3
2.2
300
45
25
36
900
75
0.001
5
60
250
12.5
12.0
0.9
0.2
40
500
10
3.8
– 0.3
102
110
560
4.40
4.30
4.00
0.003
0.047
0.362
±50
4
13
1.3
2.2
300
45
25
36
900
75
0.001
10
3.5
0
90
90
250
4.30
4.20
3.85
±20
0.9
Single Supply
AV = 1, VO = 2.5VP-P
AV = 1, 10% to 90%, VO = 100mV
AV = 1, VO = 100mV
AV = 1, VO = 100mV
0.01%, AV = 1, ∆VO = 2V
IO = 0mA, f = 5MHz
AV = 1, VO = 1VRMS, 20Hz to 20kHz
20
100
10
3.5
0
86
87
250
4.30
4.20
3.85
0.006
0.065
0.500
±20
1.8
2.5
0.9
30
125
0.006
0.065
0.500
1.8
2.5
UNITS
µV
µV/Mo
nA
nA
nVP-P
nV/√Hz
nV/√Hz
pA/√Hz
pA/√Hz
MΩ
MΩ
pF
V
V
dB
dB
V/mV
V
V
V
V
V
V
mA
V/µs
MHz
mA
V
kHz
ns
%
ns
ns
Ω
%
3
LT1211/LT1212
5V ELECTRICAL CHARACTERISTICS
VS = 5V, VCM = 0.5V, VOUT = 0.5V, 0°C ≤ TA ≤ 70°C, unless otherwise noted.
SYMBOL
VOS
∆VOS
∆T
IOS
IB
CMRR
PSRR
AVOL
IS
PARAMETER
Input Offset Voltage
Input Offset Voltage Drift
(Note 3)
Input Offset Current
Input Bias Current
Input Voltage Range
CONDITIONS
Common-Mode Rejection Ratio
Power Supply Rejection Ratio
Large-Signal Voltage Gain
Maximum Output Voltage Swing
(Note 4)
VCM = 0.1V to 3.4V
VS = 2.5V to 12.5V
VO = 0.05V to 3.7V, RL = 500Ω
Output High, No Load
Output High, ISOURCE = 1mA
Output High, ISOURCE = 10mA
Output Low, No Load
Output Low, ISINK = 1mA
Output Low, ISINK = 10mA
MIN
8-Pin DIP Package
14-Pin DIP, SOIC Package
Supply Current per Amplifier
3.4
0.1
89
89
150
4.20
4.10
3.90
0.8
LT1211AC
TYP
MAX
100
175
0.7
1.5
5
60
3.5
– 0.1
105
114
430
4.33
4.23
4.03
0.004
0.052
0.290
1.4
25
110
0.007
0.070
0.400
2.1
LT1211C/LT1212C
MIN
TYP
MAX
150
375
1
3
2
6
10
35
70
135
3.4
3.5
0.1
– 0.1
85
102
86
110
150
430
4.20
4.33
4.10
4.23
3.90
4.03
0.004 0.007
0.052 0.070
0.290 0.400
0.8
1.4
2.1
UNITS
µV
µV/°C
µV/°C
nA
nA
V
V
dB
dB
V/mV
V
V
V
V
V
V
mA
LT1211C/LT1212C
LT1211I/LT1212I
MIN
TYP
MAX
175
500
1
3
2
6
20
50
80
145
3.1
3.2
0.2
0
84
101
85
109
100
390
4.15
4.25
4.00
4.16
3.80
3.96
0.005 0.008
0.053 0.075
0.300 0.420
0.7
1.5
2.2
UNITS
µV
µV/°C
µV/°C
nA
nA
V
V
dB
dB
V/mV
V
V
V
V
V
V
mA
VS = 5V, VCM = 0.5V, VOUT = 0.5V, – 40°C ≤ TA ≤ 85°C, unless otherwise noted. (Note 5)
SYMBOL
VOS
∆VOS
∆T
IOS
IB
CMRR
PSRR
AVOL
IS
4
PARAMETER
Input Offset Voltage
Input Offset Voltage Drift
(Note 3)
Input Offset Current
Input Bias Current
Input Voltage Range
CONDITIONS
Common-Mode Rejection Ratio
Power Supply Rejection Ratio
Large-Signal Voltage Gain
Maximum Output Voltage Swing
(Note 4)
VCM = 0.2V to 3.1V
VS = 2.5V to 12.5V
VO = 0.05V to 3.7V, RL = 500Ω
Output High, No Load
Output High, ISOURCE = 1mA
Output High, ISOURCE = 10mA
Output Low, No Load
Output Low, ISINK = 1mA
Output Low, ISINK = 10mA
Supply Current per Amplifier
8-Pin DIP Package
14-Pin DIP, SOIC Package
LT1211AC
MIN
TYP
MAX
120
200
0.7
1.5
3.1
0.2
88
88
100
4.15
4.00
3.80
0.7
10
70
3.2
0
104
113
390
4.25
4.16
3.96
0.005
0.053
0.300
1.5
30
120
0.008
0.075
0.420
2.2
LT1211/LT1212
5V ELECTRICAL CHARACTERISTICS
VS = 5V, VCM = 0.5V, VOUT = 0.5V, – 55°C ≤ TA ≤ 125°C, unless otherwise noted.
SYMBOL
VOS
∆VOS
∆T
IOS
IB
CMRR
PSRR
AVOL
IS
PARAMETER
Input Offset Voltage
Input Offset Voltage Drift
(Note 3)
Input Offset Current
Input Bias Current
Input Voltage Range
CONDITIONS
Common-Mode Rejection Ratio
Power Supply Rejection Ratio
Large-Signal Voltage Gain
Maximum Output Voltage Swing
(Note 4)
VCM = 0.4V to 3.1V
VS = 2.5V to 12.5V
VO = 0.05V to 3.7V, RL = 500Ω
Output High, No Load
Output High, ISOURCE = 1mA
Output High, ISOURCE = 10mA
Output Low, No Load
Output Low, ISINK = 1mA
Output Low, ISINK = 10mA
Supply Current per Amplifier
MIN
3.1
0.4
87
87
100
4.10
3.95
3.70
0.5
LT1211AM
TYP
MAX
140
250
0.7
1.5
15
75
3.2
0.2
104
113
250
4.20
4.10
3.90
0.007
0.060
0.350
1.7
MIN
40
130
0.010
0.085
0.500
2.5
LT1211C/LT1211M
LT1212C
MIN
TYP
MAX
150
550
5
30
50
120
13.5
13.8
–15.0 – 15.3
86
102
87
110
1200 5000
13.8
14.0
–14.4 –14.6
±20
±50
5
7
8
14
0.9
1.8
2.5
128
140
±1.2
±2.0
60
2.2
UNITS
µV
nA
nA
V
V
dB
dB
V/mV
V
V
mA
V/µs
MHz
mA
dB
V
kHz
µs
0.5
25
85
3.2
0.2
101
109
250
4.20
4.10
3.90
0.007
0.060
0.350
1.7
75
160
UNITS
µV
µV/°C
nA
nA
V
V
dB
dB
V/mV
V
V
V
mV
mV
mV
mA
3.1
0.4
81
84
100
4.10
3.95
3.70
0.010
0.085
0.500
2.5
LT1211M
TYP
MAX
200
500
1
3
+
–15V ELECTRICAL CHARACTERISTICS
VS = ±15V, VCM = 0V, VOUT = 0V, TA = 25°C, unless otherwise noted.
SYMBOL
VOS
IOS
IB
PARAMETER
Input Offset Voltage
Input Offset Current
Input Bias Current
Input Voltage Range
CONDITIONS
CMRR
PSRR
AVOL
Common-Mode Rejection Ratio
Power Supply Rejection Ratio
Large-Signal Voltage Gain
Maximum Output Voltage Swing
IO
SR
GBW
IS
Maximum Output Current
Slew Rate
Gain-Bandwidth Product
Supply Current per Amplifier
Channel Separation
Minimum Supply Voltage
Full Power Bandwidth
Settling Time
VCM = –15V to 13.5V
VS = ±2V to ±18V
VO = 0V to ±10V, RL = 2k
Output High, ISOURCE = 15mA
Output Low, ISINK = 15mA
(Note 9)
AV = – 2 (Note 6)
f = 100kHz
VO = ±10V, RL = 2k
Equal Split Supplies
AV = 1, VO = 20VP-P
0.01%, AV = 1, ∆VO = 10V
LT1211AC
LT1211AM
MIN
TYP
125
5
45
13.5
13.8
–15.0 – 15.3
90
105
90
113
1200 5000
13.8
14.0
–14.4 –14.6
±20
±50
5
7
8
14
0.9
1.8
128
140
±1.2
60
2.2
MAX
400
20
95
2.5
±2.0
5
LT1211/LT1212
+
–15V ELECTRICAL CHARACTERISTICS
VS = ±15V, VCM = 0V, VOUT = 0V, 0°C ≤ TA ≤ 70°C, unless otherwise noted.
SYMBOL
VOS
∆VOS
∆T
IOS
IB
PARAMETER
Input Offset Voltage
Input Offset Voltage Drift
(Note 3)
Input Offset Current
Input Bias Current
Input Voltage Range
CONDITIONS
CMRR
PSRR
AVOL
Common-Mode Rejection Ratio
Power Supply Rejection Ratio
Large-Signal Voltage Gain
Maximum Output Voltage Swing
VCM = –14.9V to 13.4V
VS = ±2V to ±18V
VO = 0V to ±10V, RL = 2k
Output High, ISOURCE = 10mA
Output Low, ISINK = 10mA
IS
Supply Current per Amplifier
MIN
8-Pin DIP Package
14-Pin DIP, SOIC Package
13.4
–14.9
89
89
1000
13.8
– 14.5
0.8
LT1211AC
TYP
MAX
150
425
0.7
1.5
10
55
13.5
–15.1
104
112
3500
14.0
– 14.7
2.1
20
100
2.9
LT1211C/LT1212C
MIN
TYP
MAX
200
650
1
3
2
6
10
35
60
125
13.4
13.5
–14.9 –15.1
85
101
86
108
1000 3500
13.8
14.0
– 14.5 – 14.7
0.8
2.1
2.9
UNITS
µV
µV/°C
µV/°C
nA
nA
V
V
dB
dB
V/mV
V
V
mA
LT1211C/LT1212C
LT1211I/LT1212I
MIN
TYP
MAX
250
700
1
3
2
6
10
40
60
130
13.1
13.2
–14.8 –15.0
84
100
85
107
1000 3000
13.7
13.9
– 14.5 – 14.7
0.7
2.2
3.0
UNITS
µV
µV/°C
µV/°C
nA
nA
V
V
dB
dB
V/mV
V
V
mA
LT1211M
TYP
MAX
300
800
1
3
UNITS
µV
µV/°C
VS = ±15V, VCM = 0V, VOUT = 0V, – 40°C ≤ TA ≤ 85°C, unless otherwise noted. (Note 5)
SYMBOL
VOS
∆VOS
∆T
IOS
IB
PARAMETER
Input Offset Voltage
Input Offset Voltage Drift
(Note 3)
Input Offset Current
Input Bias Current
Input Voltage Range
CONDITIONS
CMRR
PSRR
AVOL
Common-Mode Rejection Ratio
Power Supply Rejection Ratio
Large-Signal Voltage Gain
Maximum Output Voltage Swing
VCM = – 14.8V to 13.1V
VS = ±2V to ±18V
VO = 0V to ±10V, RL = 2k
Output High, ISOURCE = 10mA
Output Low, ISINK = 10mA
IS
Supply Current per Amplifier
8-Pin DIP Package
14-Pin DIP, SOIC Package
LT1211AC
MIN
TYP
MAX
175
450
0.7
1.5
13.1
–14.8
88
88
1000
13.7
– 14.5
0.7
10
55
13.2
–15.0
103
111
3000
13.9
– 14.7
2.2
25
100
3.0
VS = ±15V, VCM = 0V, VOUT = 0V, – 55°C ≤ TA ≤ 125°C, unless otherwise noted.
SYMBOL
VOS
∆VOS
∆T
IOS
IB
PARAMETER
Input Offset Voltage
Input Offset Voltage Drift
(Note 3)
Input Offset Current
Input Bias Current
Input Voltage Range
CONDITIONS
CMRR
PSRR
AVOL
Common-Mode Rejection Ratio
Power Supply Rejection Ratio
Large-Signal Voltage Gain
Maximum Output Voltage Swing
VCM = – 14.6V to 13.1V
VS = ±2V to ±15V
VO = 0V to ±10V, RL = 2k
Output High, ISOURCE = 10mA
Output Low, ISINK = 10mA
IS
Supply Current per Amplifier
6
MIN
13.1
–14.6
87
87
800
13.6
–14.3
0.5
LT1211AM
TYP
MAX
200
500
0.7
1.5
10
55
13.2
–14.8
103
111
1500
13.8
–14.5
2.3
MIN
40
110
3.4
13.1
–14.6
81
84
800
13.6
–14.3
0.5
10
60
13.2
–14.8
100
107
1500
13.8
–14.5
2.3
60
140
3.4
nA
nA
V
V
dB
dB
V/mV
V
V
mA
LT1211/LT1212
3.3V ELECTRICAL CHARACTERISTICS
VS = 3.3V, VCM = 0.5V, VOUT = 0.5V, TA = 25°C, unless otherwise noted. (Note 7)
SYMBOL PARAMETER
VOS
Input Offset Voltage
Input Voltage Range (Note 8)
IO
CONDITIONS
Maximum Output Voltage Swing Output High, No Load
Output High, ISOURCE = 1mA
Output High, ISOURCE = 15mA
Output Low, No Load
Output Low, ISINK = 1mA
Output Low, ISINK = 15mA
Maximum Output Current
MIN
1.8
0
2.60
2.50
2.15
±20
LT1211AC
LT1211AM
TYP
MAX
75
150
2.1
– 0.3
2.70
2.60
2.30
0.003 0.006
0.047 0.065
0.362 0.500
±50
LT1211C/LT1211M
LT1212C
MIN
TYP
MAX
100
275
1.8
2.1
0
– 0.3
2.60
2.70
2.50
2.60
2.15
2.30
0.003 0.006
0.047 0.065
0.362 0.500
±20
±50
UNITS
µV
V
V
V
V
V
V
V
V
mA
LT1211C/LT1212C
MIN
TYP
MAX
150
375
1.7
1.8
0.1
– 0.1
2.50
2.63
2.40
2.53
2.20
2.33
0.004 0.007
0.052 0.070
0.290 0.400
UNITS
µV
V
V
V
V
V
V
V
V
LT1211C/LT1212C
LT1211I/LT1212I
MIN
TYP
MAX
175
500
1.4
1.5
0.2
0
2.45
2.55
2.30
2.46
2.10
2.26
0.005 0.008
0.053 0.075
0.300 0.420
UNITS
µV
V
V
V
V
V
V
V
V
LT1211M
TYP
200
1.5
0.2
2.50
2.40
2.20
0.007
0.060
0.350
UNITS
µV
V
V
V
V
V
V
V
V
VS = 3.3V, VCM = 0.5V, VOUT = 0.5V, 0°C ≤ TA ≤ 70°C, unless otherwise noted. (Note 7)
SYMBOL PARAMETER
VOS
Input Offset Voltage
Input Voltage Range (Note 8)
CONDITIONS
Maximum Output Voltage Swing Output High, No Load
Output High, ISOURCE = 1mA
Output High, ISOURCE = 10mA
Output Low, No Load
Output Low, ISINK = 1mA
Output Low, ISINK = 10mA
MIN
1.7
0.1
2.50
2.40
2.20
LT1211AC
TYP
100
1.4
– 0.1
2.63
2.53
2.33
0.004
0.052
0.290
MAX
175
0.007
0.070
0.400
VS = 3.3V, VCM = 0.5V, VOUT = 0.5V, – 40°C ≤ TA ≤ 85°C, unless otherwise noted. (Notes 5, 7)
SYMBOL PARAMETER
VOS
Input Offset Voltage
Input Voltage Range (Note 8)
CONDITIONS
Maximum Output Voltage Swing Output High, No Load
Output High, ISOURCE = 1mA
Output High, ISOURCE = 10mA
Output Low, No Load
Output Low, ISINK = 1mA
Output Low, ISINK = 10mA
MIN
1.4
0.2
2.45
2.30
2.10
LT1211AC
TYP
120
1.5
0
2.55
2.46
2.26
0.005
0.053
0.300
MAX
200
0.008
0.075
0.420
VS = 3.3V, VCM = 0.5V, VOUT = 0.5V, – 55°C ≤ TA ≤ 125°C, unless otherwise noted. (Note 7)
SYMBOL PARAMETER
VOS
Input Offset Voltage
Input Voltage Range (Note 8)
CONDITIONS
Maximum Output Voltage Swing Output High, No Load
Output High, ISOURCE = 1mA
Output High, ISOURCE = 10mA
Output Low, No Load
Output Low, ISINK = 1mA
Output Low, ISINK = 10mA
MIN
1.4
0.4
2.40
2.25
2.00
LT1211AM
TYP
MAX
130
250
1.5
0.2
2.50
2.40
2.20
0.007 0.010
0.060 0.085
0.350 0.500
MIN
1.4
0.4
2.40
2.25
2.00
MAX
500
0.010
0.085
0.500
7
LT1211/LT1212
ELECTRICAL CHARACTERISTICS
Note 1: A heat sink may be required to keep the junction temperature
below absolute maximum when the output is shorted indefinitely.
Note 2: TJ is calculated from the ambient temperature TA and power
dissipation PD according to the following formulas:
LT1211MJ8, LT1211AMJ8: TJ = TA + (PD × 100°C/W)
LT1211CN8, LT1211ACN8: TJ = TA + (PD × 100°C/W)
LT1211CS8:
TJ = TA + (PD × 150°C/W)
LT1212CN:
TJ = TA + (PD × 70°C/W)
LT1212CS:
TJ = TA + (PD × 100°C/W)
Note 3: This parameter is not 100% tested.
Note 4: Guaranteed by correlation to 3.3V and ±15V tests.
Note 5: The LT1211C/LT1212C are guaranteed to meet specified
performance from 0°C to 70°C and are designed, characterized and
expected to meet these extended temperature limits, but are not tested at
– 40°C and 85°C. The LT1211I/LT1212I are guaranteed to meet the
extended temperature limits.
Note 6: Slew rate is measured between ±8.5V on an output swing of ±10V
on ±15V supplies.
Note 7: Most LT1211/LT1212 electrical characteristics change very little
with supply voltage. See the 5V tables for characteristics not listed in the
3.3V table.
Note 8: Guaranteed by correlation to 5V and ±15V tests.
Note 9: Guaranteed by correlation to 3.3V tests.
U W
TYPICAL PERFOR A CE CHARACTERISTICS
Distribution of Offset Voltage Drift
with Temperature
Distribution of Input Offset Voltage
70
Distribution of Input Offset Voltage
70
50
VS = 5V
60
LT1211 J8 PACKAGE
LT1211 N8 PACKAGE
VS = 5V
VS = ±15V
LT1211 J8 PACKAGE
LT1211 N8 PACKAGE
60
LT1211 J8 PACKAGE
LT1211 N8 PACKAGE
40
30
20
PERCENT OF UNITS (%)
PERCENT OF UNITS (%)
30
20
10
10
0
–350 –250 –150 –50 50
150 250
INPUT OFFSET VOLTAGE (µV)
–1
–2
1
–3
3
0
2
OFFSET VOLTAGE DRIFT WITH TEMPERATURE (µV/°C)
1211/12 G01
Distribution of Input Offset Voltage
70
VS = ±15V
VS = 5V
LT1211 S8 PACKAGE
LT1212 N PACKAGE
LT1212 S PACKAGE
40
50
40
30
20
700
1211/12 G03
50
PERCENT OF UNITS (%)
PERCENT OF UNITS (%)
20
Distribution of Offset Voltage Drift
with Temperature
70
VS = 5V
30
1211/12 G02
Distribution of Input Offset Voltage
60
40
0
–700 –500 –300 –100 100 300 500
INPUT OFFSET VOLTAGE (µV)
0
350
50
10
60
LT1211 S8 PACKAGE
LT1212 N PACKAGE
LT1212 S PACKAGE
PERCENT OF UNITS (%)
PERCENT OF UNITS (%)
40
50
30
20
LT1211 S8 PACKAGE
LT1212 N PACKAGE
LT1212 S PACKAGE
50
40
30
20
10
10
10
0
–350 –250 –150 –50 50
150 250
INPUT OFFSET VOLTAGE (µV)
0
350
1211/12 G04
8
–2
–4
2
–6
6
0
4
OFFSET VOLTAGE DRIFT WITH TEMPERATURE (µV/°C)
1211/12 G05
0
–700 –500 –300 –100 100 300 500
INPUT OFFSET VOLTAGE (µV)
700
1211/12 G06
LT1211/LT1212
U W
TYPICAL PERFOR A CE CHARACTERISTICS
Voltage Gain, Phase vs
Frequency
CL = 20pF
RL = 2k
120
CL = 20pF
RL = 2k
PHASE
40
VS = ±15V
20
VOLTAGE GAIN (dB)
60
VS = 5V
20
VS = ±15V
20
GAIN
0
–20
0
VS = ±15V
0
–20
10
100
–40
1k
10k 100k 1M 10M 100M
FREQUENCY (Hz)
–20
100k
12
60
10
50
TA = 25°C, 125°C
40
TA = –55°C
30
20
10
3
5 7 10
20
TOTAL SUPPLY VOLTAGE (V)
1
1211/12 G08
Slew Rate vs Temperature
Capacitive Load Handling
10
80
AV = –2
RL = 10k
VS = ±15V
0
30 40
1211/12 G09
Slew Rate vs Supply Voltage
10
TA = 125°C
VS = 5V
70
8
6
VS = 5V
OVERSHOOT (%)
60
SLEW RATE (V/µs)
8
TA = 125°C
11
–60
100M
1M
10M
FREQUENCY (Hz)
1211/12 G07
TA = 25°C
AV = –2
RL = 10k
TA = 25°C
13
VS = 5V
VS = 5V
1
40
TA = –55°C
14
PHASE MARGIN (DEG)
80
15
80
60
40
100
16
PHASE SHIFT (DEG)
VOLTAGE GAIN (dB)
100
60
140
SLEW RATE (V/µs)
Gain-Bandwidth Product,
Phase Margin vs Supply Voltage
GAIN-BANDWIDTH PRODUCT (MHz)
Voltage Gain vs Frequency
TA = 25°C
6
TA = –55°C
4
4
50
40
30
AV = 1
20
2
AV = 5
10
AV = 10
25
0
50
75
TEMPERATURE (°C)
100
0
0
125
0
4
8 12 16 20 24 28 32
TOTAL SUPPLY VOLTAGE (V)
1211/12 G10
5
VS = ±15V
25
OUTPUT SWING (VP-P)
OUTPUT SWING (VP-P)
4
3
2
1
0
100
Total Harmonic Distortion and
Noise vs Frequency
30
VS = 5V
20
15
10
5
1k
10k
100k
FREQUENCY (Hz)
1M
1211/12 G13
0
100
1k
10k
100k
FREQUENCY (Hz)
10000
1211/12 G12
Undistorted Output Swing
vs Frequency, VS = ±15V
AV = 1
1000
100
CAPACITIVE LOAD (pF)
1211/12 G11
Undistorted Output Swing
vs Frequency, VS = 5V
AV = –1
10
36
TOTAL HARMONIC DISTORTION AND NOISE (%)
2
–50 –25
1M
1211/12 G14
0.1
VS = 5V
VO = 3VP-P
RL = 1k
0.01
AV = 10
0.001
0.0001
10
AV = 1
100
1k
10k
FREQUENCY (Hz)
100k
1211/12 G15
9
LT1211/LT1212
U W
TYPICAL PERFOR A CE CHARACTERISTICS
Open-Loop Voltage Gain
vs Supply Voltage
Positive Output Saturation
Voltage vs Temperature
Open-Loop Gain, VS = 5V
6k
1.4
SATURATION VOLTAGE, V + – VOUT (V)
RL = 2k
5k
4k
TA = –55°C
3k
TA = 25°C
2k
TA = 125°C
INPUT, 5µV/DIV
OPEN-LOOP VOLTAGE GAIN (V/mV)
RL = 2k
RL =
500Ω
0
1k
1
2
3
OUTPUT (V)
4
VS = 5V
1.2
ISOURCE = 20mA
1.0
ISOURCE = 10mA
0.8
ISOURCE = 1mA
0.6
ISOURCE = 10µA
0.4
1211/12 G17
0
4
0
8 12 16 20 24 28 32
TOTAL SUPPLY VOLTAGE (V)
0.2
–50 –25
36
50
25
75
0
TEMPERATURE (°C)
100
1211/12 G16
1211/12 G18
Negative Output Saturation
Voltage vs Temperature
Open-Loop Gain, VS = ±15V
Voltage Gain vs Load Resistance
RL = 2k
INPUT, 5µV/DIV
OPEN-LOOP VOLTAGE GAIN (V/mV)
TA = 25°C
VS = ±15V
1k
VS = 5V
100
RL =
500Ω
–10
0
OUTPUT (V)
10
1211/12 G20
SATURATION VOLTAGE, VOUT – V – (mV)
1000
10k
10
10
100
1k
LOAD RESISTANCE (Ω)
ISINK = 20mA
ISINK = 10mA
100
ISINK = 1mA
10
ISINK = 10µA
VS = 5V
1
–50 –25
10k
0
25
50
75
TEMPERATURE (°C)
Output Short-Circuit Current
vs Temperature
Channel Separation vs Frequency
140
110
100
90
80
70
60
50
40
30
10k
100k
1M
FREQUENCY (Hz)
10M
1211/12 G22
10
1000
VS = ±15V
50
40
VS = ±15V
SOURCING
OR SINKING
VS = 5V
SOURCING
OUTPUT IMPEDANCE (Ω)
120
OUTPUT SHORT-CIRCUIT CURRENT (mA)
VS = ±15V
TA = 25°C
125
Output Impedance vs Frequency
60
130
100
1211/12 G21
1211/12 G19
CHANNEL SEPARATION (dB)
125
30
100
10
AV = 100
1
AV = 10
0.1
AV = 1
20
–50 –25
50
100
25
75
0
CASE TEMPERATURE (°C)
125
1211/12 G23
0.01
10k
100k
1M
FREQUENCY (Hz)
10M
1211/12 G24
LT1211/LT1212
U W
TYPICAL PERFOR A CE CHARACTERISTICS
5V Large-Signal Response
5V Large-Signal Response
5V Small-Signal Response
3V
0V
0V
20mV/DIV
3V
100ns/DIV
VS = 5V
AV = 1
500ns/DIV
VS = 5V
AV = 1
1211/12 G25
20mV/DIV
10V
10V
0V
0V
–10V
–10V
100ns/DIV
2µs/DIV
VS = ±15V
AV = 1
1211/12 G28
VS = ±15V
AV = –1
RF = RG = 1k
1211/12 G29
10
2V/DIV
500mV/DIV
1mV/DIV
250µV/DIV
1211/12 G31
VS = ±15V
AV = – 1
OUTPUT STEP (V)
6
VS = 5V
AV = 1
1211/12 G30
VS = ±15V
8
200ns/DIV
2µs/DIV
Settling Time to 0.01%
vs Output Step
±15V Settling
5V Settling
1211/12 G27
±15V Large-Signal Response
±15V Large-Signal Response
±15V Small-Signal Response
VS = ±15V
AV = 1
500ns/DIV
VS = 5V
AV = – 1
RF = RG = 1k
CF = 20pF
1211/12 G26
INVERTING
4
2
0
–2
–4
INVERTING
–6
500ns/DIV
–8
1211/12 G32
NONINVERTING
NONINVERTING
–10
0.5
2.0
1.0
1.5
SETTLING TIME (µs)
2.5
1211/12 G33
11
LT1211/LT1212
U W
TYPICAL PERFOR A CE CHARACTERISTICS
Supply Current vs Supply Voltage
Supply Current vs Temperature
Warm-Up Drift vs Time
2.6
TA = 125°C
TA = 25°C
1
TA = –55°C
0
1
0
2
3
4
SUPPLY VOLTAGE (V)
2
VS = ±15V
2.2
1.8
VS = 5V
1.4
1.0
0.6
–50 –25
5
CHANGE IN OFFSET VOLTAGE (µV)
SUPPLY CURRENT PER AMPLIFIER (mA)
SUPPLY CURRENT PER AMPLIFIER (mA)
2
25
0
50
75
TEMPERATURE (°C)
100
VS = 5V
RL = ∞
2 TYPICAL AMPLIFIERS
1
0
–1
–2
125
10
30
40
20
TIME AFTER POWER-UP (SEC)
0
1211/12 G35
1211/12 G34
1211/12 G36
Input Bias Current vs
Common-Mode Voltage
Input Bias Current vs Temperature
100
50
Common-Mode Range
vs Temperature
V+
0
VS = 5V
VS = 5V
80
70
60
+IB
50
IOS
–IB
–20
COMMON-MODE RANGE (V)
INPUT BIAS CURRENT (nA)
INPUT BIAS CURRENT (nA)
90
TA = 25°C
–40
TA = 125°C
–60
TA = –55°C
–80
V + –1
V + –2
V – +1
V–
40
30
–50 –25
100
125
0
2
3
1
COMMON-MODE VOLTAGE (V)
–1
Input Noise Current, Noise
Voltage Density vs Frequency
2.0
1.4
VOLTAGE NOISE
1.2
10
1.0
8
0.8
6
0.6
4
0.4
CURRENT NOISE
2
0
10
100
1k
10k
FREQUENCY (Hz)
0.2
0
100k
1211/12 G40
12
100
125
130
VS = 5V
90
80
70
60
50
40
30
20
10
10k
100
Input Referred Power Supply
Rejection Ratio vs Frequency
POWER SUPPLY REJECTION RATIO (dB)
1.6
14
50
25
75
0
TEMPERATURE (°C)
1211/12 G39
110
COMMON-MODE REJECTION RATIO (dB)
INPUT NOISE VOLTAGE DENSITY (nV/√Hz)
1.8
INPUT NOISE CURRENT DENSITY (pA/√Hz)
VS = ±15V
TA = 25°C
RS = 0Ω
12
–50 –25
Common-Mode Rejection Ratio
vs Frequency
20
16
4
1211/12 G38
1211/12 G37
18
V – –1
–100
50
25
75
0
TEMPERATURE (°C)
110
100
90
10M
1211/12 G41
POSITIVE SUPPLY
80
70
60
50
NEGATIVE SUPPLY
40
30
100k
1M
FREQUENCY (Hz)
VS = ±15V
AV = 100
120
1k
10k
100k
1M
FREQUENCY (Hz)
10M
1211/12 G42
LT1211/LT1212
U
W
U
UO
APPLICATI
S I FOR ATIO
Supply Voltage
The LT1211/LT1212 op amps are fully functional and all
internal bias circuits are in regulation with 2.2V of supply.
The amplifiers will continue to function with as little as
1.5V, although the input common-mode range and the
phase margin are about gone. The minimum operating
supply voltage is guaranteed by the PSRR tests which are
done with the input common mode equal to 500mV and a
minimum supply voltage of 2.5V. The LT1211/LT1212 are
guaranteed over the full – 55°C to 125°C range with a
minimum supply voltage of 2.5V.
The positive supply pin of the LT1211/LT1212 should be
bypassed with a small capacitor (about 0.01µF) within an
inch of the pin. When driving heavy loads and for good
settling time, an additional 4.7µF capacitor should be
used. When using split supplies, the same is true for the
negative supply pin.
Power Dissipation
The LT1211/LT1212 amplifiers combine high speed and
large output current drive into very small packages. Because these amplifiers work over a very wide supply range,
it is possible to exceed the maximum junction temperature
under certain conditions. To insure that the LT1211/
LT1212 are used properly, calculate the worst case power
dissipation, define the maximum ambient temperature,
select the appropriate package and then calculate the
maximum junction temperature.
The worst case amplifier power dissipation is the total of
the quiescent current times the total power supply voltage
plus the power in the IC due to the load. The quiescent
supply current of the LT1211/LT1212 has a positive temperature coefficient. The maximum supply current of each
amplifier at 125°C is given by the following formula:
ISMAX = 2.5 + 0.036 • (VS – 5) in mA
VS is the total supply voltage.
The power in the IC due to the load is a function of the
output voltage, the supply voltage and load resistance. The
worst case occurs when the output voltage is at half
supply, if it can go that far, or its maximum value if it
cannot reach half supply.
For example, calculate the worst case power dissipation
while operating on ±15V supplies and driving a 500Ω load.
ISMAX = 2.5 + 0.036 • (30 – 5) = 3.4mA
PDMAX = 2 • VS • ISMAX + (VS – VOMAX) • VOMAX/RL
PDMAX = 2 • 15V × 3.4mA + (15V – 7.5V) • 7.5V/500
= 0.102 + 0.113 = 0.215W per Amp
If this is the quad LT1212, the total power in the package
is four times that, or 0.860W. Now calculate how much the
die temperature will rise above the ambient. The total
power dissipation times the thermal resistance of the
package gives the amount of temperature rise. For this
example, in the SO surface mount package, the thermal
resistance is 100°C/W junction-to-ambient in still air.
Temperature Rise = PDMAX • θJA = 0.860W • 100°C/W
= 86°C
The maximum junction temperature allowed in the plastic
package is 150°C. Therefore the maximum ambient allowed is the maximum junction temperature less the
temperature rise.
Maximum Ambient = 150°C – 86°C = 64°C
That means the SO quad can only be operated at or below
64°C on ±15V supplies with a 500Ω load.
As a guideline to help in the selection of the LT1211/
LT1212, the following table describes the maximum supply voltage that can be used with each part based on the
following assumptions:
1. The maximum ambient is 70°C or 125°C depending
on the part rating.
2. The load is 500Ω, includes the feedback resistors.
3. The output can be anywhere between the supplies.
PART
LT1211MJ8
LT1211CN8
LT1211CS8
LT1212CN
LT1212CS
MAX SUPPLIES
19.5V or ±16.4V
25.2V or ±18.0V
20.3V or ±17.1V
21.0V or ±17.8V
17.3V or ±14.4V
MAX POWER AT MAX TA
500mW
800mW
533mW
1143mW
800mW
13
LT1211/LT1212
U
W
U
UO
APPLICATI
S I FOR ATIO
Inputs
Typically, at room temperature, the inputs of the LT1211/
LT1212 can common mode 400mV below ground (V –)
and to within 1.2V of the positive supply with the amplifier
still functional. However the input bias current and offset
voltage will shift as shown in the characteristic curves. For
full precision performance, the common-mode range
should be limited between ground (V –) and 1.5V below the
positive supply.
When either of the inputs is taken below ground (V –) by
more than about 700mV, that input bias current will
increase dramatically. The current is limited by internal
100Ω resistors between the input pins and diodes to each
supply. The output will remain low (no phase reversal) for
inputs 1.3V below ground (V –). If the output does not have
to sink current, such as in a single supply system with a 1k
load to ground, there is no phase reversal for inputs up to
8V below ground.
There are no clamps across the inputs of the LT1211/
LT1212 and therefore each input can be forced to any
voltage between the supplies. The input current will remain constant at about 60nA over most of this range.
When an input gets closer than 1.5V to the positive supply,
that input current will gradually decrease to zero until the
input goes above the supply, then it will increase due to the
previously mentioned diodes. If the inverting input is held
more positive than the noninverting input by 200mV or
more, while at the same time the noninverting input is
within 300mV of ground (V –), then the supply current will
increase by 1mA and the noninverting input current will
increase to about 10µA. This should be kept in mind in
comparator applications where the inverting input stays
above ground (V –) and the noninverting input is at or near
ground (V –).
Output
The output of the LT1211/LT1212 will swing to within
0.60V of the positive supply with no load. The open-loop
output resistance, when the output is driven hard into the
14
positive rail, is about 100Ω as the output starts to source
current; this resistance drops to about 25Ω as the current
increases. Therefore when the output sources 1mA, the
output will swing to within 0.7V of the positive supply.
While sourcing 20mA, it is within 1.1V of the positive
supply.
The output of the LT1211/LT1212 will swing to within 3mV
of the negative supply while sinking zero current. Thus, in
a typical single supply application with the load going to
ground, the output will go to within 3mV of ground. The
open-loop output resistance when the output is driven
hard into the negative rail is about 44Ω at low currents and
reduces to about 24Ω at high currents. Therefore, when
the output sinks 1mA, the output is about 42mV above the
negative supply and while sinking 20mA, it is about
480mV above it.
The output of the LT1211/LT1212 has reverse-biased
diodes to each supply. If the output is forced beyond either
supply, unlimited currents will flow. If the current is
transient and limited to several hundred mA, no damage
will occur.
Feedback Components
Because the input currents of the LT1211/LT1212 are less
than 125nA, it is possible to use high value feedback
resistors to set the gain. However, care must be taken to
insure that the pole that is formed by the feedback resistors and the input capacitance does not degrade the
stability of the amplifier. For example, if a single supply,
noninverting gain of two is set with two 20k resistors, the
LT1211/LT1212 will probably oscillate. This is because
the amplifier goes open-loop at 3MHz (6dB of gain) and
has 50° of phase margin. The feedback resistors and the
10pF input capacitance generate a pole at 1.6MHz that
introduces 63° of phase shift at 3MHz! The solution is
simple; use lower value resistors or add a feedback
capacitor of 10pF or more.
LT1211/LT1212
W
U
U
UO
APPLICATI
S I FOR ATIO
following photos. These amplifiers are unity-gain stable
op amps and not fast comparators, therefore, the logic
being driven may oscillate due to the long transition time.
The output can be speeded up by adding 20mV or more of
hysteresis (positive feedback), but the offset is then a
function of the input direction.
Comparator Applications
Sometimes it is desirable to use an op amp as a comparator. When operating the LT1211/LT1212 on a single 3.3V
or 5V supply, the output interfaces directly with most TTL
and CMOS logic.
The response time of the LT1211/LT1212 is a strong
function of the amount of input overdrive as shown in the
LT1211 Comparator Response (+)
20mV, 10mV, 5mV, 2mV Overdrives
LT1211 Comparator Response (–)
20mV, 10mV, 5mV, 2mV Overdrives
4
OUTPUT (V)
OUTPUT (V)
4
2
2
0
INPUT (mV)
INPUT (mV)
0
100
0
100
0
5µs/DIV
VS = 5V
RL = ∞
5µs/DIV
VS = 5V
RL = ∞
1211/12 AI01
1211/12 AI02
W
W
SI PLIFIED SCHE ATIC
V+
I1
I4
I3
I2
I6
I5
Q3
Q13
BIAS
CM
Q14
Q4
–IN
Q15
+IN
Q1
Q11
Q2
OUT
RF
Q7
Q12
CF
Q10
Q8
Q5
Q9
Q6
Q16
I7
CO
I8
CI
V–
1211/12 SS
15
LT1211/LT1212
UO
TYPICAL APPLICATI
S
1A Voltage-Controlled Current Source
V+
1Ω
1k
1k
1k
500pF
–
VIN
100Ω
1/2
LT1211
Si9430DY
P-CHANNEL
+
IOUT
V
IOUT = IN
1Ω
tr < 1µs
1k
RL
1211/12 TA04
1A Voltage-Controlled Current Sink
V+
V+
VIN
RL
IOUT
+
1/2
LT1211
–
100Ω
Si9410DY
N-CHANNEL
500pF
1k
V
IOUT = IN
1Ω
tr < 1µs
16
1Ω
1211/12 TA05
LT1211/LT1212
U
PACKAGE DESCRIPTIO
Dimensions in inches (millimeters) unless otherwise noted.
J8 Package
8-Lead CERDIP (Narrow 0.300, Hermetic)
(LTC DWG # 05-08-1110)
CORNER LEADS OPTION
(4 PLCS)
0.023 – 0.045
(0.584 – 1.143)
HALF LEAD
OPTION
0.045 – 0.068
(1.143 – 1.727)
FULL LEAD
OPTION
0.005
(0.127)
MIN
0.405
(10.287)
MAX
8
7
6
5
0.025
(0.635)
RAD TYP
0.220 – 0.310
(5.588 – 7.874)
1
0.300 BSC
(0.762 BSC)
2
3
4
0.200
(5.080)
MAX
0.015 – 0.060
(0.381 – 1.524)
0.008 – 0.018
(0.203 – 0.457)
0° – 15°
NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE
OR TIN PLATE LEADS
0.045 – 0.068
(1.143 – 1.727)
0.014 – 0.026
(0.360 – 0.660)
0.125
3.175
0.100 ± 0.010 MIN
(2.540 ± 0.254)
J8 1197
17
LT1211/LT1212
U
PACKAGE DESCRIPTIO
Dimensions in inches (millimeters) unless otherwise noted.
N8 Package
8-Lead PDIP (Narrow 0.300)
(LTC DWG # 05-08-1510)
0.400*
(10.160)
MAX
8
7
6
5
1
2
3
4
0.255 ± 0.015*
(6.477 ± 0.381)
0.300 – 0.325
(7.620 – 8.255)
0.065
(1.651)
TYP
0.009 – 0.015
(0.229 – 0.381)
(
+0.035
0.325 –0.015
8.255
+0.889
–0.381
0.130 ± 0.005
(3.302 ± 0.127)
0.045 – 0.065
(1.143 – 1.651)
)
0.125
(3.175) 0.020
MIN (0.508)
MIN
0.018 ± 0.003
(0.457 ± 0.076)
N8 1197
0.100 ± 0.010
(2.540 ± 0.254)
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)
N Package
14-Lead PDIP (Narrow 0.300)
(LTC DWG # 05-08-1510)
0.770*
(19.558)
MAX
14
13
12
11
10
9
8
1
2
3
4
5
6
7
0.255 ± 0.015*
(6.477 ± 0.381)
0.130 ± 0.005
(3.302 ± 0.127)
0.300 – 0.325
(7.620 – 8.255)
0.045 – 0.065
(1.143 – 1.651)
0.020
(0.508)
MIN
0.065
(1.651)
TYP
0.009 – 0.015
(0.229 – 0.381)
+0.035
0.325 –0.015
0.005
(0.125)
MIN
0.100 ± 0.010
(2.540 ± 0.254)
*THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm)
(
+0.889
8.255
–0.381
18
)
0.125
(3.175)
MIN
0.018 ± 0.003
(0.457 ± 0.076)
N14 1197
LT1211/LT1212
U
PACKAGE DESCRIPTIO
Dimensions in inches (millimeters) unless otherwise noted.
S8 Package
8-Lead Plastic Small Outline (Narrow 0.150)
(LTC DWG # 05-08-1610)
0.189 – 0.197*
(4.801 – 5.004)
7
8
6
5
0.150 – 0.157**
(3.810 – 3.988)
0.228 – 0.244
(5.791 – 6.197)
1
0.010 – 0.020
× 45°
(0.254 – 0.508)
0.008 – 0.010
(0.203 – 0.254)
3
2
4
0.053 – 0.069
(1.346 – 1.752)
0.004 – 0.010
(0.101 – 0.254)
0°– 8° TYP
0.016 – 0.050
0.406 – 1.270
0.050
(1.270)
TYP
0.014 – 0.019
(0.355 – 0.483)
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE
SO8 0996
S Package
16-Lead Plastic Small Outline (Narrow 0.150)
(LTC DWG # 05-08-1610)
0.386 – 0.394*
(9.804 – 10.008)
16
15
14
13
12
11
10
9
0.150 – 0.157**
(3.810 – 3.988)
0.228 – 0.244
(5.791 – 6.197)
1
0.010 – 0.020
× 45°
(0.254 – 0.508)
0.008 – 0.010
(0.203 – 0.254)
2
3
4
5
6
0.053 – 0.069
(1.346 – 1.752)
0.014 – 0.019
(0.355 – 0.483)
8
0.004 – 0.010
(0.101 – 0.254)
0° – 8° TYP
0.016 – 0.050
0.406 – 1.270
7
0.050
(1.270)
TYP
S16 0695
*DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH
SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE
**DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD
FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.
19
LT1211/LT1212
U
TYPICAL APPLICATIO
Single Supply, 100kHz, 4th Order Butterworth Lowpass Filter
C1
1000pF
R1
2.94k
VIN
C2
1000pF
1000pF
–
1/4
LT1211
R2
866Ω
1000pF
–
1.21k
1/4
LT1211
+
–
1/4
LT1211
+
2.10k
1/4
LT1211
+
2.94k
–
VOUT
+
1. 21k
1211/12 TA03a
20k
3.3V
+
13k
10
1µF
0
–10
12-BIT ACCURATE SIGNAL RANGE FROM 6mV TO 1.8V ON 3.3V SINGLE SUPPLY.
MAXIMUM OUTPUT OFFSET ERROR IS 676µV.
1
C1C2R1R2
1
R1 =
WOQC1
Q
R2 =
WOC2
WO2 =
GAIN (dB)
FOR EACH 2ND ORDER SECTION:
–20
–30
–40
–50
–60
–70
–80
–90
10k
100k
1M
FREQUENCY (Hz)
10M
1211/12 TA03b
RELATED PARTS
PART NUMBER
DESCRIPTION
COMMENTS
LT1213/LT1214
28MHz, 12V/µs, Single Supply Dual and Quad Precision Op Amps
Twice as Fast as LT1211
LT1215/LT1216
23MHz, 50V/µs, Single Supply Dual and Quad Precision Op Amps
Seven Times LT1211 Slew Rate
LT1498/LT1499
10MHz, 6V/µs, Dual/Quad Rail-to-Rail Input and Output Precision C-Load Op Amps
Rail-to-Rail LT1211
LT1630/LT1631
30MHz, 10V/µs, Dual/Quad Rail-to-Rail Input and Output Precision Op Amps
Rail-to-Rail LT1213
LT1632/LT1633
45MHz, 45V/µs, Dual/Quad Rail-to-Rail Input and Output Precision Op Amps
Rail-to-Rail LT1215
20
Linear Technology Corporation
12112fa LT/TP 0798 2K REV A • PRINTED IN USA
1630 McCarthy Blvd., Milpitas, CA 95035-7417
(408)432-1900 ● FAX: (408) 434-0507 ● www.linear-tech.com
 LINEAR TECHNOLOGY CORPORATION 1993
Similar pages