MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Polyphase Metering SoCs FEATURES 1 • 2 • • • • • • • • • • • • • • • • • • Accuracy < 0.1% Over 2000:1 Dynamic Range for Phase Current Meets or Exceeds ANSI C12.20 and IEC 62053 Standards Support for Multiple Sensors Such as Current Transformers, Rogowski Coils, or Shunts Power Measurement for up to Three Phases Plus Neutral Dedicated Pulse Output Pins for Active and Reactive Energy for Calibration Four-Quadrant Measurement per Phase or Cumulative Exact Phase Angle Measurements Digital Phase Correction for Current Transformers Temperature Compensated Energy Measurements 40-Hz to 70-Hz Line Frequency Range Using Single Calibration Flexible Power Supply Options With Automatic Switching Display Operates at Very Low Power During AC Mains Failure: 3 µA in LPM3 LCD Driver With Contrast Control for up to 320 Segments Password-Protected Real-Time Clock With Crystal Offset Calibration and Temperature Compensation Integrated Security Modules to Support AntiTamper Multiple Communication Interfaces for Smart Meter Implementations High-Performance 25-MHz CPU With 32-Bit Multiplier Wide Input Supply Voltage Range: 3.6 V Down to 1.8 V Ultra-Low-Power Consumption During Energy Measurement – 2.9 mW at 10-MHz Operation (3 V) • • • • • • • • • • • • Multiple Low-Power Modes – Standby Mode (LPM3): 2.1 µA at 3 V, Wake Up in Less Than 5 µs – RTC Mode (LPM3.5): 0.34 µA at 3 V – Shutdown Mode (LPM4.5): 0.18 µA at 3 V Up to 512KB of Single-Cycle Flash Up to 32KB of RAM With Single-Cycle Access Up to Seven Independent 24-Bit Sigma-Delta ADCs With Differential Inputs and Variable Gain System 10-Bit 200-ksps ADC – Six Channels Plus Supply and Temperature Sensor Measurement Six Enhanced Communications Ports – Configurable Among Four UART, Six SPI, and Two I²C Interfaces Four 16-Bit Timers With Nine Total Capture/Compare Registers 128-Pin LQFP (PEU) Package With 90 I/O Pins 100-Pin LQFP (PZ) Package With 62 I/O Pins Industrial Temperature Range of –40°C to 85°C 3-Phase Electronic Watt-Hour Meter Development Tools – EVM430-F6779 With SLAA577 App Note – MSP430™ Energy Library For Complete Module Descriptions, See the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208) APPLICATIONS • • • 3-Phase Electronic Watt-Hour Meters Utility Metering Energy Monitoring 1 2 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. MSP430, Code Composer Studio are trademarks of Texas Instruments. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com DESCRIPTION The Texas Instruments MSP430F677x1 family of polyphase metering SoCs are powerful highly integrated solutions for revenue meters that offer accuracy and low system cost with few external components. The F677x1 family of devices uses the low-power MSP430 CPU with a 32-bit multiplier to perform all energy calculations, metering applications such as tariff rate management, and communications with AMR and AMI modules. The F677x1 devices feature TI's 24-bit sigma-delta converter technology, which provides better than 0.1% accuracy. Family members include up to 512KB of flash, 32KB of RAM, and an LCD controller with support for up to 320 segments. The ultra-low-power nature of the F677x1 devices means that the system power supply can be minimized to reduce overall cost. Lowest standby power means that backup energy storage can be minimized and critical data retained longer in case of a mains power failure. The F677x1 family of devices executes the TI energy measurement software library, which calculates all relevant energy and power results. The energy measurement software library is available with the F677x1 devices at no cost. Industry standard development tools and hardware platforms are available to speed development of meters that meet all of the ANSI and IEC standards globally. 2 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 TOTAL Load kWh Sx, COMx Phase C VCC MSP430F677x Phase A R33 RST Phase B LCDCAP VSS Px.x Neutral + IA CT STATUS LEDs ΣΔ Modulator – + IB CT Px.y ΣΔ Modulator – PULSE LEDs + CT IC ΣΔ Modulator – XIN + Ineutral CT 32,768Hz ΣΔ Modulator – VA XOUT AFE + USCIA0 UART or SPI USCIA1 UART or SPI USCIA2 UART or SPI USCIA3 UART or SPI USCIB0 I2C or SPI USCIB1 I2C or SPI ΣΔ Modulator – VB + ΣΔ Modulator – VC + VN ΣΔ Modulator – Vref Neutral Phase B Phase A Phase C Source From Utility Figure 1. 3-Phase 4-Wire Star Connection Using MSP430F677x1 Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 3 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Family members available are summarized in Table 1. Table 1. Family Members (1) (2) eUSCI Device Flash (KB) SRAM (KB) SD24_B Converters ADC10_A Channels Timer_A (3) Channel A: UART, IrDA, SPI Channel B: SPI, I2C I/O Package Type MSP430F67791IPEU 512 32 7 6 ext, 2 int 3, 2, 2, 2 4 2 90 128 PEU MSP430F67781IPEU 512 16 7 6 ext, 2 int 3, 2, 2, 2 4 2 90 128 PEU MSP430F67771IPEU 256 32 7 6 ext, 2 int 3, 2, 2, 2 4 2 90 128 PEU MSP430F67761IPEU 256 16 7 6 ext, 2 int 3, 2, 2, 2 4 2 90 128 PEU MSP430F67751IPEU 128 16 7 6 ext, 2 int 3, 2, 2, 2 4 2 90 128 PEU MSP430F67691IPEU 512 32 6 6 ext, 2 int 3, 2, 2, 2 4 2 90 128 PEU MSP430F67681IPEU 512 16 6 6 ext, 2 int 3, 2, 2, 2 4 2 90 128 PEU MSP430F67671IPEU 256 32 6 6 ext, 2 int 3, 2, 2, 2 4 2 90 128 PEU MSP430F67661IPEU 256 16 6 6 ext, 2 int 3, 2, 2, 2 4 2 90 128 PEU MSP430F67651IPEU 128 16 6 6 ext, 2 int 3, 2, 2, 2 4 2 90 128 PEU MSP430F67491IPEU 512 32 4 6 ext, 2 int 3, 2, 2, 2 4 2 90 128 PEU MSP430F67481IPEU 512 16 4 6 ext, 2 int 3, 2, 2, 2 4 2 90 128 PEU MSP430F67471IPEU 256 32 4 6 ext, 2 int 3, 2, 2, 2 4 2 90 128 PEU MSP430F67461IPEU 256 16 4 6 ext, 2 int 3, 2, 2, 2 4 2 90 128 PEU MSP430F67451IPEU 128 16 4 6 ext, 2 int 3, 2, 2, 2 4 2 90 128 PEU MSP430F67791IPZ 512 32 7 6 ext, 2 int 3, 2, 2, 2 4 2 62 100 PZ MSP430F67781IPZ 512 16 7 6 ext, 2 int 3, 2, 2, 2 4 2 62 100 PZ MSP430F67771IPZ 256 32 7 6 ext, 2 int 3, 2, 2, 2 4 2 62 100 PZ MSP430F67761IPZ 256 16 7 6 ext, 2 int 3, 2, 2, 2 4 2 62 100 PZ MSP430F67751IPZ 128 16 7 6 ext, 2 int 3, 2, 2, 2 4 2 62 100 PZ MSP430F67691IPZ 512 32 6 6 ext, 2 int 3, 2, 2, 2 4 2 62 100 PZ MSP430F67681IPZ 512 16 6 6 ext, 2 int 3, 2, 2, 2 4 2 62 100 PZ MSP430F67671IPZ 256 32 6 6 ext, 2 int 3, 2, 2, 2 4 2 62 100 PZ MSP430F67661IPZ 256 16 6 6 ext, 2 int 3, 2, 2, 2 4 2 62 100 PZ MSP430F67651IPZ 128 16 6 6 ext, 2 int 3, 2, 2, 2 4 2 62 100 PZ MSP430F67491IPZ 512 32 4 6 ext, 2 int 3, 2, 2, 2 4 2 62 100 PZ MSP430F67481IPZ 512 16 4 6 ext, 2 int 3, 2, 2, 2 4 2 62 100 PZ MSP430F67471IPZ 256 32 4 6 ext, 2 int 3, 2, 2, 2 4 2 62 100 PZ MSP430F67461IPZ 256 16 4 6 ext, 2 int 3, 2, 2, 2 4 2 62 100 PZ MSP430F67451IPZ 128 16 4 6 ext, 2 int 3, 2, 2, 2 4 2 62 100 PZ (1) (2) (3) 4 For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com. Package drawings, thermal data, and symbolization are available at www.ti.com/packaging. Each number in the sequence represents an instantiation of Timer_A with its associated number of capture compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively. Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Functional Block Diagram – MSP430F677x1IPEU, MSP430F676x1IPEU, and MSP430F674x1IPEU XIN XOUT DVCC DVSS AVCC AVSS AUX1 AUX2 AUX3 PA P1.x P2.x RST/NMI PB P3.x P4.x PC P5.x P6.x P7.x PD P8.x PE P9.x P10.x PF P11.x (32kHz) ACLK Unified Clock System 512kB 256kB 128kB 32kB 16kB Flash RAM SMCLK MCLK SYS Watchdog Port Mapping Controller MPY32 CRC16 I/O Ports P1/P2 2×8 I/Os Interrupt & Wakeup I/O Ports P3/P4 2×8 I/Os I/O Ports P5/P6 2×8 I/Os I/O Ports P7/P8 2×8 I/Os I/O Ports P9/P10 2×8 I/O I/O Ports P11 1×6 I/O PA 1×16 I/Os PB 1×16 I/Os PC 1×16 I/Os PD 1×16 I/Os PE 1×16 I/O PF 1×6 I/O Ta0 TA1 TA2 TA3 eUSCI_A0 eUSCI_A1 eUSCI_A2 eUSCI_A3 eUSCI_B0 eUSCI_B1 CPUXV2 and Working Registers (25MHz) EEM (S: 8+2) PMM Auxiliary Supplies JTAG/ SBW Interface/ LDO SVM/SVS BOR Port PJ SD24_B 7 Channel 6 Channel 4 Channel ADC10_A 10 Bit 200 KSPS LCD_C REF 8MUX Up to 320 Segments Reference 1.5V, 2.0V, 2.5V RTC_CE Timer_A 3 CC Registers PJ.x Timer_A 2 CC Registers (UART, IrDA,SPI) DMA 3 Channel (SPI, I2C) COMP_B (External Voltage Monitoring) Functional Block Diagram – MSP430F677x1IPZ, MSP430F676x1IPZ, and MSP430F674x1IPZ XIN XOUT DVCC DVSS AVCC AVSS AUX1 AUX2 AUX3 PA P1.x P2.x RST/NMI PB P3.x P4.x PC P5.x P6.x P7.x PD P8.x (32kHz) ACLK Unified Clock System 512kB 256kB 128kB 32kB 16kB Flash RAM SMCLK MCLK SYS Watchdog Port Mapping Controller CRC16 MPY32 I/O Ports P1/P2 2×8 I/Os Interrupt & Wakeup I/O Ports P3/P4 2×8 I/Os I/O Ports P5/P6 2×8 I/Os I/O Ports P7/P8 1×8 I/Os 1×2 I/Os PA 1×16 I/Os PB 1×16 I/Os PC 1×16 I/Os PD 1×10 I/Os Ta0 TA1 TA2 TA3 eUSCI_A0 eUSCI_A1 eUSCI_A2 eUSCI_A3 eUSCI_B0 eUSCI_B1 CPUXV2 and Working Registers (25MHz) EEM (S: 8+2) JTAG/ SBW Interface/ Port PJ PMM Auxiliary Supplies LDO SVM/SVS BOR SD24_B 7 Channel 6 Channel 4 Channel ADC10_A 10 Bit 200 KSPS PJ.x Copyright © 2012–2013, Texas Instruments Incorporated LCD_C 8MUX Up to 320 Segments REF Reference 1.5V, 2.0V, 2.5V RTC_CE Timer_A 3 CC Registers Timer_A 2 CC Registers (UART, IrDA,SPI) DMA 3 Channel (SPI, I2C) COMP_B (External Voltage Monitoring) Submit Documentation Feedback 5 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com SD0N0 SD0P0 SD1P0 SD1N0 SD2N0 SD2P0 SD3P0 SD3N0 VASYS2 AVSS2 VREF SD4P0 SD4N0 SD5P0 SD5N0 SD6P0 SD6N0 AVSS1 AVCC VASYS1 AUXVCC2 AUXVCC1 VDSYS1 DVSS1 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 1 102 RST/NMI/SBWTDIO XOUT 2 101 PJ.3/TCK AUXVCC3 3 100 RTCCAP1 4 99 PJ.1/TDI/TCLK XIN PJ.2/TMS RTCCAP0 5 98 PJ.0/TDO P1.5/SMCLK/CB0/A5 6 97 TEST/SBWTCK P1.4/MCLK/CB1/A4 7 96 P2.3/PM_TA1.0 P1.3/ADC10CLK/A3 8 95 P2.2/PM_TA0.2 P1.2/ACLK/A2 9 94 P2.1/PM_TA0.1/BSL_RX P1.1/TA2.1/VeREF+/A1 10 93 P2.0/PM_TA0.0/BSL_TX P1.0/TA1.1/VeREF-/A0 11 92 P11.5/TACLK/RTCCLK P2.4/PM_TA2.0 12 91 P11.4/CBOUT P2.5/PM_UCB0SOMI/PM_UCB0SCL 13 90 P11.3/TA2.1 P2.6/PM_UCB0SIMO/PM_UCB0SDA 14 89 P11.2/TA1.1 P2.7/PM_UCB0CLK 15 88 P11.1/TA3.1/CB3 P3.0/PM_UCA0RXD/PM_UCA0SOMI 16 87 P11.0/S0 P3.1/PM_UCA0TXD/PM_UCA0SIMO 17 86 P10.7/S1 P3.2/PM_UCA0CLK 18 85 P10.6/S2 P3.3/PM_UCA1CLK 19 84 P10.5/S3 P3.4/PM_UCA1RXD/PM_UCA1SOMI 20 83 P10.4/S4 P3.5/PM_UCA1TXD/PM_UCA1SIMO 21 82 P10.3/S5 COM0 22 81 P10.2/S6 COM1 23 80 P10.1/S7 P1.6/COM2 24 79 P10.0/S8 P1.7/COM3 25 78 P9.7/S9 P5.0/COM4 26 77 P9.6/S10 P5.1/COM5 27 76 P9.5/S11 P5.2/COM6 28 75 P9.4/S12 P5.3/COM7 29 74 P9.3/S13 LCDCAP/R33 30 73 P9.2/S14 P5.4/SDCLK/R23 31 72 P9.1/S15 P5.5/SD0DIO/LCDREF/R13 32 71 P9.0/S16 P5.6/SD1DIO/R03 33 70 DVSS2 P5.7/SD2DIO/CB2 34 69 VDSYS2 P6.0/SD3DIO 35 68 P8.7/S17 P3.6/PM_UCA2RXD/PM_UCA2SOMI 36 67 P8.6/S18 P3.7/PM_UCA2TXD/PM_UCA2SIMO 37 66 P8.5/S19 38 65 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 P8.4/S20 P8.3/S21 P8.2/S22 P8.1/S23 P8.0/S24 P7.7/S25 P7.6/S26 P7.5/S27 P7.4/S28 P7.3/S29 P7.2/S30 P7.1/S31 P7.0/S32 P6.7/S33 P6.6/S34 P6.5/S35 P6.4/S36 P6.3/SD6DIO/S37 P6.2/SD5DIOS38 P6.1/SD4DIO/S39 P4.7/PM_TA3.0 P4.6/PM_UCB1CLK P4.4/PM_UCB1SOMI/PM_UCB1SCL P4.5/PM_UCB1SIMO/PM_UCB1SDA P4.3/PM_UCA3CLK P4.1/PM_UCA3RXD/M_UCA3SOMI PEU PACKAGE P4.2/PM_UCA3TXD/PM_UCA3SIMO P4.0/PM_UCA2CLK 6 DVCC VCORE Pin Designation, MSP430F677x1IPEU A. The secondary digital functions on Ports P2, P3 and P4 are fully mappable. The pin designation shows only the default mapping. See Table 15 for details. B. The pair of pins VDSYS1 and VDSYS2, VASYS1 and VASYS2 must be connected externally on board for proper device operation. C. CAUTION: The LCDCAP/R33 pin must be connected to DVSS if it is not used. Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Table 2. Pinout Differences for MSP430F677x1IPEU, MSP430F676x1IPEU, and MSP430F674x1IPEU PIN NAME PIN NUMBER MSP430F677x1IPEU MSP430F676x1IPEU MSP430F674x1IPEU 46 P6.1/SD4DIO/S39 P6.1/SD4DIO/S39 P6.1/S39 47 P6.2/SD5DIO/S38 P6.2/SD5DIO/S38 P6.2/S38 48 P6.3/SD6DIO/S37 P6.3/S37 P6.3/S37 113 VREF VREF VREF 114 SD4P0 SD4P0 NC 115 SD4N0 SD4N0 NC 116 SD5P0 SD5P0 NC 117 SD5N0 SD5NO NC 118 SD6P0 NC NC 119 SD6N0 NC NC Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 7 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com DVSS2 P6.0/S16 P6.1/S15 P6.3/S13 P6.2/S14 P6.4/S12 P6.5/S11 P6.6/S10 P6.7/S9 P7.0/S8 P7.1/S7 P7.2/S6 P7.3/S5 P7.4/S4 P7.5/S3 P7.6/S2 P7.7/S1 P8.0/S0 P8.1/TACLK/RTCCLKCB3 TEST/SBWTCK PJ.0/TDO PJ.1TDI/TCLK PJ.3/TCK SD0P0 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 1 75 VDSYS2 SD0N0 2 74 P5.7/SD6DIO/S17 SD1P0 3 73 P5.6/SD5DIO/S18 SD1N0 4 72 P5.5/SD4DIO/S19 SD2P0 5 71 P5.4/SD3DIO/S20 SD2N0 6 70 P5.3/SD2DIO/S21 SD3P0 7 69 P5.2/SD1DIO/S22 SD3N0 8 68 P5.1/SD0DIO/S23 VASYS2 9 67 P5.0/SDCLK/S24 AVSS2 10 66 P4.7/PM_TA3.0/S25 VREF 11 65 P4.6/PM_UCB1CLK/S26 SD4P0 12 64 P4.5/PM_UCB1SIMO/PM_UCB1SDA/S27 SD4N0 13 63 P4.4/PM_UCB1SOMI/PM_UCB1SCL/S28 SD5P0 14 62 P4.3/PM_UCA3CLK/S29 SD5N0 15 61 P4.4/PM_UCA3TXD/PM_UCA3SIMO/S30 SD6P0 16 60 P4.1/PM_UCA3RXD/PM_UCA3SOMI/S31 SD6N0 17 59 P4.0/PM_UCA2CLK/S32 AVSS1 18 58 P3.7/PM_UCA2TXD/PM_UCA2SIMO/S33 AVCC 19 57 P3.6/PM_UCA2RXD/PM_UCA2SOMI/S34 VASYS1 20 56 P3.5/PM_UCA1TXD/PM_UCA1SIMO/S35 AUXVCC2 21 55 P3.4/PM_UCA1RXD/PM_UCA1SOMI/S36 AUXVCC1 22 54 P3.3/PM_UCA1CLK/S37 VDSYS1 23 53 P3.2/PM_UCA0CLK/S38 DVCC 24 52 P3.1/PM_UCA0TXD/PM_UCA0SIMO/S39 PZ PACKAGE P3.0/PM_UCA0RXD/PM_UCA0SOMI P2.7/PM_UCB0CLK/CB2 P2.6/PM_UCB0SIMO/PM_UCB0SDA/R03 P2.5/PM_UCB0SOMI/PM_UCB0SCL/LCDREF/R13 P2.4/PM_TA2.0/R23 LCDCAP/R33 P2.3/PM_TA1.0/COM7 P2.2/PM_TA0.2/COM6 P2.1/PM_TA0.1/BSL_RX/COM5 P2.0/PM_TA0.0/BSL_TX/COM4 P1.7/COM3 P1.6/COM2 COM1 COM0 P1.0/TA1.1/VeREF-/A0 P1.1/TA2.1/CBOUT/VeREF+/A1 P1.2/ACLK/A2 P1.3/ADC10CLK/A3 P1.4/MCLK/CB1/A4 P1.5/SMCLK/CB0/A5 RTCCAP0 RTCCAP1 AUXVCC3 XOUT XIN 25 51 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 VCORE DVSS1 8 PJ.2/TMS RST/NMI/SBWTDIO Pin Designation, MSP430F677x1IPZ D. The secondary digital functions on Ports P2, P3 and P4 are fully mappable. The pin designation shows only the default mapping. See Table 15 for details. E. The pair of pins VDSYS1 and VDSYS2, VASYS1 and VASYS2 must be connected externally on board for proper device operation. F. CAUTION: The LCDCAP/R33 pin must be connected to DVSS if it is not used. Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Table 3. Pinout Differences for MSP430F677x1IPZ, MSP430F676x1IPZ, and MSP430F674x1IPZ PIN NUMBER PIN NAME MSP430F677x1IPZ MSP430F676x1IPZ MSP430F674x1IPZ 11 VREF VREF VREF 12 SD4P0 SD4P0 NC 13 SD4N0 SD4N0 NC 14 SD5P0 SD5P0 NC 15 SD5N0 SD5NO NC 16 SD6P0 NC NC 17 SD6N0 NC NC 72 P5.5/SD4DIO/S19 P5.5/SD4DIO/S19 P5.5/S19 73 P5.6/SD5DIO/S18 P5.6/SD5DIO/S18 P5.6/S18 74 P5.7/SD6DIO/S17 P5.7/S17 P5.7/S17 Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 9 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Table 4. Terminal Functions – PEU Package TERMINAL NAME NO. I/O (1) DESCRIPTION PEU XIN 1 I/O Input terminal for crystal oscillator XOUT 2 I/O Output terminal for crystal oscillator AUXVCC3 3 RTCCAP1 4 I External time capture pin 1 for RTC_C RTCCAP0 5 I External time capture pin 0 for RTC_C P1.5/SMCLK/CB0/A5 6 Auxiliary power supply AUXVCC3 for back up subsystem I/O General-purpose digital I/O with port interrupt SMCLK clock output Comparator_B input CB0 Analog input A5 - 10-bit ADC P1.4/MCLK/CB1/A4 7 I/O General-purpose digital I/O with port interrupt MCLK clock output Comparator_B input CB1 Analog input A4 - 10-bit ADC P1.3/ADC10CLK/A3 8 I/O General-purpose digital I/O with port interrupt ADC10_A clock output Analog input A3 - 10-bit ADC P1.2/ACLK/A2 9 I/O General-purpose digital I/O with port interrupt ACLK clock output Analog input A2 - 10-bit ADC I/O General-purpose digital I/O with port interrupt Timer TA2 CCR1 capture: CCI1A input, compare: Out1 output Positive terminal for the ADC's reference voltage for an external applied reference voltage Analog input A1 - 10-bit ADC P1.1/TA2.1/VeREF+/A1 10 P1.0/TA1.1/VeREF-/A0 11 I/O General-purpose digital I/O with port interrupt Timer TA1 CCR1 capture: CCI1A input, compare: Out1 output Negative terminal for the ADC's reference voltage for an external applied reference voltage Analog input A0 - 10-bit ADC P2.4/PM_TA2.0 12 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: Timer TA2 capture CCR0: CCI0A input, compare: Out0 output P2.5/PM_UCB0SOMI/ PM_UCB0SCL 13 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: eUSCI_B0 SPI slave out master in Default mapping: eUSCI_B0 I2C clock P2.6/PM_UCB0SIMO/ PM_UCB0SDA 14 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: eUSCI_B0 SPI slave in master out Default mapping: eUSCI_B0 I2C data P2.7/PM_UCB0CLK 15 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: eUSCI_B0 clock input/output P3.0/PM_UCA0RXD/ PM_UCA0SOMI 16 I/O General-purpose digital I/O with mappable secondary function Default mapping: eUSCI_A0 UART receive data Default mapping: eUSCI_A0 SPI slave out master in P3.1/PM_UCA0TXD/ PM_UCA0SIMO 17 I/O General-purpose digital I/O with mappable secondary function Default mapping: eUSCI_A0 UART transmit data Default mapping: eUSCI_A0 SPI slave in master out (1) 10 I = input, O = output Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Table 4. Terminal Functions – PEU Package (continued) TERMINAL NAME NO. I/O (1) DESCRIPTION PEU P3.2/PM_UCA0CLK 18 I/O General-purpose digital I/O with mappable secondary function Default mapping: eUSCI_A0 clock input/output P3.3/PM_UCA1CLK 19 I/O General-purpose digital I/O with mappable secondary function Default mapping: eUSCI_A1 clock input/output P3.4/PM_UCA1RXD/ PM_UCA1SOMI 20 I/O General-purpose digital I/O with mappable secondary function Default mapping: eUSCI_A1 UART receive data Default mapping: eUSCI_A1 SPI slave out master in P3.5/PM_UCA1TXD/ PM_UCA1SIMO 21 I/O General-purpose digital I/O with mappable secondary function Default mapping: eUSCI_A1 UART transmit data Default mapping: eUSCI_A1 SPI slave in master out COM0 22 O LCD common output COM0 for LCD backplane COM1 23 O LCD common output COM1 for LCD backplane P1.6/COM2 24 I/O General-purpose digital I/O with port interrupt LCD common output COM2 for LCD backplane P1.7/COM3 25 I/O General-purpose digital I/O with port interrupt LCD common output COM3 for LCD backplane P5.0/COM4 26 I/O General-purpose digital I/O LCD common output COM4 for LCD backplane P5.1/COM5 27 I/O General-purpose digital I/O LCD common output COM5 for LCD backplane P5.2/COM6 28 I/O General-purpose digital I/O LCD common output COM6 for LCD backplane P5.3/COM7 29 I/O General-purpose digital I/O LCD common output COM7 for LCD backplane LCDCAP/R33 30 I/O LCD capacitor connection Input/output port of most positive analog LCD voltage (V1) CAUTION: This pin must be connected to DVSS if not used. P5.4/SDCLK/R23 31 I/O General-purpose digital I/O SD24_B bit stream clock input/output Input/Output port of second most positive analog LCD voltage (V2) P5.5/SD0DIO/ LCDREF/R13 32 I/O General-purpose digital I/O SD24_B converter 0 bit stream data input/output External reference voltage input for regulated LCD voltage Input/Output port of third most positive analog LCD voltage (V3 or V4) P5.6/SD1DIO/R03 33 I/O General-purpose digital I/O SD24_B converter 1 bit stream data input/output Input/output port of lowest analog LCD voltage (V5) P5.7/SD2DIO/CB2 34 I/O General-purpose digital I/O SD24_B converter 2 bit stream data input/output Comparator_B input CB2 P6.0/SD3DIO 35 I/O General-purpose digital I/O SD24_B converter 3 bit stream data input/output Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 11 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Table 4. Terminal Functions – PEU Package (continued) TERMINAL NAME NO. I/O (1) DESCRIPTION PEU P3.6/PM_UCA2RXD/ PM_UCA2SOMI 36 I/O General-purpose digital I/O with mappable secondary function Default mapping: eUSCI_A2 UART receive data Default mapping: eUSCI_A2 SPI slave out master in P3.7/PM_UCA2TXD/ PM_UCA2SIMO 37 I/O General-purpose digital I/O with mappable secondary function Default mapping: eUSCI_A2 UART transmit data Default mapping: eUSCI_A2 SPI slave in master out P4.0/PM_UCA2CLK 38 I/O General-purpose digital I/O with mappable secondary function Default mapping: eUSCI_A2 clock input/output P4.1/PM_UCA3RXD/ PM_UCA3SOMI 39 I/O General-purpose digital I/O with mappable secondary function Default mapping: eUSCI_A3 UART receive data Default mapping: eUSCI_A3 SPI slave out master in P4.2/PM_UCA3TXD/ PM_UCA3SIMO 40 I/O General-purpose digital I/O with mappable secondary function Default mapping: eUSCI_A3 UART transmit data Default mapping: eUSCI_A3 SPI slave in master out P4.3/PM_UCA3CLK 41 I/O General-purpose digital I/O with mappable secondary function Default mapping: eUSCI_A3 clock input/output P4.4/PM_UCB1SOMI/ PM_UCB1SCL 42 I/O General-purpose digital I/O with mappable secondary function Default mapping: eUSCI_B1 SPI slave out, master in Default mapping: eUSCI_B1 I2C clock P4.5/PM_UCB1SIMO/ PM_UCB1SDA 43 I/O General-purpose digital I/O with mappable secondary function Default mapping: eUSCI_B1 SPI slave in, master out Default mapping: eUSCI_B1 I2C data P4.6/PM_UCB1CLK 44 I/O General-purpose digital I/O with mappable secondary function Default mapping: eUSCI_B1 clock input/output P4.7/PM_TA3.0 45 I/O General-purpose digital I/O with mappable secondary function Default mapping: Timer TA3 capture CCR0: CCI0A input, compare: Out0 output P6.1/SD4DIO/S39 46 I/O General-purpose digital I/O SD24_B converter 4 bit stream data input/output (not available in F674x devices) LCD segment output S39 P6.2/SD5DIO/S38 47 I/O General-purpose digital I/O SD24_B converter 5 bit stream data input/output (not available in F674x devices) LCD segment output S38 P6.3/SD6DIO/S37 48 I/O General-purpose digital I/O SD24_B converter 6 bit stream data input/output (not available in F674x, F676x devices) LCD segment output S37 P6.4/S36 49 I/O General-purpose digital I/O LCD segment output S36 P6.5/S35 50 I/O General-purpose digital I/O LCD segment output S35 P6.6/S34 51 I/O General-purpose digital I/O LCD segment output S34 P6.7/S33 52 I/O General-purpose digital I/O LCD segment output S33 12 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Table 4. Terminal Functions – PEU Package (continued) TERMINAL NAME NO. I/O (1) DESCRIPTION PEU P7.0/S32 53 I/O General-purpose digital I/O LCD segment output S32 P7.1/S31 54 I/O General-purpose digital I/O LCD segment output S31 P7.2/S30 55 I/O General-purpose digital I/O LCD segment output S30 P7.3/S29 56 I/O General-purpose digital I/O LCD segment output S29 P7.4/S28 57 I/O General-purpose digital I/O LCD segment output S28 P7.5/S27 58 I/O General-purpose digital I/O LCD segment output S27 P7.6/S26 59 I/O General-purpose digital I/O LCD segment output S26 P7.7/S25 60 I/O General-purpose digital I/O LCD segment output S25 P8.0/S24 61 I/O General-purpose digital I/O LCD segment output S24 P8.1/S23 62 I/O General-purpose digital I/O LCD segment output S23 P8.2/S22 63 I/O General-purpose digital I/O LCD segment output S22 P8.3/S21 64 I/O General-purpose digital I/O LCD segment output S21 P8.4/S20 65 I/O General-purpose digital I/O LCD segment output S20 P8.5/S19 66 I/O General-purpose digital I/O LCD segment output S19 P8.6/S18 67 I/O General-purpose digital I/O LCD segment output S18 P8.7/S17 68 I/O General-purpose digital I/O LCD segment output S17 VDSYS2 (2) 69 Digital power supply for I/Os DVSS2 70 Digital ground supply P9.0/S16 71 I/O General-purpose digital I/O LCD segment output S16 P9.1/S15 72 I/O General-purpose digital I/O LCD segment output S15 P9.2/S14 73 I/O General-purpose digital I/O LCD segment output S14 (2) The pins VDSYS1 and VDSYS2 must be connected externally on board for proper device operation. Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 13 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Table 4. Terminal Functions – PEU Package (continued) TERMINAL NAME NO. I/O (1) DESCRIPTION PEU P9.3/S13 74 I/O General-purpose digital I/O LCD segment output S13 P9.4/S12 75 I/O General-purpose digital I/O LCD segment output S12 P9.5/S11 76 I/O General-purpose digital I/O LCD segment output S11 P9.6/S10 77 I/O General-purpose digital I/O LCD segment output S10 P9.7/S9 78 I/O General-purpose digital I/O LCD segment output S9 P10.0/S8 79 I/O General-purpose digital I/O LCD segment output S8 P10.1/S7 80 I/O General-purpose digital I/O LCD segment output S7 P10.2/S6 81 I/O General-purpose digital I/O LCD segment output S6 P10.3/S5 82 I/O General-purpose digital I/O LCD segment output S5 P10.4/S4 83 I/O General-purpose digital I/O LCD segment output S4 P10.5/S3 84 I/O General-purpose digital I/O LCD segment output S3 P10.6/S2 85 I/O General-purpose digital I/O LCD segment output S2 P10.7/S1 86 I/O General-purpose digital I/O LCD segment output S1 P11.0/S0 87 I/O General-purpose digital I/O LCD segment output S0 P11.1/TA3.1/CB3 88 I/O General-purpose digital I/O Timer TA3 capture CCR1: CCI1A input, compare: Out1 output Comparator_B input CB3 P11.2/TA1.1 89 I/O General-purpose digital I/O Timer TA1 capture CCR1: CCI1A input, compare: Out1 output P11.3/TA2.1 90 I/O General-purpose digital I/O Timer TA2 capture CCR1: CCI1A input, compare: Out1 output P11.4/CBOUT 91 I/O General-purpose digital I/O Comparator_B Output P11.5/TACLK/RTCCLK 92 I/O General-purpose digital I/O Timer clock input TACLK for TA0, TA1, TA2, TA3 RTCCLK clock output P2.0/PM_TA0.0/BSL_TX 93 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: Timer TA0 capture CCR0: CCI0A input, compare: Out0 output Bootstrap loader: Data transmit 14 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Table 4. Terminal Functions – PEU Package (continued) TERMINAL NAME NO. I/O (1) DESCRIPTION PEU P2.1/PM_TA0.1/BSL_RX 94 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: Timer TA0 capture CCR1: CCI1A input, compare: Out1 output Bootstrap loader: Data receive P2.2/PM_TA0.2 95 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: Timer TA0 capture CCR2: CCI2A input, compare: Out2 output P2.3/PM_TA1.0 96 I/O General-purpose digital I/O port interrupt and with mappable secondary function Default mapping: Timer TA1 capture CCR0: CCI0A input, compare: Out0 output TEST/SBWTCK 97 I PJ.0/TDO 98 I/O General-purpose digital I/O Test data output PJ.1/TDI/TCLK 99 I/O General-purpose digital I/O Test data input or Test clock input PJ.2/TMS 100 I/O General-purpose digital I/O Test mode select PJ.3/TCK 101 I/O General-purpose digital I/O Test clock Reset input active low (3) Non-maskable interrupt input Spy-By-Wire data input/output Test mode pin – select digital I/O on JTAG pins Spy-Bi-Wire input clock RST/NMI/SBWTDIO 102 I/O SD0P0 103 I SD24_B positive analog input for converter 0 (4) SD0N0 104 I SD24_B negative analog input for converter 0 (4) SD1P0 105 I SD24_B positive analog input for converter 1 (4) SD1N0 106 I SD24_B negative analog input for converter 1 (4) SD2P0 107 I SD24_B positive analog input for converter 2 (4) SD2N0 108 I SD24_B negative analog input for converter 2 (4) SD3P0 109 I SD24_B positive analog input for converter 3 (4) SD3N0 110 I SD24_B negative analog input for converter 3 (3) VASYS2 111 Analog power supply selected between AVCC, AUXVCC1, AUXVCC2. Connect recommended capacitor value of CVSYS AVSS2 112 Analog ground supply VREF 113 I SD24_B external reference voltage SD4P0 114 I SD24_B positive analog input for converter 4 (4) (not available on F674x1 devices) SD4N0 115 I SD24_B negative analog input for converter 4 (4) (not available on F674x1 devices) SD5P0 116 I SD24_B positive analog input for converter 5 (4) (not available on F674x1 devices) SD5N0 117 I SD24_B negative analog input for converter 5 (4) (not available on F674x1 devices) SD6P0 118 I SD24_B positive analog input for converter 6 (4) (not available on F676x1, F674x1 devices) SD6N0 119 I SD24_B negative analog input for converter 6 (4) (not available on F676x1, F674x1 devices) AVSS1 120 (3) (4) Analog ground supply When this pin is configured as reset, the internal pullup resistor is enabled by default. It is recommended to short unused analog input pairs and connect them to analog ground. Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 15 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Table 4. Terminal Functions – PEU Package (continued) TERMINAL NAME NO. I/O (1) DESCRIPTION PEU AVCC 121 Analog power supply VASYS1 122 Analog power supply selected between AVCC, AUXVCC1, AUXVCC2. Connect recommended capacitor value of CVSYS AUXVCC2 123 Auxiliary power supply AUXVCC2 AUXVCC1 124 Auxiliary power supply AUXVCC1 VDSYS1 (5) 125 Digital power supply selected between DVCC, AUXVCC1, AUXVCC2. Connect recommended capacitor value of CVSYS. DVCC 126 Digital power supply DVSS1 127 Digital ground supply VCORE (6) 128 Regulated core power supply (internal use only, no external current loading) (5) (6) 16 The pins VDSYS1 and VDSYS2 must be connected externally on board for proper device operation. VCORE is for internal use only. No external current loading is possible. VCORE should only be connected to the recommended capacitor value, CVCORE. Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Table 5. Terminal Functions – PZ Package TERMINAL NAME NO. I/O (1) DESCRIPTION PZ SD0P0 1 I SD24_B positive analog input for converter 0 (2) SD0N0 2 I SD24_B negative analog input for converter 0 (2) SD1P0 3 I SD24_B positive analog input for converter 1 (2) SD1N0 4 I SD24_B negative analog input for converter 1 (2) SD2P0 5 I SD24_B positive analog input for converter 2 (2) SD2N0 6 I SD24_B negative analog input for converter 2 (2) SD3P0 7 I SD24_B positive analog input for converter 3 (2) SD3N0 8 I SD24_B negative analog input for converter 3 (2) VASYS2 9 AVSS2 10 VREF 11 I SD24_B external reference voltage SD4P0 12 I SD24_B positive analog input for converter 4 (2) (not available on F674x devices) SD4N0 13 I SD24_B negative analog input for converter 4 (2) (not available on F674x1 devices) SD5P0 14 I SD24_B positive analog input for converter 5 (2) (not available on F674x1 devices) SD5N0 15 I SD24_B negative analog input for converter 5 (2) (not available on F674x1 devices) SD6P0 16 I SD24_B positive analog input for converter 6 (2) (not available on F676x1, F674x1 devices) SD6N0 17 I SD24_B negative analog input for converter 6 (2) (not available on F676x1, F674x1 devices) AVSS1 18 Analog ground supply AVCC 19 Analog power supply VASYS1 20 Analog power supply selected between AVCC, AUXVCC1, AUXVCC2. Connect recommended capacitor value of CVSYS AUXVCC2 21 Auxiliary power supply AUXVCC2 AUXVCC1 22 Auxiliary power supply AUXVCC1 23 Digital power supply selected between DVCC, AUXVCC1, AUXVCC2. Connect recommended capacitor value of CVSYS. 24 Digital power supply 25 Digital ground supply VDSYS1 (3) DVCC DVSS1 VCORE (4) Analog power supply selected between AVCC, AUXVCC1, AUXVCC2. Connect recommended capacitor value of CVSYS. Analog ground supply 26 Regulated core power supply (internal use only, no external current loading) XIN 27 I/O Input terminal for crystal oscillator XOUT 28 I/O Output terminal for crystal oscillator AUXVCC3 29 RTCCAP1 30 I External time capture pin 1 for RTC_C RTCCAP0 31 I External time capture pin 0 for RTC_C P1.5/SMCLK/CB0/A5 P1.4/MCLK/CB1/A4 (1) (2) (3) (4) 32 33 Auxiliary power supply AUXVCC3 for back up subsystem I/O General-purpose digital I/O with port interrupt SMCLK clock output Comparator_B input CB0 Analog input A5 - 10-bit ADC I/O General-purpose digital I/O with port interrupt MCLK clock output Comparator_B input CB1 Analog input A4 - 10-bit ADC I = input, O = output It is recommended to short unused analog input pairs and connect them to analog ground. The pins VDSYS1 and VDSYS2 must be connected externally on board for proper device operation. VCORE is for internal use only. No external current loading is possible. VCORE should only be connected to the recommended capacitor value, CVCORE. Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 17 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Table 5. Terminal Functions – PZ Package (continued) TERMINAL NAME NO. I/O (1) DESCRIPTION PZ P1.3/ADC10CLK/A3 34 I/O General-purpose digital I/O with port interrupt ADC10_A clock output Analog input A3 - 10-bit ADC P1.2/ACLK/A2 35 I/O General-purpose digital I/O with port interrupt ACLK clock output Analog input A2 - 10-bit ADC I/O General-purpose digital I/O with port interrupt Timer TA2 CCR1 capture: CCI1A input, compare: Out1 output Comparator_B Output Positive terminal for the ADC reference voltage for an external applied reference voltage Analog input A1 - 10-bit ADC P1.1/TA2.1/CBOUT/ VeREF+/A1 36 P1.0/TA1.1/VeREF-/A0 37 I/O General-purpose digital I/O with port interrupt Timer TA1 CCR1 capture: CCI1A input, compare: Out1 output Negative terminal for the ADC's reference voltage for an external applied reference voltage Analog input A0 - 10-bit ADC COM0 38 I/O LCD common output COM0 for LCD backplane COM1 39 I/O LCD common output COM1 for LCD backplane P1.6/COM2 40 I/O General-purpose digital I/O with port interrupt LCD common output COM2 for LCD backplane P1.7/COM3 41 I/O General-purpose digital I/O with port interrupt LCD common output COM3 for LCD backplane I/O General-purpose digital I/O with port interrupt and mappable secondary function Default Mapping: Timer TA0 CCR0 capture: CCI0A input, compare: Out0 output Bootstrap loader: Data transmit LCD common output COM4 for LCD backplane P2.0/PM_TA0.0/ BSL_TX/COM4 42 P2.1/PM_TA0.1/ BSL_RX/COM5 43 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default Mapping: Timer TA0 CCR1 capture: CCI1A input, compare: Out1 output Bootstrap loader: Data receive LCD common output COM5 for LCD backplane P2.2/PM_TA0.2/COM6 44 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default Mapping: Timer TA0 CCR0 capture: CCI2A input, compare: Out2 output LCD common output COM6 for LCD backplane P2.3/PM_TA1.0/COM7 45 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default Mapping: Timer TA1 CCR0 capture: CCI0A input, compare: Out0 output LCD common output COM7 for LCD backplane LCDCAP/R33 46 I/O LCD capacitor connection Input/output port of most positive analog LCD voltage (V1) CAUTION: This pin must be connected to DVSS if not used. P2.4/PM_TA2.0/R23 47 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default Mapping: Timer TA2 CCR0 capture: CCI0A input, compare: Out0 output Input/Output port of second most positive analog LCD voltage (V2) 18 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Table 5. Terminal Functions – PZ Package (continued) TERMINAL NAME P2.5/PM_UCB0SOMI/ PM_UCB0SCL/LCDREF/ R13 NO. I/O (1) DESCRIPTION PZ 48 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: eUSCI_B0 SPI slave out, master in Default mapping: eUSCI_B0 I2C clock External reference voltage input for regulated LCD voltage Input/Output port of third most positive analog LCD voltage (V3 or V4) P2.6/PM_UCB0SIMO/ PM_UCB0SDA/R03 49 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: eUSCI_B0 SPI slave in, master out Default mapping: eUSCI_B0 I2C data Input/output port of lowest analog LCD voltage (V5) P2.7/PM_UCB0CLK/CB2 50 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: eUSCI_B0 clock input/output Comparator_B input CB2 P3.0/PM_UCA0RXD/ PM_UCA0SOMI 51 I/O General-purpose digital I/O with mappable secondary function Default mapping: eUSCI_A0 UART receive data Default mapping: eUSCI_A0 SPI slave out, master in P3.1/PM_UCA0TXD/ PM_UCA0SIMO/S39 52 I/O General-purpose digital I/O with mappable secondary function Default mapping: eUSCI_A0 UART transmit data Default mapping: eUSCI_A0 SPI slave in, master out LCD segment output S39 P3.2/PM_UCA0CLK/S38 53 I/O General-purpose digital I/O with mappable secondary function Default mapping: eUSCI_A0 clock input/output LCD segment output S38 P3.3/PM_UCA1CLK/S37 54 I/O General-purpose digital I/O with mappable secondary function Default mapping: eUSCI_A1 clock input/output LCD segment output S37 I/O General-purpose digital I/O with mappable secondary function Default mapping: eUSCI_A1 UART receive data Default mapping: eUSCI_A1 SPI slave out, master in LCD segment output S36 I/O General-purpose digital I/O with mappable secondary function Default mapping: eUSCI_A1 UART transmit data Default mapping: eUSCI_A1 SPI slave in, master out LCD segment output S35 I/O General-purpose digital I/O with mappable secondary function Default mapping: eUSCI_A2 UART receive data Default mapping: eUSCI_A2 SPI slave out, master in LCD segment output S34 P3.4/PM_UCA1RXD/ PM_UCA1SOMI/S36 P3.5/PM_UCA1TXD/ PM_UCA1SIMO/S35 P3.6/PM_UCA2RXD/ PM_UCA2SOMI/S34 55 56 57 P3.7/PM_UCA2TXD/ PM_UCA2SIMO/S33 58 I/O General-purpose digital I/O with mappable secondary function Default mapping: eUSCI_A2 UART transmit data Default mapping: eUSCI_A2 SPI slave in, master out LCD segment output S33 P4.0/PM_UCA2CLK/S32 59 I/O General-purpose digital I/O with mappable secondary function Default mapping: eUSCI_A2 clock input/output LCD segment output S32 Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 19 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Table 5. Terminal Functions – PZ Package (continued) TERMINAL NAME P4.1/PM_UCA3RXD/ PM_UCA3SOMI/S31 NO. I/O (1) DESCRIPTION PZ 60 I/O General-purpose digital I/O with mappable secondary function Default mapping: eUSCI_A3 UART receive data Default mapping: eUSCI_A3 SPI slave out, master in LCD segment output S31 P4.2/PM_UCA3TXD/ PM_UCA3SIMO/S30 61 I/O General-purpose digital I/O with mappable secondary function Default mapping: eUSCI_A3 UART transmit data Default mapping: eUSCI_A3 SPI slave in, master out LCD segment output S30 P4.3/PM_UCA3CLK/S29 62 I/O General-purpose digital I/O with mappable secondary function Default mapping: eUSCI_A3 clock input/output LCD segment output S29 I/O General-purpose digital I/O with mappable secondary function Default mapping: eUSCI_B1 SPI slave out, master in Default mapping: eUSCI_B1 I2C clock LCD segment output S28 P4.4/PM_UCB1SOMI/ PM_UCB1SCL/S28 63 P4.5/PM_UCB1SIMO/ PM_UCB1SDA/S27 64 I/O General-purpose digital I/O with mappable secondary function Default mapping: eUSCI_B1 SPI slave in, master out Default mapping: eUSCI_B1 I2C data LCD segment output S27 P4.6/PM_UCB1CLK/S26 65 I/O General-purpose digital I/O with mappable secondary function Default mapping: eUSCI_B1 clock input/output LCD segment output S26 P4.7/PM_TA3.0/S25 66 I/O General-purpose digital I/O with mappable secondary function Default Mapping: Timer TA3 CCR0 capture: CCI0A input, compare: Out0 output LCD segment output S25 P5.0/SDCLK/S24 67 I/O General-purpose digital I/O SD24_B bit stream clock input/output LCD segment output S24 P5.1/PM_SD0DIO/S23 68 I/O General-purpose digital I/O Default mapping: SD24_B converter 0 bit stream data input/output LCD segment output S23 P5.2/PM_SD1DIO/S22 69 I/O General-purpose digital I/O Default mapping: SD24_B converter 1 bit stream data input/output LCD segment output S22 P5.3/PM_SD2DIO/S21 70 I/O General-purpose digital I/O Default mapping: SD24_B converter 2 bit stream data input/output LCD segment output S21 P5.4/PM_SD3DIO/S20 71 I/O General-purpose digital I/O Default mapping: SD24_B converter 3 bit stream data input/output LCD segment output S20 I/O General-purpose digital I/O Default mapping: SD24_B converter 4 bit stream data input/output (not available on F674x1 devices) LCD segment output S19 P5.5/PM_SD4DIO/S19 20 72 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Table 5. Terminal Functions – PZ Package (continued) TERMINAL NAME P5.6/PM_SD5DIO/S18 NO. I/O (1) DESCRIPTION I/O General-purpose digital I/O Default mapping: SD24_B converter 5 bit stream data input/output (not available on F674x1 devices) LCD segment output S18 I/O General-purpose digital I/O Default mapping: SD24_B converter 4 bit stream data input/output (not available on F676x1, F674x1 devices) LCD segment output S17 PZ 73 P5.7/PM_SD6DIO/S17 74 VDSYS2 (5) 75 Digital power supply for I/Os DVSS2 76 Digital ground supply P6.0/S16 77 I/O General-purpose digital I/O LCD segment output S16 P6.1/S15 78 I/O General-purpose digital I/O LCD segment output S15 P6.2/S14 79 I/O General-purpose digital I/O LCD segment output S14 P6.3/S13 80 I/O General-purpose digital I/O LCD segment output S13 P6.4/S12 81 I/O General-purpose digital I/O LCD segment output S12 P6.5/S11 82 I/O General-purpose digital I/O LCD segment output S11 P6.6/S10 83 I/O General-purpose digital I/O LCD segment output S10 P6.7/S9 84 I/O General-purpose digital I/O LCD segment output S9 P7.0/S8 85 I/O General-purpose digital I/O LCD segment output S8 P7.1/S7 86 I/O General-purpose digital I/O LCD segment output S7 P7.2/S6 87 I/O General-purpose digital I/O LCD segment output S6 P7.3/S5 88 I/O General-purpose digital I/O LCD segment output S5 P7.4/S4 89 I/O General-purpose digital I/O LCD segment output S4 P7.5/S3 90 I/O General-purpose digital I/O LCD segment output S3 P7.6/S2 91 I/O General-purpose digital I/O LCD segment output S2 P7.7/S1 92 I/O General-purpose digital I/O LCD segment output S1 (5) The pins VDSYS1 and VDSYS2 must be connected externally on board for proper device operation. Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 21 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Table 5. Terminal Functions – PZ Package (continued) TERMINAL NAME P8.0/S0 NO. I/O (1) DESCRIPTION PZ 93 I/O General-purpose digital I/O LCD segment output S0 General-purpose digital I/O Timer clock input TACLK for TA0, TA1, TA2, TA3 RTCCLK clock output Comparator_B input CB3 P8.1/TACLK/RTCCLK/CB3 94 I/O TEST/SBWTCK 95 I PJ.0/TDO 96 I/O General-purpose digital I/O Test data output PJ.1/TDI/TCLK 97 I/O General-purpose digital I/O Test data input or Test clock input PJ.2/TMS 98 I/O General-purpose digital I/O Test mode select PJ.3/TCK 99 I/O General-purpose digital I/O Test clock I/O Reset input active low (6) Non-maskable interrupt input Spy-By-Wire data input/output RST/NMI/SBWTDIO (6) 22 100 Test mode pin – select digital I/O on JTAG pins Spy-By-Wire input clock When this pin is configured as reset, the internal pullup resistor is enabled by default. Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Development Tools Support All MSP430™ microcontrollers are supported by a wide variety of software and hardware development tools. Tools are available from TI and various third parties. See them all at www.ti.com/msp430tools. Hardware Features See the Code Composer Studio for MSP430 User's Guide (SLAU157) for details on the available features. MSP430 Architecture 4-Wire JTAG 2-Wire JTAG Breakpoints (N) Range Breakpoints Clock Control State Sequencer Trace Buffer LPMx.5 Debugging Support MSP430Xv2 Yes Yes 3 Yes Yes No No Yes Recommended Hardware Options Target Socket Boards The target socket boards allow easy programming and debugging of the device using JTAG. They also feature header pin outs for prototyping. Target socket boards are orderable individually or as a kit with the JTAG programmer and debugger included. The following table shows the compatible target boards and the supported packages. Package Target Board and Programmer Bundle Target Board Only 128-pin LQFP (PEU) MSP-FET430U128 MSP-TS430PEU128 Experimenter Boards Experimenter Boards and Evaluation kits are available for some MSP430 devices. These kits feature additional hardware components and connectivity for full system evaluation and prototyping. See www.ti.com/msp430tools for details. Debugging and Programming Tools Hardware programming and debugging tools are available from TI and from its third party suppliers. See the full list of available tools at www.ti.com/msp430tools. Production Programmers The production programmers expedite loading firmware to devices by programming several devices simultaneously. Part Number PC Port MSP-GANG Serial and USB Features Provider Program up to eight devices at a time. Works with PC or standalone. Texas Instruments Recommended Software Options Integrated Development Environments Software development tools are available from TI or from third parties. Open source solutions are also available. This device is supported by Code Composer Studio™ IDE (CCS). MSP430Ware MSP430Ware is a collection of code examples, data sheets, and other design resources for all MSP430 devices delivered in a convenient package. In addition to providing a complete collection of existing MSP430 design resources, MSP430Ware also includes a high-level API called MSP430 Driver Library. This library makes it easy to program MSP430 hardware. MSP430Ware is available as a component of CCS or as a standalone package. Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 23 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com SYS/BIOS SYS/BIOS is an advanced real-time operating system for the MSP430 microcontrollers. It features preemptive deterministic multi-tasking, hardware abstraction, memory management, and real-time analysis. SYS/BIOS is available free of charge and is provided with full source code. Command-Line Programmer MSP430 Flasher is an open-source, shell-based interface for programming MSP430 microcontrollers through a FET programmer or eZ430 using JTAG or Spy-Bi-Wire (SBW) communication. MSP430 Flasher can be used to download binary files (.txt or .hex) files directly to the MSP430 Flash without the need for an IDE. Device and Development Tool Nomenclature To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all MSP430™ MCU devices and support tools. Each MSP430™ MCU commercial family member has one of three prefixes: MSP, PMS, or XMS (for example, MSP430F5259). Texas Instruments recommends two of three possible prefix designators for its support tools: MSP and MSPX. These prefixes represent evolutionary stages of product development from engineering prototypes (with XMS for devices and MSPX for tools) through fully qualified production devices and tools (with MSP for devices and MSP for tools). Device development evolutionary flow: XMS – Experimental device that is not necessarily representative of the final device's electrical specifications PMS – Final silicon die that conforms to the device's electrical specifications but has not completed quality and reliability verification MSP – Fully qualified production device Support tool development evolutionary flow: MSPX – Development-support product that has not yet completed Texas Instruments internal qualification testing. MSP – Fully-qualified development-support product XMS and PMS devices and MSPX development-support tools are shipped against the following disclaimer: "Developmental product is intended for internal evaluation purposes." MSP devices and MSP development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies. Predictions show that prototype devices (XMS and PMS) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used. TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, PZP) and temperature range (for example, T). Figure 2 provides a legend for reading the complete device name for any family member. 24 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Part Number Decoder MSP 430 F 5 438 A I ZQW T XX Processor Family Optional: Additional Features 430 MCU Platform Optional: Tape and Reel Device Type Packaging Series Feature Set Processor Family Optional: Temperature Range Optional: A = Revision CC = Embedded RF Radio MSP = Mixed Signal Processor XMS = Experimental Silicon PMS = Prototype Device TI’s Low Power Microcontroller Platform 430 MCU Platform Device Type Memory Type C = ROM F = Flash FR = FRAM G = Flash or FRAM (Value Line) L = No Nonvolatile Memory Specialized Application AFE = Analog Front End BT = Preprogrammed with Bluetooth BQ = Contactless Power CG = ROM Medical FE = Flash Energy Meter FG = Flash Medical FW = Flash Electronic Flow Meter Series 1 Series = Up to 8 MHz 2 Series = Up to 16 MHz 3 Series = Legacy 4 Series = Up to 16 MHz w/ LCD 5 Series = Up to 25 MHz 6 Series = Up to 25 MHz w/ LCD 0 = Low Voltage Series Feature Set Various Levels of Integration Within a Series Optional: A = Revision N/A Optional: Temperature Range S = 0°C to 50°C C = 0°C to 70°C I = -40°C to 85°C T = -40°C to 105°C Packaging www.ti.com/packaging Optional: Tape and Reel T = Small Reel (7 inch) R = Large Reel (11 inch) No Markings = Tube or Tray Optional: Additional Features -EP = Enhanced Product (-40°C to 105°C) -HT = Extreme Temperature Parts (-55°C to 150°C) -Q1 = Automotive Q100 Qualified Figure 2. Device Nomenclature Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 25 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Short-Form Description CPU (Link to User's Guide) The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand. Program Counter PC/R0 Stack Pointer SP/R1 Status Register SR/CG1/R2 Constant Generator CG2/R3 General-Purpose Register R4 General-Purpose Register R5 General-Purpose Register R6 General-Purpose Register R7 General-Purpose Register R8 General-Purpose Register R9 Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions. General-Purpose Register R10 General-Purpose Register R11 Instruction Set General-Purpose Register R12 The instruction set consists of the original 51 instructions with three formats and seven address modes and additional instructions for the expanded address range. Each instruction can operate on word and byte data. Table 6 shows examples of the three types of instruction formats; Table 7 shows the address modes. General-Purpose Register R13 General-Purpose Register R14 General-Purpose Register R15 The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-toregister operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are general-purpose registers. Table 6. Instruction Word Formats INSTRUCTION WORD FORMAT EXAMPLE Dual operands, source-destination ADD Single operands, destination only R4,R5 R4 + R5 → R5 R8 PC → (TOS), R8 → PC CALL Relative jump, un/conditional OPERATION JNE Jump-on-equal bit = 0 Table 7. Address Mode Descriptions ADDRESS MODE (1) 26 S (1) D (1) SYNTAX EXAMPLE Register + + MOV Rs,Rd MOV R10,R11 OPERATION R10 → R11 Indexed + + MOV X(Rn),Y(Rm) MOV 2(R5),6(R6) M(2+R5) → M(6+R6) Symbolic (PC relative) + + MOV EDE,TONI M(EDE) → M(TONI) Absolute + + MOV & MEM, & TCDAT M(MEM) → M(TCDAT) Indirect + MOV @Rn,Y(Rm) MOV @R10,Tab(R6) M(R10) → M(Tab+R6) Indirect autoincrement + MOV @Rn+,Rm MOV @R10+,R11 M(R10) → R11 R10 + 2 → R10 Immediate + MOV #X,TONI MOV #45,TONI #45 → M(TONI) S = source, D = destination Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Operating Modes The MSP430 has one active mode and six software selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request, and restore back to the lowpower mode on return from the interrupt program. The following seven operating modes can be configured by software: • Active mode (AM) – All clocks are active • Low-power mode 0 (LPM0) – CPU is disabled – ACLK and SMCLK remain active, MCLK is disabled – FLL loop control remains active • Low-power mode 1 (LPM1) – CPU is disabled – FLL loop control is disabled – ACLK and SMCLK remain active, MCLK is disabled • Low-power mode 2 (LPM2) – CPU is disabled – MCLK and FLL loop control and DCOCLK are disabled – DCO's dc-generator remains enabled – ACLK remains active • Low-power mode 3 (LPM3) – CPU is disabled – MCLK, FLL loop control, and DCOCLK are disabled – DCO's dc-generator is disabled – ACLK remains active • Low-power mode 4 (LPM4) – CPU is disabled – ACLK is disabled – MCLK, FLL loop control, and DCOCLK are disabled – DCO's dc-generator is disabled – Crystal oscillator is stopped – Complete data retention • Low-power mode 3.5 (LPM3.5) – Internal regulator disabled – No RAM retention, Backup RAM retained – I/O pad state retention – RTC clocked by low-frequency oscillator – Wakeup from RST/NMI, RTC_C events, Ports P1 and P2 • Low-power mode 4.5 (LPM4.5) – Internal regulator disabled – No RAM retention, Backup RAM retained – RTC is disabled – I/O pad state retention – Wakeup from RST/NMI, Ports P1 and P2 Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 27 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Interrupt Vector Addresses The interrupt vectors and the power-up start address are located in the address range 0FFFFh to 0FF80h. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence. Table 8. Interrupt Sources, Flags, and Vectors INTERRUPT SOURCE INTERRUPT FLAG System Reset Power-Up External Reset Watchdog Timeout, Key Violation Flash Memory Key Violation WDTIFG, KEYV (SYSRSTIV) (1) (2) SYSTEM INTERRUPT WORD ADDRESS PRIORITY Reset 0FFFEh 63, highest System NMI PMM Vacant Memory Access JTAG Mailbox SVMLIFG, SVMHIFG, DLYLIFG, DLYHIFG, VLRLIFG, VLRHIFG, VMAIFG, JMBNIFG, JMBOUTIFG (SYSSNIV) (1) (3) (Non)maskable 0FFFCh 62 User NMI NMI Oscillator Fault Flash Memory Access Violation Supply Switched NMIIFG, OFIFG, ACCVIFG, AUXSWGIFG (SYSUNIV) (1) (3) (Non)maskable 0FFFAh 61 Watchdog Timer_A Interval Timer Mode WDTIFG Maskable 0FFF8h 60 (4) Maskable 0FFF6h 59 (1) (4) Maskable 0FFF4h 58 Maskable 0FFF2h 57 Maskable 0FFF0h 56 Maskable 0FFEEh 55 Maskable 0FFECh 54 Maskable 0FFEAh 53 Maskable 0FFE8h 52 AUXSWGIFG, AUXIFG0, AUXIFG1, AUXIFG2 (AUXIV) (1) (4) Maskable 0FFE6h 51 (1) (4) Maskable 0FFE4h 50 Maskable 0FFE2h 49 eUSCI_A0 Receive or Transmit eUSCI_B0 Receive or Transmit ADC10_A UCA0RXIFG, UCA0TXIFG (UCA0IV) (1) UCB0RXIFG, UCB0TXIFG (UCB0IV) ADC10IFG0, ADC10INIFG, ADC10LOIFG, ADC10HIIFG, ADC10TOVIFG, ADC10OVIFG (ADC10IV) (1) (4) SD24_B Interrupt Flags (SD24IV) (1) SD24_B Timer TA0 TA0CCR0 CCIFG0 (4) (4) TA0CCR1 CCIFG1, TA0CCR2 CCIFG2, TA0IFG (TA0IV) (1) (4) Timer TA0 (1) (4) eUSCI_A1 Receive or Transmit UCA1RXIFG, UCA1TXIFG (UCA1IV) eUSCI_A2 Receive or Transmit UCA2RXIFG, UCA2TXIFG (UCA2IV) (1) Auxiliary Supplies DMA DMA0IFG, DMA1IFG, DMA2IFG (DMAIV) Timer TA1 TA1CCR0 CCIFG0 (4) Timer TA1 TA1CCR1 CCIFG1, TA1IFG (TA1IV) (1) (4) eUSCI_A3 Receive or Transmit eUSCI_B1 Receive or Transmit Maskable 0FFE0h 48 UCA3RXIFG, UCA3TXIFG (UCA3IV) (1) (4) Maskable 0FFDEh 47 UCB1RXIFG, UCB1TXIFG (UCB1IV) (1) (4) Maskable 0FFDCh 46 Maskable 0FFDAh 45 Maskable 0FFD8h 44 Maskable 0FFD6h 43 Maskable 0FFD4h 42 Maskable 0FFD2h 41 Maskable 0FFD0h 40 Maskable 0FFCEh 39 Maskable 0FFCCh 38 P1IFG.0 to P1IFG.7 (P1IV) (1) I/O Port P1 Timer TA2 TA2CCR0 CCIFG0 (4) Timer TA2 TA2CCR1 CCIFG1, TA2IFG (TA2IV) (1) (4) I/O Port P2 P2IFG.0 to P2IFG.7 (P2IV) Timer TA3 TA3CCR0 CCIFG0 (4) Timer TA3 TA3CCR1 CCIFG1, TA3IFG (TA3IV) (1) (4) LCD_C RTC_C (1) (2) (3) (4) 28 (4) (4) (1) (4) LCD_C Interrupt Flags (LCDCIV) (1) (4) RTCOFIFG, RTCRDYIFG, RTCTEVIFG, RTCAIFG, RT0PSIFG, RT1PSIFG (RTCIV) (1) (4) Multiple source flags A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space. (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot disable it. Interrupt flags are located in the module. Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Table 8. Interrupt Sources, Flags, and Vectors (continued) INTERRUPT SOURCE Comparator_B INTERRUPT FLAG Comparator_B Interrupt Flags (CBIV) WORD ADDRESS PRIORITY Maskable 0FFCAh 37 0FFC6h 35 ⋮ ⋮ 0FF80h 0, lowest Reserved (5) Reserved (5) (1) SYSTEM INTERRUPT Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To maintain compatibility with other devices, it is recommended to reserve these locations. Special Function Registers (SFRs) The MSP430 SFRs are located in the lowest address space and can be accessed via word or byte formats. Legend rw: rw-0,1: rw-(0,1): rw-[0,1]: – Bit can be read and written. Bit can be read and written. It is reset or set by PUC. Bit can be read and written. It is reset or set by POR. Bit can be read and written. It is reset or set by BOR. SFR bit is not present in device. Table 9. Interrupt Enable 1 15 14 13 12 11 10 9 8 – – – – – – AUXSWNMIE – rw-0 7 6 5 4 3 2 1 0 JMBOUTIE JMBINIE ACCVIE NMIIE VMAIE – OFIE WDTIE rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 rw-0 WDTIE OFIE VMAIE NMIIE ACCVIE JMBINIE JMBOUTIE AUXSWNMIE Watchdog timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog timer is configured as a general-purpose timer. Oscillator fault interrupt enable Vacant memory access interrupt enable Nonmaskable interrupt enable Flash access violation interrupt enable JTAG mailbox input interrupt enable JTAG mailbox output interrupt enable Supply switched non-maskable interrupt enable Table 10. Interrupt Flag 1 15 14 13 12 11 10 9 8 – – – – – – – – 7 6 5 4 3 2 1 0 JMBOUTIFG JMBINIFG – NMIIFG VMAIFG – OFIFG WDTIFG rw-[0] rw-[0] rw-0 rw-0 rw-0 rw-0 WDTIFG OFIFG VMAIFG NMIIFG JMBINIFG JMBOUTIFG Set on watchdog timer overflow (in watchdog mode) or security key violation Reset on VCC power-on or a reset condition at the RST/NMI pin in reset mode Flag set on oscillator fault Set on vacant memory access Set via RST/NMI pin Set on JTAG mailbox input message Set on JTAG mailbox output register ready for next message Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 29 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Memory Organization Table 11. Memory Organization Main Memory (flash) MSP430F67791 MSP430F67691 MSP430F67491 MSP430F67781 MSP430F67681 MSP430F67481 MSP430F67771 MSP430F67671 MSP430F67471 512kB 512kB 256kB 00FFFFh to 00FF80h 00FFFFh to 00FF80h 00FFFFh to 00FF80h Bank 3 128kB 08BFFFh to 06C000h 128kB 08BFFFh to 06C000h not available Bank 2 128kB 06BFFFh to 04C000h 128kB 06BFFFh to 04C000h not available Bank 1 128kB 04BFFFh to 02C000h 128kB 04BFFFh to 02C000h 128kB 04BFFFh to 02C000h Bank 0 128kB 02BFFFh to 00C000h 128kB 02BFFFh to 00C000h 128kB 02BFFFh to 00C000h Total Size Main: Interrupt vector Main: code memory RAM Total Size 32kB 16kB 32kB Sector 7 4kB 009BFFh to 008C00h not available 4kB 009BFFh to 008C00h Sector 6 4kB 008BFFh to 007C00h not available 4kB 008BFFh to 007C00h Sector 5 4kB 007BFFh to 006C00h not available 4kB 007BFFh to 006C00h Sector 4 4kB 006BFFh to 005C00h not available 4kB 006BFFh to 005C00h Sector 3 4kB 005BFFh to 004C00h 4kB 005BFFh to 004C00h 4kB 005BFFh to 004C00h Sector 2 4kB 004BFFh to 003C00h 4kB 004BFFh to 003C00h 4kB 004BFFh to 003C00h Sector 1 4kB 003BFFh to 002C00h 4kB 003BFFh to 002C00h 4kB 003BFFh to 002C00h Sector 0 4kB 002BFFh to 001C00h 4kB 002BFFh to 001C00h 4kB 002BFFh to 001C00h 128 B 001AFFh to 001A80h 128 B 001AFFh to 001A80h 128 B 001AFFh to 001A80h 128 B 001A7Fh to 001A00h 128 B 001A7Fh to 001A00h 128 B 001A7Fh to 001A00h Info A 128 B 0019FFh to 001980h 128 B 0019FFh to 001980h 128 B 0019FFh to 001980h Info B 128 B 00197Fh to 001900h 128 B 00197Fh to 001900h 128 B 00197Fh to 001900h Info C 128 B 0018FFh to 001880h 128 B 0018FFh to 001880h 128 B 0018FFh to 001880h Info D 128 B 00187Fh to 001800h 128 B 00187Fh to 001800h 128 B 00187Fh to 001800h BSL 3 512 B 0017FFh to 001600h 512 B 0017FFh to 001600h 512 B 0017FFh to 001600h BSL 2 512 B 0015FFh to 001400h 512 B 0015FFh to 001400h 512 B 0015FFh to 001400h BSL 1 512 B 0013FFh to 001200h 512 B 0013FFh to 001200h 512 B 0013FFh to 001200h BSL 0 512 B 0011FFh to 001000h 512 B 0011FFh to 001000h 512 B 0011FFh to 001000h 4 KB 000FFFh to 0h 4 KB 000FFFh to 0h 4 KB 000FFFh to 0h Device Descriptor Information memory (flash) Bootstrap loader (BSL) memory (flash) Peripherals 30 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 MSP430F67761 MSP430F67661 MSP430F67461 Main Memory (flash) Main: code memory Main: Interrupt vector Total Size 256kB 128kB 00FFFFh to 00FF80h 00FFFFh to 00FF80h Bank 3 not available not available Bank 2 not available not available Bank 1 128kB 04BFFFh to 02C000h not available Bank 0 128kB 02BFFFh to 00C000h 128kB 02BFFFh to 00C000h Total Size RAM 16kB 16kB Sector 7 not available not available Sector 6 not available not available Sector 5 not available not available Sector 4 not available not available Sector 3 4kB 005BFFh to 004C00h 4kB 005BFFh to 004C00h Sector 2 4kB 004BFFh to 003C00h 4kB 004BFFh to 003C00h Sector 1 4kB 003BFFh to 002C00h 4kB 003BFFh to 002C00h Sector 0 4kB 002BFFh to 001C00h 4kB 002BFFh to 001C00h 128 B 001AFFh to 001A80h 128 B 001AFFh to 001A80h 128 B 001A7Fh to 001A00h 128 B 001A7Fh to 001A00h Info A 128 B 0019FFh to 001980h 128 B 0019FFh to 001980h Info B 128 B 00197Fh to 001900h 128 B 00197Fh to 001900h Info C 128 B 0018FFh to 001880h 128 B 0018FFh to 001880h Info D 128 B 00187Fh to 001800h 128 B 00187Fh to 001800h BSL 3 512 B 0017FFh to 001600h 512 B 0017FFh to 001600h BSL 2 512 B 0015FFh to 001400h 512 B 0015FFh to 001400h BSL 1 512 B 0013FFh to 001200h 512 B 0013FFh to 001200h BSL 0 512 B 0011FFh to 001000h 512 B 0011FFh to 001000h 4 KB 000FFFh to 0h 4 KB 000FFFh to 0h Device Descriptor Information memory (flash) Bootstrap loader (BSL) memory (flash) MSP430F67751 MSP430F67651 MSP430F67451 Peripherals Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 31 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Bootstrap Loader (BSL) The BSL enables users to program the flash memory or RAM using various serial interfaces. Access to the device memory via the BSL is protected by an user-defined password. BSL entry requires a specific entry sequence on the RST/NMI/SBWTDIO and TEST/SBWTCK pins. For a complete description of the features of the BSL and its implementation, see the MSP430 Programming Via the Bootstrap Loader User's Guide (SLAU319). Table 12. UART BSL Pin Requirements and Functions DEVICE SIGNAL BSL FUNCTION RST/NMI/SBWTDIO Entry sequence signal TEST/SBWTCK Entry sequence signal P2.0 Data transmit P2.1 Data receive VCC Power supply VSS Ground supply JTAG Operation JTAG Standard Interface The MSP430 family supports the standard JTAG interface which requires four signals for sending and receiving data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to enable the JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with MSP430 development tools and device programmers. The JTAG pin requirements are shown in Table 13. For further details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide (SLAU278). For a complete description of the features of the JTAG interface and its implementation, see MSP430 Programming Via the JTAG Interface (SLAU320). Table 13. JTAG Pin Requirements and Functions DEVICE SIGNAL DIRECTION FUNCTION PJ.3/TCK IN JTAG clock input PJ.2/TMS IN JTAG state control PJ.1/TDI/TCLK IN JTAG data input, TCLK input PJ.0/TDO OUT JTAG data output TEST/SBWTCK IN Enable JTAG pins RST/NMI/SBWTDIO IN External reset VCC Power supply VSS Ground supply Spy-Bi-Wire Interface In addition to the standard JTAG interface, the MSP430 family supports the two wire Spy-Bi-Wire interface. SpyBi-Wire can be used to interface with MSP430 development tools and device programmers. The Spy-Bi-Wire interface pin requirements are shown in Table 14. For further details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide (SLAU278). For a complete description of the features of the JTAG interface and its implementation, see MSP430 Programming Via the JTAG Interface (SLAU320). Table 14. Spy-Bi-Wire Pin Requirements and Functions 32 DEVICE SIGNAL DIRECTION FUNCTION TEST/SBWTCK IN Spy-Bi-Wire clock input RST/NMI/SBWTDIO IN, OUT Spy-Bi-Wire data input/output VCC Power supply VSS Ground supply Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Flash Memory (Link to User's Guide) The flash memory can be programmed via the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the CPU. The CPU can perform single-byte, single-word, and long-word writes to the flash memory. Features of the flash memory include: • Flash memory has n segments of main memory and four segments of information memory (A to D) of 128 bytes each. Each segment in main memory is 512 bytes in size. • Segments 0 to n may be erased in one step, or each segment may be individually erased. • Segments A to D can be erased individually, or as a group with segments 0 to n. Segments A to D are also called information memory. • Segment A can be locked separately. RAM Memory (Link to User's Guide) The RAM memory is made up of n sectors. Each sector can be completely powered down to save leakage; however, all data is lost. Features of the RAM memory include: • RAM memory has n sectors of 4K bytes each. • Each sector 0 to n can be complete disabled, however data retention is lost. • Each sector 0 to n automatically enters low power retention mode when possible. Backup RAM Memory (Link to User's Guide) The Backup RAM provides a limited number of bytes of RAM that are retained during LPM3.5. This Backup RAM is part of the Backup subsystem that operates on dedicated power supply AUXVCC3.There are 8 bytes of Backup RAM available in this device. It can be wordwise accessed via the registers BAKMEM0, BAKMEM1, BAKMEM2, and BAKMEM3. The Backup RAM registers cannot be accessed by CPU when the high-side SVS is disabled by the user application. Peripherals Peripherals are connected to the CPU through data, address, and control buses and can be handled using all instructions. For complete module descriptions, see the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208). Oscillator and System Clock (Link to User's Guide) The Unified Clock System (UCS) module includes support for a 32768-Hz watch crystal oscillator, an internal very-low-power low-frequency oscillator (VLO), an internal trimmed low-frequency oscillator (REFO), and an integrated internal digitally controlled oscillator (DCO). The UCS module is designed to meet the requirements of both low system cost and low power consumption. The UCS module features digital frequency locked loop (FLL) hardware that, in conjunction with a digital modulator, stabilizes the DCO frequency to a programmable multiple of the selected FLL reference frequency. The internal DCO provides a fast turn-on clock source and stabilizes in less than 5 µs. The UCS module provides the following clock signals: • Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal, the internal low-frequency oscillator (VLO), or the trimmed low-frequency oscillator (REFO). • Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by same sources made available to ACLK. • Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by same sources made available to ACLK. • ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, ACLK/8, ACLK/16, ACLK/32. Power Management Module (PMM) (Link to User's Guide) The PMM includes an integrated voltage regulator that supplies the core voltage to the device and contains programmable output levels to provide for power optimization. The PMM also includes supply voltage supervisor (SVS) and supply voltage monitoring (SVM) circuitry, as well as brownout protection. The brownout circuit is implemented to provide the proper internal reset signal to the device during power-on and power-off. The SVS/SVM circuitry detects if the supply voltage drops below a user-selectable level and supports both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (the device is not automatically reset). SVS and SVM circuitry is available on the primary supply and core supply. Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 33 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Auxiliary Supply System (Link to User's Guide) The auxiliary supply system provides the option to operate the device from auxiliary supplies when the primary supply fails. There are two auxiliary supplies (AUXVCC1 and AUXVCC2) supported in MSP430F67xx. This module supports automatic and manual switching from primary supply to auxiliary supplies while maintaining full functionality. It allows threshold-based monitoring of primary and auxiliary supplies. The device can be started from primary supply or AUXVCC1, whichever is higher. Auxiliary supply system enables internal monitoring of voltage levels on primary and auxiliary supplies using ADC10_A. This module also implements a simple charger for backup capacitors. Backup Subsystem (Link to User's Guide) The Backup subsystem operates on a dedicated power supply AUXVCC3. This subsystem includes lowfrequency oscillator, Real-Time Clock module, and Backup RAM. The functionality of Backup subsystem is retained during LPM3.5. The Backup subsystem module registers cannot be accessed by CPU when the high side SVS is disabled by user. Digital I/O (Link to User's Guide) There are up to eleven 8-bit I/O ports implemented. For 128-pin options, Ports P1 to P10 are complete, and Port P11 is 6 bits wide. For 100-pin options, Ports P1 to P7 are complete, Port P8 is 2 bits wide, and ports P9, P10, and P11 are completely removed. Port PJ contains four individual I/O pins, common to all devices. All I/O bits are individually programmable. • Any combination of input, output, and interrupt conditions is possible. • Programmable pullup or pulldown on all ports. • Programmable drive strength on all ports. • Edge-selectable interrupt and LPM3.5, LPM4.5 wakeup input capability available for all bits of ports P1 and P2. • Read-write access to port-control registers is supported by all instructions. • Ports can be accessed byte-wise (P1 Through P11) or word-wise in pairs (PA Through PF). Port Mapping Controller (Link to User's Guide) The port mapping controller allows flexible and reconfigurable mapping of digital functions to Ports P2, P3, and P4. Table 15. Port Mapping Mnemonics and Functions VALUE PxMAPy MNEMONIC INPUT PIN FUNCTION OUTPUT PIN FUNCTION 0 PM_NONE None DVSS 1 2 3 4 5 6 eUSCI_A0 UART RXD (direction controlled by eUSCI – Input) PM_UCA0SOMI eUSCI_A0 SPI slave out master in (direction controlled by eUSCI) PM_UCA0TXD eUSCI_A0 UART TXD (direction controlled by eUSCI – Output) PM_UCA0SIMO eUSCI_A0 SPI slave in master out (direction controlled by eUSCI) PM_UCA0CLK eUSCI_A0 clock input/output (direction controlled by eUSCI) PM_UCA0STE eUSCI_A0 SPI slave transmit enable (direction controlled by eUSCI) PM_UCA1RXD eUSCI_A1 UART RXD (direction controlled by eUSCI – Input) PM_UCA1SOMI eUSCI_A1 SPI slave out master in (direction controlled by eUSCI) PM_UCA1TXD eUSCI_A1 UART TXD (direction controlled by eUSCI – Output) PM_UCA1SIMO eUSCI_A1 SPI slave in master out (direction controlled by eUSCI) 7 PM_UCA1CLK eUSCI_A1 clock input/output (direction controlled by eUSCI) 8 PM_UCA1STE eUSCI_A1 SPI slave transmit enable (direction controlled by eUSCI) 9 10 11 34 PM_UCA0RXD PM_UCA2RXD eUSCI_A2 UART RXD (direction controlled by eUSCI – Input) PM_UCA2SOMI eUSCI_A2 SPI slave out master in (direction controlled by eUSCI) PM_UCA2TXD eUSCI_A2 UART TXD (direction controlled by eUSCI – Output) PM_ UCA2SIMO eUSCI_A2 SPI slave in master out (direction controlled by eUSCI) PM_UCA2CLK eUSCI_A2 clock input/output (direction controlled by eUSCI) Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Table 15. Port Mapping Mnemonics and Functions (continued) VALUE PxMAPy MNEMONIC 12 PM_UCA2STE 13 14 OUTPUT PIN FUNCTION PM_UCA3RXD eUSCI_A3 UART RXD (direction controlled by eUSCI – Input) PM_UCA3SOMI eUSCI_A3 SPI slave out master in (direction controlled by eUSCI) PM_UCA3TXD eUSCI_A3 UART TXD (direction controlled by eUSCI – Output) PM_ UCA3SIMO eUSCI_A3 SPI slave in master out (direction controlled by eUSCI) 15 PM_UCA3CLK eUSCI_A3 clock input/output (direction controlled by eUSCI) 16 PM_UCA3STE eUSCI_A3 SPI slave transmit enable (direction controlled by eUSCI) 17 18 PM_UCB0SIMO eUSCI_B0 SPI slave in master out (direction controlled by eUSCI) PM_UCB0SDA eUSCI_B0 I2C data (open drain and direction controlled by eUSCI) PM_UCB0SOMI eUSCI_B0 SPI slave out master in (direction controlled by eUSCI) PM_UCB0SCL eUSCI_B0 I2C clock (open drain and direction controlled by eUSCI) 19 PM_UCB0CLK eUSCI_B0 clock input/output (direction controlled by eUSCI) 20 PM_UCB0STE eUSCI_B0 SPI slave transmit enable (direction controlled by eUSCI) PM_UCB1SIMO eUSCI_B1 SPI slave in master out (direction controlled by eUSCI) PM_UCB1SDA eUSCI_B1 I2C data (open drain and direction controlled by eUSCI) 21 22 PM_UCB1SOMI eUSCI_B1 SPI slave out master in (direction controlled by eUSCI) PM_UCB1SCL eUSCI_B1 I2C clock (open drain and direction controlled by eUSCI) 23 PM_UCB1CLK eUSCI_B1 clock input/output (direction controlled by eUSCI) 24 PM_UCB1STE eUSCI_B1 SPI slave transmit enable (direction controlled by eUSCI) 25 PM_TA0.0 TA0 CCR0 capture input CCI0A TA0 CCR0 compare output Out0 26 PM_TA0.1 TA0 CCR1 capture input CCI1A TA0 CCR1 compare output Out1 27 PM_TA0.2 TA0 CCR2 capture input CCI2A TA0 CCR2 compare output Out2 28 PM_TA1.0 TA1 CCR0 capture input CCI0A TA1 CCR0 compare output Out0 29 PM_TA2.0 TA2 CCR0 capture input CCI0A TA2 CCR0 compare output Out0 TA3 CCR0 capture input CCI0A TA3 CCR0 compare output Out0 30 PM_TA3.0 31(0FFh) (1) INPUT PIN FUNCTION eUSCI_A2 SPI slave transmit enable (direction controlled by eUSCI) (1) PM_ANALOG Disables the output driver and the input Schmitt trigger to prevent parasitic cross currents when applying analog signals. The value of the PM_ANALOG mnemonic is set to 0FFh. The port mapping registers are only 5 bits wide and the upper bits are ignored, which results in a read value of 31. Table 16. Default Port Mapping PIN NAME PEU PZ PxMAPy MNEMONIC INPUT PIN FUNCTION OUTPUT PIN FUNCTION P2.0/PM_TA0.0 P2.0/PM_TA0.0/COM4 PM_TA0.0 TA0 CCR0 capture input CCI0A TA0 CCR0 compare output Out0 P2.1/PM_TA0.1 P2.1/PM_TA0.1/COM5 PM_TA0.1 TA0 CCR1 capture input CCI1A TA0 CCR1 compare output Out1 P2.2/PM_TA0.2 P2.2/PM_TA0.2/COM6 PM_TA0.2 TA0 CCR2 capture input CCI2A TA0 CCR2 compare output Out2 P2.3/PM_TA1.0 P2.3/PM_TA1.0/COM7 PM_TA1.0 TA1 CCR0 capture input CCI0A TA1 CCR0 compare output Out0 P2.4/PM_TA2.0 P1.1/PM_TA2.0/R23 PM_TA2.0 TA2 CCR0 capture input CCI0A TA2 CCR0 compare output Out0 P2.5/PM_UCB0SOMI/ PM_UCB0SCL P2.0/PM_UCB0SOMI/ PM_UCB0SCL/R13 PM_UCB0SOMI/ PM_UCB0SCL eUSCI_B0 SPI slave out master in (direction controlled by eUSCI), eUSCI_B0 I2C clock (open drain and direction controlled by eUSCI) P2.6/PM_UCB0SIMO/ PM_UCB0SDA P2.6/PM_UCB0SIMO/ PM_UCB0SDA/R03 PM_UCB0SIMO/ PM_UCB0SDA eUSCI_B0 SPI slave in master out (direction controlled by eUSCI), eUSCI_B0 I2C data (open drain and direction controlled by eUSCI) P2.7/PM_UCB0CLK P2.7/PM_UCB0CLK/CB2 PM_UCB0CLK eUSCI_B0 clock input/output (direction controlled by eUSCI) P3.0/PM_UCA0RXD/ PM_UCA0SOMI P3.0/PM_UCA0RXD/ PM_UCA0SOMI PM_UCA0RXD/ PM_UCA0SOMI eUSCI_A0 UART RXD (direction controlled by eUSCI – input), eUSCI_A0 SPI slave out master in (direction controlled by eUSCI) P3.1/PM_UCA0TXD/ PM_UCA0SIMO P3.1/PM_UCA0TXD/ PM_UCA0SIMO/S39 PM_UCA0TXD/ PM_UCA0SIMO eUSCI_A0 UART TXD (direction controlled by eUSCI – output), eUSCI_A0 SPI slave in master out (direction controlled by eUSCI) P3.2/PM_UCA0CLK P3.2/PM_UCA0CLK/S38 PM_UCA0CLK eUSCI_A0 clock input/output (direction controlled by eUSCI) P3.3/PM_UCA1CLK P3.3/PM_UCA1CLK/S37 PM_UCA1CLK eUSCI_A1 clock input/output (direction controlled by eUSCI) P3.4/PM_UCA1RXD/ PM_UCA1SOMI/ P3.4/PM_UCA1RXD/ PM_UCA1SOMI/S36 PM_UCA1RXD/ PM_UCA1SOMI eUSCI_A1 UART RXD (direction controlled by eUSCI – input), eUSCI_A1 SPI slave out master in (direction controlled by eUSCI) Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 35 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Table 16. Default Port Mapping (continued) PIN NAME PEU PxMAPy MNEMONIC PZ INPUT PIN FUNCTION OUTPUT PIN FUNCTION P3.5/PM_UCA1TXD/ PM_UCA1SIMO P3.5/PM_UCA1TXD/ PM_UCA1SIMO/S35 PM_UCA1TXD/ PM_UCA1SIMO eUSCI_A1 UART TXD (direction controlled by eUSCI – output), eUSCI_A1 SPI slave in master out (direction controlled by eUSCI) P3.6/PM_UCA2RXD/ PM_UCA2SOMI/ P3.6/PM_UCA2RXD/ PM_UCA2SOMI/S34 PM_UCA2RXD/ PM_UCA2SOMI eUSCI_A2 UART RXD (direction controlled by eUSCI – input), eUSCI_A2 SPI slave out master in (direction controlled by eUSCI) P3.7/PM_UCA2TXD/ PM_UCA2SIMO P3.7/PM_UCA2TXD/ PM_UCA2SIMO/S33 PM_UCA2TXD/ PM_UCA2SIMO eUSCI_A2 UART TXD (direction controlled by eUSCI – output), eUSCI_A2 SPI slave in master out (direction controlled by eUSCI) P4.0/PM_UCA2CLK P4.0/PM_UCA2CLK/S32 PM_UCA2CLK eUSCI_A2 clock input/output (direction controlled by eUSCI) P4.1/PM_UCA3RXD/ PM_UCA3SOMI/ P4.1/PM_UCA3RXD/ PM_UCA3SOMI/S31 PM_UCA3RXD/ PM_UCA3SOMI eUSCI_A3 UART RXD (direction controlled by eUSCI – input), eUSCI_A3 SPI slave out master in (direction controlled by eUSCI) P4.2/PM_UCA3TXD/ PM_UCA3SIMO P4.2/PM_UCA3TXD/ PM_UCA3SIMO/S30 PM_UCA3TXD/ PM_UCA3SIMO eUSCI_A3 UART TXD (direction controlled by eUSCI – output), eUSCI_A3 SPI slave in master out (direction controlled by eUSCI) P4.3/PM_UCA3CLK P4.3/PM_UCA3CLK/S29 PM_UCA3CLK eUSCI_A3 clock input/output (direction controlled by eUSCI) P4.4/PM_UCB1SOMI/ PM_UCB1SCL P4.4/PM_UCB1SOMI/ PM_UCB1SCL/S28 PM_UCB1SOMI/ PM_UCB1SCL eUSCI_B1 SPI slave out master in (direction controlled by eUSCI), eUSCI_B1 I2C clock (open drain and direction controlled by eUSCI) P4.5/PM_UCB1SIMO/ PM_UCB1SDA P4.5/PM_UCB1SIMO/ PM_UCB1SDA/S27 PM_UCB1SIMO/ PM_UCB1SDA eUSCI_B1 SPI slave in master out (direction controlled by eUSCI), eUSCI_B1 I2C data (open drain and direction controlled by eUSCI) P4.6/PM_UCB1CLK P4.6/PM_UCB1CLK/S26 PM_UCB1CLK eUSCI_B1 clock input/output (direction controlled by eUSCI) P4.7/PM_TA3.0 P4.7/PM_TA3.0/S25 PM_TA3.0 TA3 CCR0 capture input CCI0A TA3 CCR0 compare output Out0 System Module (SYS) (Link to User's Guide) The SYS module handles many of the system functions within the device. These include power on reset and power up clear handling, NMI source selection and management, reset interrupt vector generators, bootstrap loader entry mechanisms, and configuration management (device descriptors). It also includes a data exchange mechanism using JTAG called a JTAG mailbox that can be used in the application. Table 17. System Module Interrupt Vector Registers INTERRUPT VECTOR REGISTER ADDRESS INTERRUPT EVENT VALUE SYSRSTIV , System Reset 019Eh No interrupt pending 00h Brownout (BOR) 02h RST/NMI (POR) 04h DoBOR (BOR) 06h Wakeup from LPMx.5 08h SYSSNIV , System NMI 36 Submit Documentation Feedback 019Ch Security violation (BOR) 0Ah SVSL (POR) 0Ch SVSH (POR) 0Eh SVML_OVP (POR) 10h SVMH_OVP (POR) 12h DoPOR (POR) 14h WDT timeout (PUC) 16h WDT key violation (PUC) 18h KEYV flash key violation (PUC) 1Ah Reserved 1Ch Peripheral area fetch (PUC) 1Eh PMM key violation (PUC) 20h Reserved 22h to 3Eh No interrupt pending 00h SVMLIFG 02h SVMHIFG 04h DLYLIFG 06h DLYHIFG 08h PRIORITY Highest Lowest Highest Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Table 17. System Module Interrupt Vector Registers (continued) INTERRUPT VECTOR REGISTER SYSUNIV, User NMI ADDRESS 019Ah INTERRUPT EVENT VALUE VMAIFG 0Ah JMBINIFG 0Ch JMBOUTIFG 0Eh VLRLIFG 10h VLRHIFG 12h Reserved 14h to 1Eh No interrupt pending 00h NMIFG 02h OFIFG 04h ACCVIFG 06h AUXSWGIFG 08h Reserved 0Ah to 1Eh PRIORITY Lowest Highest Lowest Watchdog Timer (WDT_A) (Link to User's Guide) The primary function of the watchdog timer is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the timer can be configured as an interval timer and can generate interrupts at selected time intervals. DMA Controller (Link to User's Guide) The DMA controller allows movement of data from one memory address to another without CPU intervention. For example, the DMA controller can be used to move data from the ADC10_A conversion memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system power consumption by allowing the CPU to remain in sleep mode, without having to awaken to move data to or from a peripheral. Table 18. DMA Trigger Assignments (1) TRIGGER (1) CHANNEL 0 1 2 0 DMAREQ DMAREQ DMAREQ 1 TA0CCR0 CCIFG TA0CCR0 CCIFG TA0CCR0 CCIFG 2 TA0CCR2 CCIFG TA0CCR2 CCIFG TA0CCR2 CCIFG 3 TA1CCR0 CCIFG TA1CCR0 CCIFG TA1CCR0 CCIFG 4 Reserved Reserved Reserved 5 TA2CCR0 CCIFG TA2CCR0 CCIFG TA2CCR0 CCIFG 6 Reserved Reserved Reserved 7 TA3CCR0 CCIFG TA3CCR0 CCIFG TA3CCR0 CCIFG 8 Reserved Reserved Reserved 9 Reserved Reserved Reserved 10 Reserved Reserved Reserved 11 Reserved Reserved Reserved 12 Reserved Reserved Reserved 13 SD24IFG SD24IFG SD24IFG 14 Reserved Reserved Reserved 15 Reserved Reserved Reserved 16 UCA0RXIFG UCA0RXIFG UCA0RXIFG 17 UCA0TXIFG UCA0TXIFG UCA0TXIFG Reserved DMA triggers may be used by other devices in the family. Reserved DMA triggers do not cause any DMA trigger event when selected. Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 37 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Table 18. DMA Trigger Assignments(1) (continued) CHANNEL TRIGGER 0 1 2 18 UCA1RXIFG UCA1RXIFG UCA1RXIFG 19 UCA1TXIFG UCA1TXIFG UCA1TXIFG 20 UCA2RXIFG UCA2RXIFG UCA2RXIFG 21 UCA2TXIFG UCA2TXIFG UCA2TXIFG 22 UCB0RXIFG0 UCB0RXIFG0 UCB0RXIFG0 23 UCB0TXIFG0 UCB0TXIFG0 UCB0TXIFG0 24 ADC10IFG0 ADC10IFG0 ADC10IFG0 25 UCA3RXIFG UCA3RXIFG UCA3RXIFG 26 UCA3TXIFG UCA3TXIFG UCA3TXIFG 27 UCB1RXIFG0 UCB1RXIFG0 UCB1RXIFG0 28 UCB1TXIFG0 UCB1TXIFG0 UCB1TXIFG0 29 MPY ready MPY ready MPY ready 30 DMA2IFG DMA0IFG DMA1IFG 31 Reserved Reserved Reserved CRC16 (Link to User's Guide) The CRC16 module produces a signature based on a sequence of entered data values and can be used for data checking purposes. The CRC16 module signature is based on the CRC-CCITT standard. Hardware Multiplier (Link to User's Guide) The multiplication operation is supported by a dedicated peripheral module. The module performs operations with 32-bit, 24-bit, 16-bit, and 8-bit operands. The module is capable of supporting signed and unsigned multiplication as well as signed and unsigned multiply and accumulate operations. Enhanced Universal Serial Communication Interface (eUSCI) (Links to User's Guide: UART Mode, SPI Mode, I2C Mode) The eUSCI module is used for serial data communication. The eUSCI module supports synchronous communication protocols such as SPI (3 or 4 pin) and I2C, and asynchronous communication protocols such as UART, enhanced UART with automatic baudrate detection, and IrDA. The eUSCI_An module provides support for SPI (3 or 4 pin), UART, enhanced UART, and IrDA. The eUSCI_Bn module provides support for SPI (3 or 4 pin) and I2C. Four eUSCI_A and two eUSCI_B module are implemented in MSP430F677x devices. ADC10_A (Link to User's Guide) The ADC10_A module supports fast, 10-bit analog-to-digital conversions. The module implements a 10-bit SAR core, sample select control, reference generator and a conversion results buffer. A window comparator with a lower and upper limit allows CPU independent result monitoring with three window comparator interrupt flags. SD24_B (Link to User's Guide) The SD24_B module integrates up to seven independent 24-bit sigma-delta A/D converters. Each converter is designed with a fully differential analog input pair and programmable gain amplifier input stage. Also the converters are based on second-order over-sampling sigma-delta modulators and digital decimation filters. The decimation filters are comb type filters with selectable oversampling ratios of up to 1024. 38 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 TA0 (Link to User's Guide) TA0 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA0 can support multiple capture/compares, PWM outputs, and interval timing. TA0 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 19. TA0 Signal Connections DEVICE INPUT SIGNAL MODULE INPUT NAME PM_TACLK TACLK ACLK (internal) ACLK SMCLK (internal) SMCLK PM_TACLK INCLK PM_TA0.0 CCI0A CBOUT (Internal) CCI0B DVSS GND MODULE BLOCK MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL Timer NA NA PM_TA0.0 CCR0 TA0 DVCC VCC PM_TA0.1 CCI1A PM_TA0.1 ACLK (internal) CCI1B ADC10_A (internal) ADC10SHSx = 001b DVSS GND CCR1 DVCC VCC PM_TA0.2 CCI2A DVSS CCI2B DVSS GND DVCC VCC TA1 SD24_B (internal) SD24CHx.SD24SCSx = 001b PM_TA0.2 CCR2 TA2 TA1 (Link to User's Guide) TA1 is a 16-bit timer/counter (Timer_A type) with two capture/compare registers. TA1 can support multiple capture/compares, PWM outputs, and interval timing. TA1 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 20. TA1 Signal Connections DEVICE INPUT SIGNAL MODULE INPUT NAME PM_TACLK TACLK ACLK (internal) ACLK SMCLK (internal) SMCLK PM_TACLK INCLK PM_TA1.0 CCI0A CBOUT (Internal) CCI0B DVSS GND DVCC VCC PM_TA1.1 CCI1A ACLK (internal) CCI1B DVSS GND DVCC VCC Copyright © 2012–2013, Texas Instruments Incorporated MODULE BLOCK Timer MODULE OUTPUT SIGNAL NA DEVICE OUTPUT SIGNAL PZ NA PM_TA1.0 CCR0 TA0 PM_TA1.1 CCR1 TA1 Submit Documentation Feedback 39 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com TA2 (Link to User's Guide) TA2 is a 16-bit timer/counter (Timer_A type) with two capture/compare registers. TA2 can support multiple capture/compares, PWM outputs, and interval timing. TA2 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 21. TA2 Signal Connections DEVICE INPUT SIGNAL MODULE INPUT NAME PM_TACLK TACLK ACLK (internal) ACLK SMCLK (internal) SMCLK PM_TACLK INCLK PM_TA2.0 CCI0A CBOUT (Internal) CCI0B DVSS GND MODULE BLOCK MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL Timer NA NA PM_TA2.0 CCR0 TA0 DVCC VCC PM_TA2.1 CCI1A PM_TA2.1 ACLK (internal) CCI1B SD24_B (internal) SD24CHx.SD24SCSx = 010b DVSS GND DVCC VCC CCR1 TA1 TA3 (Link to User's Guide) TA3 is a 16-bit timer/counter (Timer_A type) with two capture/compare registers. TA3 can support multiple capture/compares, PWM outputs, and interval timing. TA3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 22. TA3 Signal Connections 40 DEVICE INPUT SIGNAL MODULE INPUT NAME PM_TACLK TACLK MODULE BLOCK MODULE OUTPUT SIGNAL Timer NA DEVICE OUTPUT SIGNAL ACLK (internal) ACLK SMCLK (internal) SMCLK PM_TACLK INCLK PM_TA3.0 CCI0A PM_TA3.0 CBOUT (Internal) CCI0B TA0 ADC10_A (internal) ADC10SHSx = 010b DVSS GND TA1 CCR0 DVCC VCC PM_TA3.1 CCI1A PM_TA3.1 ACLK (internal) CCI1B SD24_B (internal) SD24CHx.SD24SCSx = 011b DVSS GND DVCC VCC Submit Documentation Feedback CCR1 Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 SD24_B Triggers Table 23 shows the input trigger connections to SD24_B converters from Timer_A modules and output trigger pulse connection from SD24_B to ADC10_A. Table 23. SD24_B Input/Output Trigger Connections DEVICE INPUT SIGNAL MODULE INPUT SIGNAL TA0.1 (internal) SD24_B SD24CHx.SD24SCSx = 001b TA2.1 (internal) SD24_B SD24CHx.SD24SCSx = 010b TA3.1 (internal) SD24_B SD24CHx.SD24SCSx = 011b MODULE BLOCK MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL Trigger Pulse ADC10_A (internal) ADC10SHSx = 011b SD24_B ADC10_A Triggers Table 24 shows input trigger connections to ADC10_A from Timer_A modules and SD24_B. Table 24. ADC10_A Input Trigger Connections DEVICE INPUT SIGNAL MODULE INPUT SIGNAL TA0.1 (internal) ADC10_A ADC10SHSx = 001b TA3.0 (internal) ADC10_A ADC10SHSx = 010b SD24_B trigger pulse (internal) ADC10_A ADC10SHSx = 011b MODULE BLOCK ADC10_A Real-Time Clock (RTC_C) (Link to User's Guide) The RTC_C module can be configured for real-time clock (RTC) and calendar mode providing seconds, hours, day of week, day of month, month, and year. The RTC_C control and configuration registers are password protected to ensure clock integrity against run away code. Calendar mode integrates an internal calendar that compensates for months with less than 31 days and includes leap year correction. The RTC_C also supports flexible alarm functions, offset calibration, temperature compensation and time capture on two external events. The RTC_C on this device operates on dedicated AUXVCC3 supply and supports operation in LPM3.5. REF Voltage Reference (Link to User's Guide) The reference module (REF) is responsible for generation of all critical reference voltages that can be used by the various analog peripherals in the device. These include the ADC10_A, LCD_C, and SD24_B modules. LCD_C (Link to User's Guide) The LCD_C driver generates the segment and common signals required to drive a liquid crystal display (LCD). The LCD_C controller has dedicated data memories to hold segment drive information. Common and segment signals are generated as defined by the mode. Static, 2-mux, 3-mux, 4-mux, up to 8-mux LCDs are supported. The module can provide a LCD voltage independent of the supply voltage with its integrated charge pump. It is possible to control the level of the LCD voltage and thus contrast by software. The module also provides an automatic blinking capability for individual segments in static, 2-mux, 3-mux, and 4-mux modes. Comparator_B (Link to User's Guide) The primary function of the Comparator_B module is to support precision slope analog-to-digital conversions, battery voltage supervision, and monitoring of external analog signals. Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 41 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Embedded Emulation Module (EEM) (Link to User's Guide) The Embedded Emulation Module (EEM) supports real-time in-system debugging. The L version of the EEM implemented on all devices has the following features: • Eight hardware triggers or breakpoints on memory access • Two hardware triggers or breakpoints on CPU register write access • Up to ten hardware triggers can be combined to form complex triggers or breakpoints • Two cycle counters • Sequencer • State storage • Clock control on module level 42 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Peripheral File Map Table 25. Peripherals MODULE NAME BASE ADDRESS OFFSET ADDRESS RANGE Special Functions (see Table 26) 0100h 000h-01Fh PMM (see Table 27) 0120h 000h-01Fh Flash Control (see Table 28) 0140h 000h-00Fh CRC16 (see Table 29) 0150h 000h-007h RAM Control (see Table 30) 0158h 000h-001h Watchdog (see Table 31) 015Ch 000h-001h UCS (see Table 32) 0160h 000h-01Fh SYS (see Table 33) 0180h 000h-01Fh Shared Reference (see Table 34) 01B0h 000h-001h Port Mapping Control (see Table 35) 01C0h 000h-007h Port Mapping Port P2 (see Table 36) 01D0h 000h-007h Port Mapping Port P3 (see Table 37) 01D8h 000h-007h Port Mapping Port P4 (see Table 38) 01E0h 000h-007h Port P1, P2 (see Table 39) 0200h 000h-01Fh Port P3, P4 (see Table 40) 0220h 000h-00Bh Port P5, P6 (see Table 41) 0240h 000h-00Bh Port P7, P8 (see Table 42) 0260h 000h-00Bh Port P9, P10 (see Table 43) (Ports P9 and P10 not available in PZ package) 0280h 000h-00Bh Port P11 (see Table 44) (Port P11 not available in PZ package) 02A0h 000h-00Bh Port PJ (see Table 45) 0320h 000h-01Fh Timer TA0 (see Table 46) 0340h 000h-03Fh Timer TA1 (see Table 47) 0380h 000h-03Fh Timer TA2 (see Table 48) 0400h 000h-03Fh Timer TA3 (see Table 49) 0440h 000h-03Fh Backup Memory (see Table 50) 0480h 000h-00Fh 32-Bit Hardware Multiplier (see Table 52) 04C0h 000h-02Fh DMA General Control (see Table 53) 0500h 000h-00Fh DMA Channel 0 (see Table 54) 0500h 010h-01Fh DMA Channel 1 (see Table 55) 0500h 020h-02Fh DMA Channel 2 (see Table 56) 0500h 030h-03Fh RTC_C (see Table 51) 0C80h 000h-03Fh eUSCI_A0 (see Table 57) 05C0h 000h-01Fh eUSCI_A1 (see Table 58) 05E0h 000h-01Fh eUSCI_A2 (see Table 59) 0600h 000h-01Fh eUSCI_A3 (see Table 60) 0620h 000h-01Fh eUSCI_B0 (see Table 61) 0640h 000h-02Fh eUSCI_B1 ( see Table 62 ) 0680h 000h-02Fh ADC10_A (see Table 63) 0740h 000h-01Fh SD24_B(see Table 64) 0800h 000h-06Fh Comparator_B (see Table 65 ) 08C0h 000h-00Fh Auxiliary Supply (see Table 66) 09E0h 000h-01Fh LCD_C (see Table 67) 0A00h 000h-05Fh Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 43 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Table 26. Special Function Registers (Base Address: 0100h) REGISTER DESCRIPTION REGISTER OFFSET SFR interrupt enable SFRIE1 00h SFR interrupt flag SFRIFG1 02h SFR reset pin control SFRRPCR 04h Table 27. PMM Registers (Base Address: 0120h) REGISTER DESCRIPTION REGISTER OFFSET PMM Control 0 PMMCTL0 00h PMM control 1 PMMCTL1 02h SVS high side control SVSMHCTL 04h SVS low side control SVSMLCTL 06h PMM interrupt flags PMMIFG 0Ch PMM interrupt enable PMMIE 0Eh PMM Power Mode 5 control register 0 PM5CTL0 10h Table 28. Flash Control Registers (Base Address: 0140h) REGISTER DESCRIPTION REGISTER OFFSET Flash control 1 FCTL1 00h Flash control 3 FCTL3 04h Flash control 4 FCTL4 06h Table 29. CRC16 Registers (Base Address: 0150h) REGISTER DESCRIPTION REGISTER OFFSET CRC data input CRC16DI 00h CRC result CRCINIRES 04h Table 30. RAM Control Registers (Base Address: 0158h) REGISTER DESCRIPTION RAM control 0 REGISTER RCCTL0 OFFSET 00h Table 31. Watchdog Registers (Base Address: 015Ch) REGISTER DESCRIPTION Watchdog timer control REGISTER WDTCTL OFFSET 00h Table 32. UCS Registers (Base Address: 0160h) REGISTER DESCRIPTION REGISTER OFFSET UCS control 0 UCSCTL0 00h UCS control 1 UCSCTL1 02h UCS control 2 UCSCTL2 04h UCS control 3 UCSCTL3 06h UCS control 4 UCSCTL4 08h UCS control 5 UCSCTL5 0Ah UCS control 6 UCSCTL6 0Ch UCS control 7 UCSCTL7 0Eh UCS control 8 UCSCTL8 10h 44 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Table 33. SYS Registers (Base Address: 0180h) REGISTER DESCRIPTION REGISTER OFFSET System control SYSCTL 00h Bootstrap loader configuration area SYSBSLC 02h JTAG mailbox control SYSJMBC 06h JTAG mailbox input 0 SYSJMBI0 08h JTAG mailbox input 1 SYSJMBI1 0Ah JTAG mailbox output 0 SYSJMBO0 0Ch JTAG mailbox output 1 SYSJMBO1 0Eh Bus Error vector generator SYSBERRIV 18h User NMI vector generator SYSUNIV 1Ah System NMI vector generator SYSSNIV 1Ch Reset vector generator SYSRSTIV 1Eh Table 34. Shared Reference Registers (Base Address: 01B0h) REGISTER DESCRIPTION Shared reference control REGISTER REFCTL OFFSET 00h Table 35. Port Mapping Controller (Base Address: 01C0h) REGISTER DESCRIPTION REGISTER OFFSET Port mapping password register PMAPPWD 00h Port mapping control register PMAPCTL 02h Table 36. Port Mapping for Port P2 (Base Address: 01D0h) REGISTER DESCRIPTION REGISTER OFFSET Port P2.0 mapping register P2MAP0 00h Port P2.1 mapping register P2MAP1 01h Port P2.2 mapping register P2MAP2 02h Port P2.3 mapping register P2MAP3 03h Port P2.4 mapping register P2MAP4 04h Port P2.5 mapping register P2MAP5 05h Port P2.6 mapping register P2MAP6 06h Port P2.7 mapping register P2MAP7 07h Table 37. Port Mapping for Port P3 (Base Address: 01D8h) REGISTER DESCRIPTION REGISTER OFFSET Port P3.0 mapping register P3MAP0 00h Port P3.1 mapping register P3MAP1 01h Port P3.2 mapping register P3MAP2 02h Port P3.3 mapping register P3MAP3 03h Port P3.4 mapping register P3MAP4 04h Port P3.5 mapping register P3MAP5 05h Port P3.6 mapping register P3MAP6 06h Port P3.7 mapping register P3MAP7 07h Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 45 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Table 38. Port Mapping for Port P4 (Base Address: 01E0h) REGISTER DESCRIPTION REGISTER OFFSET Port P4.0 mapping register P4MAP0 00h Port P4.1 mapping register P4MAP1 01h Port P4.2 mapping register P4MAP2 02h Port P4.3 mapping register P4MAP3 03h Port P4.4 mapping register P4MAP4 04h Port P4.5 mapping register P4MAP5 05h Port P4.6 mapping register P4MAP6 06h Port P4.7 mapping register P4MAP7 07h Table 39. Port P1, P2 Registers (Base Address: 0200h) REGISTER DESCRIPTION REGISTER OFFSET Port P1 input P1IN 00h Port P1 output P1OUT 02h Port P1 direction P1DIR 04h Port P1 pullup/pulldown enable P1REN 06h Port P1 drive strength P1DS 08h Port P1 selection 0 P1SEL0 0Ah Port P1 selection 1 P1SEL1 0Ch Port P1 interrupt vector word P1IV 0Eh Port P1 interrupt edge select P1IES 18h Port P1 interrupt enable P1IE 1Ah Port P1 interrupt flag P1IFG 1Ch Port P2 input P2IN 01h Port P2 output P2OUT 03h Port P2 direction P2DIR 05h Port P2 pullup/pulldown enable P2REN 07h Port P2 drive strength P2DS 09h Port P2 selection 0 P2SEL0 0Bh Port P2 selection 1 (1) P2SEL1 0Dh Port P2 interrupt vector word P2IV 1Eh Port P2 interrupt edge select P2IES 19h Port P2 interrupt enable P2IE 1Bh Port P2 interrupt flag P2IFG 1Dh (1) 46 P2SEL1 is an empty control register to be consistent with P1SEL1 in 16-bit access. Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Table 40. Port P3, P4 Registers (Base Address: 0220h) REGISTER DESCRIPTION REGISTER OFFSET Port P3 input P3IN 00h Port P3 output P3OUT 02h Port P3 direction P3DIR 04h Port P3 pullup/pulldown enable P3REN 06h Port P3 drive strength P3DS 08h Port P3 selection 0 P3SEL0 0Ah Port P4 input P4IN 01h Port P4 output P4OUT 03h Port P4 direction P4DIR 05h Port P4 pullup/pulldown enable P4REN 07h Port P4 drive strength P4DS 09h Port P4 selection 0 P4SEL0 0Bh Table 41. Port P5, P6 Registers (Base Address: 0240h) REGISTER DESCRIPTION REGISTER OFFSET Port P5 input P5IN 00h Port P5 output P5OUT 02h Port P5 direction P5DIR 04h Port P5 pullup/pulldown enable P5REN 06h Port P5 drive strength P5DS 08h Port P5 selection 0 P5SEL0 0Ah Port P5 selection 1 P5SEL1 0Ch Port P6 input P6IN 01h Port P6 output P6OUT 03h Port P6 direction P6DIR 05h Port P6 pullup/pulldown enable P6REN 07h Port P6 drive strength P6DS 09h Port P6 selection 0 P6SEL0 0Bh Port P6 selection 1 (1) P6SEL1 0Dh (1) P6SEL1 is an empty control register to be consistent with P5SEL1 in 16-bit access. Table 42. Port P7, P8 Registers (Base Address: 0260h) REGISTER DESCRIPTION REGISTER OFFSET Port P7 input P7IN 00h Port P7 output P7OUT 02h Port P7 direction P7DIR 04h Port P7 pullup/pulldown enable P7REN 06h Port P7 drive strength P7DS 08h Port P7 selection 0 P7SEL0 0Ah Port P8 input P8IN 01h Port P8 output P8OUT 03h Port P8 direction P8DIR 05h Port P8 pullup/pulldown enable P8REN 07h Port P8 drive strength P8DS 09h Port P8 selection 0 P8SEL0 0Bh Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 47 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Table 43. Port P9, P10 Registers (Base Address: 0280h) REGISTER DESCRIPTION REGISTER OFFSET Port P9 input P9IN 00h Port P9 output P9OUT 02h Port P9 direction P9DIR 04h Port P9 pullup/pulldown enable P9REN 06h Port P9 drive strength P9DS 08h Port P9 selection 0 P9SEL0 0Ah Port P10 input P10IN 01h Port P10 output P10OUT 03h Port P10 direction P10DIR 05h Port P10 pullup/pulldown enable P10REN 07h Port P10 drive strength P10DS 09h Port P10 selection 0 P10SEL0 0Bh Table 44. Port 11 Registers (Base Address: 02A0h) REGISTER DESCRIPTION REGISTER OFFSET Port P11 input P11IN 00h Port P11 output P11OUT 02h Port P11 direction P11DIR 04h Port P11 pullup/pulldown enable P11REN 06h Port P11 drive strength P11DS 08h Port P11 selection 0 P11SEL0 0Ah Table 45. Port J Registers (Base Address: 0320h) REGISTER DESCRIPTION REGISTER OFFSET Port PJ input PJIN 00h Port PJ output PJOUT 02h Port PJ direction PJDIR 04h Port PJ pullup/pulldown enable PJREN 06h Port PJ drive strength PJDS 08h Port PJ selection PJSEL 0Ah Table 46. TA0 Registers (Base Address: 0340h) REGISTER DESCRIPTION REGISTER OFFSET TA0 control TA0CTL 00h Capture/compare control 0 TA0CCTL0 02h Capture/compare control 1 TA0CCTL1 04h Capture/compare control 2 TA0CCTL2 06h TA0 counter register TA0R 10h Capture/compare register 0 TA0CCR0 12h Capture/compare register 1 TA0CCR1 14h Capture/compare register 2 TA0CCR2 16h TA0 expansion register 0 TA0EX0 20h TA0 interrupt vector TA0IV 2Eh 48 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Table 47. TA1 Registers (Base Address: 0380h) REGISTER DESCRIPTION REGISTER OFFSET TA1 control TA1CTL 00h Capture/compare control 0 TA1CCTL0 02h Capture/compare control 1 TA1CCTL1 04h TA1 counter register TA1R 10h Capture/compare register 0 TA1CCR0 12h Capture/compare register 1 TA1CCR1 14h TA1 expansion register 0 TA1EX0 20h TA1 interrupt vector TA1IV 2Eh Table 48. TA2 Registers (Base Address: 0400h) REGISTER DESCRIPTION REGISTER OFFSET TA2 control TA2CTL 00h Capture/compare control 0 TA2CCTL0 02h Capture/compare control 1 TA2CCTL1 04h TA2 counter register TA2R 10h Capture/compare register 0 TA2CCR0 12h Capture/compare register 1 TA2CCR1 14h TA2 expansion register 0 TA2EX0 20h TA2 interrupt vector TA2IV 2Eh Table 49. TA3 Registers (Base Address: 0440h) REGISTER DESCRIPTION REGISTER OFFSET TA3 control TA3CTL 00h Capture/compare control 0 TA3CCTL0 02h Capture/compare control 1 TA3CCTL1 04h TA3 counter register TA3R 10h Capture/compare register 0 TA3CCR0 12h Capture/compare register 1 TA3CCR1 14h TA3 expansion register 0 TA3EX0 20h TA3 interrupt vector TA3IV 2Eh Table 50. Backup Memory Registers (Base Address: 0480h) REGISTER DESCRIPTION REGISTER OFFSET Backup Memory 0 BAKMEM0 00h Backup Memory 1 BAKMEM1 02h Backup Memory 2 BAKMEM2 04h Backup Memory 3 BAKMEM3 06h Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 49 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Table 51. RTC_C Registers (Base Address: 0C80h) REGISTER DESCRIPTION REGISTER OFFSET RTC control 0 RTCCTL0 00h RTC password RTCPWD 01h RTC control 1 RTCCTL1 02h RTC control 3 RTCCTL3 03h RTC offset calibration RTCOCAL 04h RTC temperature compensation RTCTCMP 06h RTC prescaler 0 control RTCPS0CTL 08h RTC prescaler 1 control RTCPS1CTL 0Ah RTC prescaler 0 RTCPS0 0Ch RTC prescaler 1 RTCPS1 0Dh RTC interrupt vector word RTCIV 0Eh RTC seconds RTCSEC 10h RTC minutes RTCMIN 11h RTC hours RTCHOUR 12h RTC day of week RTCDOW 13h RTC days RTCDAY 14h RTC month RTCMON 15h RTC year RTCYEAR 16h RTC alarm minutes RTCAMIN 18h RTC alarm hours RTCAHOUR 19h RTC alarm day of week RTCADOW 1Ah RTC alarm days RTCADAY 1Bh Binary-to-BCD conversion register BIN2BCD 1Ch BCD-to-Binary conversion register BCD2BIN 1Eh Real-Time Clock Time Capture Control Register RTCTCCTL 20h Tamper Detect Pin 0 Control Register RTCCAP0CTL 21h Tamper Detect Pin 1 Control Register RTCCAP1CTL 22h RTC seconds Backup Register 0 RTCSECBAK0 30h RTC minutes Backup Register 0 RTCMINBAK0 31h RTC hours Backup Register 0 RTCHOURBAK0 32h RTC days Backup Register 0 RTCDAYBAK0 33h RTC month Backup Register 0 RTCMONBAK0 34h RTC year Backup Register 0 RTCYEARBAK0 36h RTC seconds Backup Register 1 RTCSECBAK1 38h RTC minutes Backup Register 1 RTCMINBAK1 39h RTC hours Backup Register 1 RTCHOURBAK1 3Ah RTC days Backup Register 1 RTCDAYBAK1 3Bh RTC month Backup Register 1 RTCMONBAK1 3Ch RTC year Backup Register 1 RTCYEARBAK1 3Eh 50 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Table 52. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h) REGISTER DESCRIPTION REGISTER OFFSET 16-bit operand 1 – multiply MPY 00h 16-bit operand 1 – signed multiply MPYS 02h 16-bit operand 1 – multiply accumulate MAC 04h 16-bit operand 1 – signed multiply accumulate MACS 06h 16-bit operand 2 OP2 08h 16 × 16 result low word RESLO 0Ah 16 × 16 result high word RESHI 0Ch 16 × 16 sum extension register SUMEXT 0Eh 32-bit operand 1 – multiply low word MPY32L 10h 32-bit operand 1 – multiply high word MPY32H 12h 32-bit operand 1 – signed multiply low word MPYS32L 14h 32-bit operand 1 – signed multiply high word MPYS32H 16h 32-bit operand 1 – multiply accumulate low word MAC32L 18h 32-bit operand 1 – multiply accumulate high word MAC32H 1Ah 32-bit operand 1 – signed multiply accumulate low word MACS32L 1Ch 32-bit operand 1 – signed multiply accumulate high word MACS32H 1Eh 32-bit operand 2 – low word OP2L 20h 32-bit operand 2 – high word OP2H 22h 32 × 32 result 0 – least significant word RES0 24h 32 × 32 result 1 RES1 26h 32 × 32 result 2 RES2 28h 32 × 32 result 3 – most significant word RES3 2Ah MPY32 control register 0 MPY32CTL0 2Ch Table 53. DMA General Control Registers (Base Address: 0500h) REGISTER DESCRIPTION REGISTER OFFSET DMA module control 0 DMACTL0 00h DMA module control 1 DMACTL1 02h DMA module control 2 DMACTL2 04h DMA module control 3 DMACTL3 06h DMA module control 4 DMACTL4 08h DMA interrupt vector DMAIV 0Eh Table 54. DMA Channel 0 Registers (Base Address: 0500h) REGISTER DESCRIPTION REGISTER OFFSET DMA channel 0 control DMA0CTL 10h DMA channel 0 source address low DMA0SAL 12h DMA channel 0 source address high DMA0SAH 14h DMA channel 0 destination address low DMA0DAL 16h DMA channel 0 destination address high DMA0DAH 18h DMA channel 0 transfer size DMA0SZ 1Ah Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 51 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Table 55. DMA Channel 1 Registers (Base Address: 0500h) REGISTER DESCRIPTION REGISTER OFFSET DMA channel 1 control DMA1CTL 20h DMA channel 1 source address low DMA1SAL 22h DMA channel 1 source address high DMA1SAH 24h DMA channel 1 destination address low DMA1DAL 26h DMA channel 1 destination address high DMA1DAH 28h DMA channel 1 transfer size DMA1SZ 2Ah Table 56. DMA Channel 2 Registers (Base Address: 0500h) REGISTER DESCRIPTION REGISTER OFFSET DMA channel 2 control DMA2CTL 30h DMA channel 2 source address low DMA2SAL 32h DMA channel 2 source address high DMA2SAH 34h DMA channel 2 destination address low DMA2DAL 36h DMA channel 2 destination address high DMA2DAH 38h DMA channel 2 transfer size DMA2SZ 3Ah Table 57. eUSCI_A0 Registers (Base Address: 05C0h) REGISTER DESCRIPTION REGISTER OFFSET USCI_A control word 0 UCA0CTLW0 00h USCI _A control word 1 UCA0CTLW1 02h USCI_A baud rate 0 UCA0BR0 06h USCI_A baud rate 1 UCA0BR1 07h USCI_A modulation control UCA0MCTLW 08h USCI_A status UCA0STAT 0Ah USCI_A receive buffer UCA0RXBUF 0Ch USCI_A transmit buffer UCA0TXBUF 0Eh USCI_A LIN control UCA0ABCTL 10h USCI_A IrDA transmit control UCA0IRTCTL 12h USCI_A IrDA receive control UCA0IRRCTL 13h USCI_A interrupt enable UCA0IE 1Ah USCI_A interrupt flags UCA0IFG 1Ch USCI_A interrupt vector word UCA0IV 1Eh 52 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Table 58. eUSCI_A1 Registers (Base Address:05E0h) REGISTER DESCRIPTION REGISTER OFFSET USCI_A control word 0 UCA1CTLW0 00h USCI _A control word 1 UCA1CTLW1 02h USCI_A baud rate 0 UCA1BR0 06h USCI_A baud rate 1 UCA1BR1 07h USCI_A modulation control UCA1MCTLW 08h USCI_A status UCA1STAT 0Ah USCI_A receive buffer UCA1RXBUF 0Ch USCI_A transmit buffer UCA1TXBUF 0Eh USCI_A LIN control UCA1ABCTL 10h USCI_A IrDA transmit control UCA1IRTCTL 12h USCI_A IrDA receive control UCA1IRRCTL 13h USCI_A interrupt enable UCA1IE 1Ah USCI_A interrupt flags UCA1IFG 1Ch USCI_A interrupt vector word UCA1IV 1Eh Table 59. eUSCI_A2 Registers (Base Address:0600h) REGISTER DESCRIPTION REGISTER OFFSET USCI_A control word 0 UCA2CTLW0 00h USCI _A control word 1 UCA2CTLW1 02h USCI_A baud rate 0 UCA2BR0 06h USCI_A baud rate 1 UCA2BR1 07h USCI_A modulation control UCA2MCTLW 08h USCI_A status UCA2STAT 0Ah USCI_A receive buffer UCA2RXBUF 0Ch USCI_A transmit buffer UCA2TXBUF 0Eh USCI_A LIN control UCA2ABCTL 10h USCI_A IrDA transmit control UCA2IRTCTL 12h USCI_A IrDA receive control UCA2IRRCTL 13h USCI_A interrupt enable UCA2IE 1Ah USCI_A interrupt flags UCA2IFG 1Ch USCI_A interrupt vector word UCA2IV 1Eh Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 53 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Table 60. eUSCI_A3 Registers (Base Address: 0620h) REGISTER DESCRIPTION REGISTER OFFSET USCI_A control word 0 UCA2CTLW0 00h USCI _A control word 1 UCA2CTLW1 02h USCI_A baud rate 0 UCA2BR0 06h USCI_A baud rate 1 UCA2BR1 07h USCI_A modulation control UCA2MCTLW 08h USCI_A status UCA2STAT 0Ah USCI_A receive buffer UCA2RXBUF 0Ch USCI_A transmit buffer UCA2TXBUF 0Eh USCI_A LIN control UCA2ABCTL 10h USCI_A IrDA transmit control UCA2IRTCTL 12h USCI_A IrDA receive control UCA2IRRCTL 13h USCI_A interrupt enable UCA2IE 1Ah USCI_A interrupt flags UCA2IFG 1Ch USCI_A interrupt vector word UCA2IV 1Eh Table 61. eUSCI_B0 Registers (Base Address: 0640h) REGISTER DESCRIPTION REGISTER OFFSET USCI_B control word 0 UCB0CTLW0 00h USCI_B control word 1 UCB0CTLW1 02h USCI_B bit rate 0 UCB0BR0 06h USCI_B bit rate 1 UCB0BR1 07h USCI_B status word UCB0STATW 08h USCI_B byte counter threshold UCB0TBCNT 0Ah USCI_B receive buffer UCB0RXBUF 0Ch USCI_B transmit buffer UCB0TXBUF 0Eh USCI_B I2C own address 0 UCB0I2COA0 14h USCI_B I2C own address 1 UCB0I2COA1 16h USCI_B I2C own address 2 UCB0I2COA2 18h USCI_B I2C own address 3 UCB0I2COA3 1Ah USCI_B received address UCB0ADDRX 1Ch USCI_B address mask UCB0ADDMASK 1Eh USCI I2C slave address UCB0I2CSA 20h USCI interrupt enable UCB0IE 2Ah USCI interrupt flags UCB0IFG 2Ch USCI interrupt vector word UCB0IV 2Eh 54 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Table 62. eUSCI_B1 Registers (Base Address: 0680h) REGISTER DESCRIPTION REGISTER OFFSET USCI_B control word 0 UCB0CTLW0 00h USCI_B control word 1 UCB0CTLW1 02h USCI_B bit rate 0 UCB0BR0 06h USCI_B bit rate 1 UCB0BR1 07h USCI_B status word UCB0STATW 08h USCI_B byte counter threshold UCB0TBCNT 0Ah USCI_B receive buffer UCB0RXBUF 0Ch USCI_B transmit buffer UCB0TXBUF 0Eh USCI_B I2C own address 0 UCB0I2COA0 14h USCI_B I2C own address 1 UCB0I2COA1 16h USCI_B I2C own address 2 UCB0I2COA2 18h USCI_B I2C own address 3 UCB0I2COA3 1Ah USCI_B received address UCB0ADDRX 1Ch USCI_B address mask UCB0ADDMASK 1Eh USCI I2C slave address UCB0I2CSA 20h USCI interrupt enable UCB0IE 2Ah USCI interrupt flags UCB0IFG 2Ch USCI interrupt vector word UCB0IV 2Eh Table 63. ADC10_A Registers (Base Address: 0740h) REGISTER DESCRIPTION REGISTER OFFSET ADC10_A Control register 0 ADC10CTL0 00h ADC10_A Control register 1 ADC10CTL1 02h ADC10_A Control register 2 ADC10CTL2 04h ADC10_A Window Comparator Low Threshold ADC10LO 06h ADC10_A Window Comparator High Threshold ADC10HI 08h ADC10_A Memory Control Register 0 ADC10MCTL0 0Ah ADC10_A Conversion Memory Register ADC10MCTL0 12h ADC10_A Interrupt Enable ADC10IE 1Ah ADC10_A Interrupt Flags ADC10IGH 1Ch ADC10_A Interrupt Vector Word ADC10IV 1Eh Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 55 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Table 64. SD24_B Registers (Base Address: 0800h) REGISTER DESCRIPTION REGISTER OFFSET SD24_B Control 0 register SD24BCTL0 00h SD24_B Control 1 register SD24BCTL1 02h SD24_B Trigger Control register SD24BTRGCTL 04h SD24_B Trigger OSR Control register SD24BTRGOSR 06h SD24_B Trigger Preload register SD24BTRGPRE 08h SD24_B interrupt flag register SD24BIFG 0Ah SD24_B interrupt enable register SD24BIE 0Ch SD24_B Interrupt Vector register SD24BIV 0Eh SD24_B converter 0 Control register SD24BCCTL0 10h SD24_B converter 0 Input Control register SD24BINCTL0 12h SD24_B converter 0 OSR Control register SD24BOSR0 14h SD24_B converter 0 Preload register SD24BPRE0 16h SD24_B converter 1 Control register SD24BCCTL1 18h SD24_B Converter 1 Input Control register SD24BINCTL1 1Ah SD24_B Converter 1 OSR Control register SD24BOSR1 1Ch SD24_B Converter 1 Preload register SD24BPRE1 1Eh SD24_B Converter 2 Control register SD24BCCTL2 20h SD24_B Converter 2 Input Control register SD24BINCTL2 22h SD24_B Converter 2 OSR Control register SD24BOSR2 24h SD24_B Converter 2 Preload register SD24BPRE2 26h SD24_B converter 3 Control register SD24BCCTL3 28h SD24_B converter 3 Input Control register SD24BINCTL3 2Ah SD24_B converter 3 OSR Control register SD24BOSR3 2Ch SD24_B converter 3 Preload register SD24BPRE3 2Eh SD24_B converter 4 Control register SD24BCCTL4 30h SD24_B Converter 4 Input Control register SD24BINCTL4 32h SD24_B Converter 4 OSR Control register SD24BOSR4 34h SD24_B Converter 4 Preload register SD24BPRE4 36h SD24_B Converter 5 Control register SD24BCCTL5 38h SD24_B Converter 5 Input Control register SD24BINCTL5 3Ah SD24_B Converter 5 OSR Control register SD24BOSR5 3Ch SD24_B Converter 5 Preload register SD24BPRE5 3Eh SD24_B Converter 6 Control register SD24BCCTL6 40h SD24_B Converter 6 Input Control register SD24BINCTL6 42h SD24_B Converter 6 OSR Control register SD24BOSR6 44h SD24_B Converter 6 Preload register SD24BPRE6 46h SD24_B Converter 0 Conversion Memory Low Word register SD24BMEML0 50h SD24_B Converter 0 Conversion Memory High Word register SD24BMEMH0 52h SD24_B Converter 1 Conversion Memory Low Word register SD24BMEML1 54h SD24_B Converter 1 Conversion Memory High Word register SD24BMEMH1 56h SD24_B Converter 2 Conversion Memory Low Word register SD24BMEML2 58h SD24_B Converter 2 Conversion Memory High Word register SD24BMEMH2 5Ah SD24_B Converter 3 Conversion Memory Low Word register SD24BMEML3 5Ch SD24_B Converter 3 Conversion Memory High Word register SD24BMEMH3 5Eh SD24_B Converter 4 Conversion Memory Low Word register SD24BMEML4 60h SD24_B Converter 4 Conversion Memory High Word register SD24BMEMH4 62h SD24_B Converter 5 Conversion Memory Low Word register SD24BMEML5 64h 56 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Table 64. SD24_B Registers (Base Address: 0800h) (continued) REGISTER DESCRIPTION REGISTER OFFSET SD24_B Converter 5 Conversion Memory High Word register SD24BMEMH5 66h SD24_B Converter 6 Conversion Memory Low Word register SD24BMEML6 68h SD24_B Converter 6 Conversion Memory High Word register SD24BMEMH6 6Ah Table 65. Comparator_B Register (Base Address: 08C0h) REGISTER DESCRIPTION REGISTER OFFSET Comp_B control register 0 CBCTL0 00h Comp_B control register 1 CBCTL1 02h Comp_B control register 2 CBCTL2 04h Comp_B control register 3 CBCTL3 06h Comp_B interrupt register CBINT 0Ch Comp_B interrupt vector word CBIV 0Eh Table 66. Auxiliary Supply Registers (Base Address: 09E0h) REGISTER DESCRIPTION REGISTER OFFSET Auxiliary Supply Control 0 register AUXCTL0 00h Auxiliary Supply Control 1 register AUXCTL1 02h Auxiliary Supply Control 2 register AUXCTL2 04h AUX2 Charger Control AUX2CHCTL 12h AUX3 Charger Control AUX3CHCTL 14h AUX ADC Control AUXADCCTL 16h AUX Interrupt Flag AUXIFG 1Ah AUX Interrupt Enable AUXIE 1Ch AUX Interrupt Vector Word AUXIV 1Eh Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 57 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Table 67. LCD_C Registers (Base Address: 0A00h) REGISTER DESCRIPTION REGISTER OFFSET LCD_C control register 0 LCDCCTL0 000h LCD_C control register 1 LCDCCTL1 002h LCD_C blinking control register LCDCBLKCTL 004h LCD_C memory control register LCDCMEMCTL 006h LCD_C voltage control register LCDCVCTL 008h LCD_C port control 0 LCDCPCTL0 00Ah LCD_C port control 1 LCDCPCTL1 00Ch LCD_C port control 2 LCDCPCTL2 00Eh LCD_C charge pump control register LCDCCPCTL 012h LCD_C interrupt vector LCDCIV 01Eh LCD_C memory 1 LCDM1 020h LCD_C memory 2 LCDM2 021h Static and 2 to 4 mux modes ⋮ ⋮ ⋮ LCD_C memory 20 LCDM20 033h LCD_C blinking memory 1 LCDBM1 040h LCD_C blinking memory 2 LCDBM2 041h ⋮ ⋮ LCD_C blinking memory 20 ⋮ LCDBM20 053h LCD_C memory 1 LCDM1 020h LCD_C memory 2 LCDM2 021h 5 to 8 mux modes ⋮ ⋮ LCD_C memory 40 58 Submit Documentation Feedback ⋮ LCDM40 047h Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Absolute Maximum Ratings (1) over operating free-air temperature range (unless otherwise noted) Voltage applied at DVCC to DVSS Voltage applied to any pin (excluding VCORE) –0.3 V to 4.1 V (2) –0.3 V to VCC + 0.3 V Diode current at any device pin Storage temperature range, Tstg ±2 mA (3) –55°C to 105°C Maximum junction temperature, TJ (1) (2) (3) 95°C Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltages referenced to VSS. VCORE is for internal device use only. No external DC loading or voltage should be applied. Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels. Recommended Operating Conditions Typical values are specified at VCC = 3.3 V and TA = 25°C (unless otherwise noted) MIN V PMMCOREVx = 0, 1 2.0 3.6 V PMMCOREVx = 0, 1, 2 2.2 3.6 V PMMCOREVx = 0, 1, 2, 3 2.4 3.6 V 85 °C VSS Supply voltage VAVSS = VDVSS = VSS TA Operating free-air temperature I version –40 TJ Operating junction temperature I version –40 CVCORE Recommended capacitor at VCORE CDVCC/ CVCORE Capacitor ratio of DVCC to VCORE ILOAD, UNIT 3.6 Supply voltage during program execution and flash programming. VAVCC = VDVCC = VCC (1) (2) Processor frequency (maximum MCLK frequency) (3) (see Figure 3) MAX 1.8 VCC fSYSTEM NOM PMMCOREVx = 0 0 V 85 470 °C nF 10 (4) PMMCOREVx = 0, 1.8 V ≤ VCC ≤ 3.6 V (default condition) 0 8.0 PMMCOREVx = 1, 2 V ≤ VCC ≤ 3.6 V 0 12.0 PMMCOREVx = 2, 2.2 V ≤ VCC ≤ 3.6 V 0 20.0 PMMCOREVx = 3, 2.4 V ≤ VCC ≤ 3.6 V 0 25.0 MHz Maximum load current that can be drawn from DVCC for core and IO (ILOAD = ICORE + IIO) 20 mA Maximum load current that can be drawn from AUXVCC1 for core and IO (ILOAD = ICORE + IIO) 20 mA Maximum load current that can be drawn from AUXVCC2 for core and IO (ILOAD = ICORE + IIO) 20 mA Maximum load current that can be drawn from AVCC for analog modules (ILOAD = IModules) 10 mA Maximum load current that can be drawn from AUXVCC1 for analog modules (ILOAD = IModules) 5 mA Maximum load current that can be drawn from AUXVCC2 for analog modules (ILOAD = IModules) 5 mA AUX2A PINT Internal power dissipation DVCCD ILOAD, AUX1D ILOAD, AUX2D ILOAD, AVCCA ILOAD, AUX1A ILOAD, (1) (2) (3) (4) VCC x I(DVCC) W It is recommended to power AVCC and DVCC from the same source. A maximum difference of 0.3 V between V(AVCC) and V(DVCC) can be tolerated during power up and operation. The minimum supply voltage is defined by the supervisor SVS levels when it is enabled. See the PMM, SVS High Side threshold parameters for the exact values and further details. The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse duration of the specified maximum frequency. Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet. Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 59 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Recommended Operating Conditions (continued) Typical values are specified at VCC = 3.3 V and TA = 25°C (unless otherwise noted) MIN NOM MAX UNIT PIO I/O power dissipation of the I/O pins powered by DVCC (VCC - VIOH) x IIOH + VIOL x IIOL W PMAX Maximum allowed power dissipation, PMAX > PIO + PINT (TJ - TA)/θJA W 25 System Frequency - MHz 3 20 2 2, 3 1 1, 2 1, 2, 3 0, 1 0, 1, 2 0, 1, 2, 3 12 8 0 0 1.8 2.0 2.2 2.4 3.6 Supply Voltage - V The numbers within the fields denote the supported PMMCOREVx settings. Figure 3. Maximum System Frequency Electrical Characteristics Active Mode Supply Current Into VCC Excluding External Current over recommended operating free-air temperature (unless otherwise noted) (1) (2) (3) FREQUENCY (fDCO = fMCLK = fSMCLK) PARAMETER EXECUTION MEMORY VCC PMMCOREV x 1 MHz TYP IAM, IAM, (1) (2) (3) (4) (5) 60 Flash RAM (4) (5) Flash RAM 3V 3V 8 MHz MAX 0.50 TYP 2.08 MAX 12 MHz TYP MAX 20 MHz TYP 0 0.32 1 0.35 2.35 3.50 2 0.39 2.68 3.99 6.61 3 0.41 2.83 4.22 6.98 0 0.19 1.04 1 0.21 1.20 1.77 2 0.23 1.38 2.04 3.35 3 0.24 1.47 2.18 3.58 25 MHz MAX TYP UNIT MAX 2.84 4.76 mA 8.3 8.67 11.75 mA 4.44 All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are chosen to closely match the required 12.5 pF. Characterized with program executing typical data processing. fACLK = 32786 Hz, fDCO = fMCLK = fSMCLK at specified frequency. XTS = CPUOFF = SCG0 = SCG1 = OSCOFF = SMCLKOFF = 0. Active mode supply current when program executes in flash at a nominal supply voltage of 3.0V. Active mode supply current when program executes in RAM at a nominal supply voltage of 3.0V. Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Low-Power Mode Supply Currents (Into VCC) Excluding External Current over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) (2) Temperature (TA) PARAMETER VCC PMMCOREVx -40°C TYP ILPM0,1MHz Low-power mode 0 (3) (4) ILPM2 Low-power mode 2 (5) (4) ILPM3,XT1LF ILPM3,XT1LF ILPM3,VLO ILPM4 Low-power mode 3, crystal mode (6) (4) Low-power mode 3, crystal mode (6) (4) Low-power mode 3, VLO mode (7) (4) Low-power mode 4 (8) 25°C TYP 85°C MAX TYP 2.2 V 0 70 75 3V 3 81 87 2.2 V 0 5.9 6.5 3V 3 6.7 7.3 0 1.50 2.0 7.8 1 1.65 2.2 8.3 2 1.80 2.4 8.6 3 1.84 2.4 8.6 0 2.0 2.5 8.5 1 2.1 2.7 9.0 2 2.3 2.9 9.3 3 2.3 2.9 9.3 0 1.3 1.7 7.5 1 1.3 1.8 7.9 2 1.4 1.9 8.2 3 1.4 1.9 8.2 0 1.2 1.6 7.4 1 1.2 1.7 7.8 2 1.3 1.7 7.9 3 2.2 V 3V 3V (4) MAX 3V UNIT MAX 86 105 100 130 12.5 18 13.8 1.3 1.7 8.0 0.7 0.9 1.4 30 µA µA µA µA 25 µA 25.0 µA 23.0 ILPM3.5 Low-power mode 3.5, RTC active on AUXVCC3 (9) 2.2V 3.0V 1.0 1.2 1.5 1.8 3.0 ILPM4.5 Low-power mode 4.5 (10) 3.0V 0.6 0.7 1.0 1.2 2.0 µA µA (1) (2) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are chosen to closely match the required 12.5 pF. (3) Current for watchdog timer clocked by SMCLK included. ACLK = low frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0); fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 1 MHz (4) Current for brownout, high side supervisor (SVSH) normal mode included. Low side supervisor and monitors disabled (SVSL, SVML). High side monitor disabled (SVMH). RAM retention enabled. (5) Current for watchdog timer and RTC clocked by ACLK included. ACLK = low frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2); fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 0 MHz; DCO setting = 1 MHz operation, DCO bias generator enabled. (6) Current for watchdog timer and RTC clocked by low frequency clock included. ACLK = low frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3); fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz (7) Current for watchdog timer and RTC clocked by low frequency clock included. ACLK = VLO. CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3); fACLK = fVLO, fMCLK = fSMCLK = fDCO = 0 MHz (8) CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4); fDCO = fACLK = fMCLK = fSMCLK = 0 MHz (9) fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 32768 Hz, PMMREGOFF = 1, RTC active on AUXVCC3 supply (10) fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 0 Hz, PMMREGOFF = 1 Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 61 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Low-Power Mode With LCD Supply Currents (Into VCC) Excluding External Current over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) (2) Temperature (TA) PARAMETER VCC PMMCOREVx -40°C TYP ILPM3 LCD, ext. bias ILPM3 LCD, int. bias Low-power mode 3 (LPM3) current, LCD 4-mux mode, external biasing (3) (4) Low-power mode 3 (LPM3) current, LCD 4-mux mode, internal biasing, charge pump disabled (3) (5) 3V 3V 2.2 V ILPM3 LCD,CP (1) (2) (3) (4) (5) (6) 62 Low-power mode 3 (LPM3) current, LCD 4-mux mode, internal biasing, charge pump enabled (3) (6) 3V MAX 25°C TYP 85°C MAX TYP 0 2.5 3.1 9.1 1 2.6 3.3 9.5 2 2.8 3.5 9.9 3 2.8 3.5 0 2.9 3.5 9.7 1 3.1 3.7 10.1 2 3.2 4.0 10.5 3 3.3 4.0 0 2.2 2.8 8.8 1 2.3 3.0 9.1 2 2.5 3.2 9.5 0 2.6 3.2 9.3 1 2.8 3.4 9.7 2 2.9 3.6 10.1 3 3.0 3.7 10.2 6.0 5.5 10.0 10.5 UNIT MAX µA 25.0 µA 25.0 µA µA All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are chosen to closely match the required 12.5 pF. Current for watchdog timer and RTC clocked by ACLK included. ACLK = low frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3); fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz Current for brownout, high side supervisor (SVSH) normal mode included. Low side supervisor and monitors disabled (SVSL, SVML). High side monitor disabled (SVMH). RAM retention enabled. LCDMx = 11 (4-mux mode), LCDREXT = 1, LCDEXTBIAS = 1 (external biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 0 (charge pump disabled), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz) Current through external resistors not included (voltage levels are supplied by test equipment). Even segments S0,S2,... = 0, odd segments S1,S3,... = 1. No LCD panel load. LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 0 (charge pump disabled), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz) Even segments S0,S2,... = 0, odd segments S1,S3,... = 1. No LCD panel load. LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 1 (charge pump enabled), VLCDx = 1000 (VLCD = 3V,typ.), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz) Even segments S0,S2,... = 0, odd segments S1,S3,... = 1. No LCD panel load. Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Schmitt-Trigger Inputs – General Purpose I/O over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VIT+ Positive-going input threshold voltage VIT– Negative-going input threshold voltage Vhys Input voltage hysteresis (VIT+ – VIT–) RPull Pullup or pulldown resistor (1) For pullup: VIN = VSS, For pulldown: VIN = VCC CI Input capacitance VIN = VSS or VCC (1) VCC MIN 1.8 V 0.80 1.40 3V 1.50 2.10 1.8 V 0.45 1.00 3V 0.75 1.65 1.8 V 0.3 0.85 3V 0.4 1.0 20 TYP 35 MAX UNIT V V V 50 kΩ 5 pF Also applies to RST pin when pullup or pulldown resistor is enabled. Inputs – Ports P1 and P2 (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER t(int) (1) (2) External interrupt timing (2) TEST CONDITIONS VCC Port P1, P2: P1.x to P2.x, External trigger pulse duration to set interrupt flag 2.2 V, 3 V MIN MAX UNIT 20 ns Some devices may contain additional ports with interrupts. See the block diagram and terminal function descriptions. An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals shorter than t(int). Leakage Current – General Purpose I/O over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER Ilkg(Px.y) (1) (2) High-impedance leakage current TEST CONDITIONS (1) (2) VCC MIN MAX UNIT 1.8 V, 3 V -50 +50 nA The leakage current is measured with VSS or VCC applied to the corresponding pins, unless otherwise noted. The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is disabled. Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 63 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Outputs – General Purpose I/O (Full Drive Strength) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS I(OHmax) = –3 mA VOH High-level output voltage VCC (1) 1.8 V I(OHmax) = –10 mA (1) I(OHmax) = –5 mA (1) 3V I(OHmax) = –15 mA (1) I(OLmax) = 3 mA VOL Low-level output voltage (2) 1.8 V I(OLmax) = 10 mA (3) I(OLmax) = 5 mA (2) 3V I(OLmax) = 15 mA (3) (1) (2) (3) MIN MAX 1.55 1.80 1.20 1.80 2.75 3.00 2.40 3.00 0.00 0.25 0.00 0.60 0.00 0.25 0.00 0.60 UNIT V V The maximum total current, I(OHmax), for all outputs combined should not exceed ±20 mA to hold the maximum voltage drop specified. See Recommended Operating Conditions for more details. The maximum total current, I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop specified. The maximum total current, I(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage drop specified. Outputs – General Purpose I/O (Reduced Drive Strength) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) PARAMETER TEST CONDITIONS I(OHmax) = –1 mA VOH High-level output voltage VCC (2) 1.8 V I(OHmax) = –3 mA (2) I(OHmax) = –2 mA (2) 3V I(OHmax) = –6 mA (2) I(OLmax) = 1 mA VOL Low-level output voltage (3) 1.8 V I(OLmax) = 3 mA (4) I(OLmax) = 2 mA (3) 3V I(OLmax) = 6 mA (4) (1) (2) (3) (4) MIN MAX 1.55 1.80 1.20 1.80 2.75 3.00 2.40 3.00 0.00 0.25 0.00 0.60 0.00 0.25 0.00 0.60 UNIT V V Selecting reduced drive strength may reduce EMI. The maximum total current, I(OHmax), for all outputs combined should not exceed ±20 mA to hold the maximum voltage drop specified. See Recommended Operating Conditions for more details. The maximum total current, I(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop specified. The maximum total current, I(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage drop specified. Output Frequency – General Purpose I/O over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN MAX UNIT (1) (2) fPx.y Port output frequency (with load) fPort_CLK (1) (2) 64 Clock output frequency ACLK SMCLK MCLK CL = 20 pF (2) VCC = 1.8 V, PMMCOREVx = 0 16 VCC = 3 V, PMMCOREVx = 3 25 VCC = 1.8 V, PMMCOREVx = 0 16 VCC = 3 V, PMMCOREVx = 3 25 MHz MHz A resistive divider with 2 × R1 between VCC and VSS is used as load. The output is connected to the center tap of the divider. For full drive strength, R1 = 550 Ω. For reduced drive strength, R1 = 1.6 kΩ. CL = 20 pF is connected to the output to VSS. The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency. Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Typical Characteristics – Outputs, Reduced Drive Strength (PxDS.y = 0) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE 8 20 18 7 IOL – Low-Level Output Current – mA IOL – Low-Level Output Current – mA TA = 25°C 16 TA = 85°C 14 12 10 8 6 4 TA = 85°C 5 4 3 2 1 VCC = 3 V Reduced Drive Strength 2 TA = 25°C 6 VCC = 1.8 V Reduced Drive Strength 0 0 0 0.5 1 1.5 2 2.5 0 3 0.2 VOL – Low-Level Output Voltage – V 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 VOL – Low-Level Output Voltage – V Figure 4. Figure 5. TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE 0 0 VCC = 1.8 V Reduced Drive Strength VCC = 3 V Reduced Drive Strength IOH – High-Level Output Current – mA IOH – High-Level Output Current – mA -1 -5 -10 -15 TA = 85°C -20 TA = 25°C -2 -3 -4 -5 TA = 85°C -6 -7 TA = 25°C -8 -25 0 0.5 1 1.5 2 VOH – High-Level Output Voltage – V Figure 6. Copyright © 2012–2013, Texas Instruments Incorporated 2.5 3 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 VOH – High-Level Output Voltage – V Figure 7. Submit Documentation Feedback 65 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Typical Characteristics – Outputs, Full Drive Strength (PxDS.y = 1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE 25 60 IOL – Low-Level Output Current – mA IOL – Low-Level Output Current – mA 50 TA = 25°C TA = 85°C 40 30 20 10 20 TA = 25°C TA = 85°C 15 10 5 VCC = 1.8 V Full Drive Strength VCC = 3 V Full Drive Strength 0 0 0 0.5 1 1.5 2 2.5 3 0 0.2 VOL – Low-Level Output Voltage – V 0.6 0.8 1 1.2 1.4 1.6 1.8 VOL – Low-Level Output Voltage – V Figure 8. Figure 9. TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE 0 0 VCC = 1.8 V Full Drive Strength VCC = 3 V Full Drive Strength IOH – High-Level Output Current – mA -10 IOH – High-Level Output Current – mA 0.4 -20 -30 -40 TA = 85°C -50 -5 -10 -15 TA = 85°C -20 TA = 25°C TA = 25°C -25 -60 0 0.5 1 1.5 2 VOH – High-Level Output Voltage – V Figure 10. 66 Submit Documentation Feedback 2.5 3 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 VOH – High-Level Output Voltage – V Figure 11. Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Crystal Oscillator, XT1, Low-Frequency Mode (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER ΔIDVCC.LF Differential XT1 oscillator crystal current consumption from lowest drive setting, LF mode TEST CONDITIONS VCC MIN fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 1, TA = 25°C fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 2, TA = 25°C 3V 0.170 0.290 XTS = 0, XT1BYPASS = 0 32768 XT1 oscillator crystal frequency, LF mode fXT1,LF,SW XT1 oscillator logic-level square-wave input frequency, XTS = 0, XT1BYPASS = 1 (2) LF mode OALF Oscillation allowance for LF crystals (4) (3) 10 fFault,LF tSTART,LF (1) (2) (3) (4) (5) (6) (7) (8) 32.768 XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 0, fXT1,LF = 32768 Hz, CL,eff = 6 pF 210 XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 1, fXT1,LF = 32768 Hz, CL,eff = 12 pF 300 UNIT µA Hz 50 kHz kΩ XTS = 0, XCAPx = 0 (6) CL,eff MAX 0.075 fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 3, TA = 25°C fXT1,LF0 Integrated effective load capacitance, LF mode (5) TYP 2 XTS = 0, XCAPx = 1 5.5 XTS = 0, XCAPx = 2 8.5 XTS = 0, XCAPx = 3 12.0 pF Duty cycle, LF mode XTS = 0, Measured at ACLK, fXT1,LF = 32768 Hz 30 70 % Oscillator fault frequency, LF mode (7) XTS = 0 (8) 10 10000 Hz Startup time, LF mode fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 0, TA = 25°C, CL,eff = 6 pF fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 3, TA = 25°C, CL,eff = 12 pF 1000 3V ms 500 To improve EMI on the XT1 oscillator, the following guidelines should be observed. (a) Keep the trace between the device and the crystal as short as possible. (b) Design a good ground plane around the oscillator pins. (c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. (d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. (e) Use assembly materials and techniques to avoid any parasitic load on the oscillator XIN and XOUT pins. (f) If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins. When XT1BYPASS is set, XT1 circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in the Schmitt-trigger Inputs section of this data sheet. Maximum frequency of operation of the entire device cannot be exceeded. Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the XT1DRIVEx settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following guidelines, but should be evaluated based on the actual crystal selected for the application: (a) For XT1DRIVEx = 0, CL,eff ≤ 6 pF. (b) For XT1DRIVEx = 1, 6 pF ≤ CL,eff ≤ 9 pF. (c) For XT1DRIVEx = 2, 6 pF ≤ CL,eff ≤ 10 pF. (d) For XT1DRIVEx = 3, CL,eff ≥ 6 pF. Includes parasitic bond and package capacitance (approximately 2 pF per pin). Since the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal. Requires external capacitors at both terminals. Values are specified by crystal manufacturers. Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies in between might set the flag. Measured with logic-level input frequency but also applies to operation with crystals. Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 67 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Internal Very-Low-Power Low-Frequency Oscillator (VLO) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC fVLO VLO frequency Measured at ACLK 1.8 V to 3.6 V dfVLO/dT VLO frequency temperature drift Measured at ACLK 1.8 V to 3.6 V Measured at ACLK 1.8 V to 3.6 V Measured at ACLK 1.8 V to 3.6 V dfVLO/dVCC VLO frequency supply voltage drift Duty cycle MIN TYP MAX 6 9.6 15 0.5 kHz %/°C 4 40 UNIT %/V 50 60 TYP MAX % Internal Reference, Low-Frequency Oscillator (REFO) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER IREFO fREFO TEST CONDITIONS VCC MIN TA = 25°C 1.8 V to 3.6 V REFO frequency calibrated Measured at ACLK 1.8 V to 3.6 V Full temperature range 1.8 V to 3.6 V -3.5 +3.5 % 3V -1.5 +1.5 % REFO absolute tolerance calibrated TA = 25°C 3 µA 32768 dfREFO/dT REFO frequency temperature drift Measured at ACLK 1.8 V to 3.6 V 0.01 dfREFO/dVCC REFO frequency supply voltage drift Measured at ACLK 1.8 V to 3.6 V 1.0 Duty cycle Measured at ACLK 1.8 V to 3.6 V REFO startup time 40%/60% duty cycle 1.8 V to 3.6 V tSTART UNIT REFO oscillator current consumption 40 50 Hz %/°C %/V 60 25 % µs DCO Frequency over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER fDCO(0,0) TEST CONDITIONS DCO frequency (0, 0) (1) (1) MAX UNIT DCORSELx = 0, DCOx = 0, MODx = 0 0.07 MIN TYP 0.20 MHz fDCO(0,31) DCO frequency (0, 31) DCORSELx = 0, DCOx = 31, MODx = 0 0.70 1.70 MHz fDCO(1,0) DCO frequency (1, 0) (1) DCORSELx = 1, DCOx = 0, MODx = 0 0.15 0.36 MHz fDCO(1,31) DCO frequency (1, 31) (1) DCORSELx = 1, DCOx = 31, MODx = 0 1.47 3.45 MHz (1) fDCO(2,0) DCO frequency (2, 0) DCORSELx = 2, DCOx = 0, MODx = 0 0.32 0.75 MHz fDCO(2,31) DCO frequency (2, 31) (1) DCORSELx = 2, DCOx = 31, MODx = 0 3.17 7.38 MHz fDCO(3,0) DCO frequency (3, 0) (1) DCORSELx = 3, DCOx = 0, MODx = 0 0.64 1.51 MHz fDCO(3,31) DCO frequency (3, 31) (1) DCORSELx = 3, DCOx = 31, MODx = 0 6.07 14.0 MHz (1) fDCO(4,0) DCO frequency (4, 0) DCORSELx = 4, DCOx = 0, MODx = 0 1.3 3.2 MHz fDCO(4,31) DCO frequency (4, 31) (1) DCORSELx = 4, DCOx = 31, MODx = 0 12.3 28.2 MHz fDCO(5,0) DCO frequency (5, 0) (1) DCORSELx = 5, DCOx = 0, MODx = 0 2.5 6.0 MHz (1) fDCO(5,31) DCO frequency (5, 31) DCORSELx = 5, DCOx = 31, MODx = 0 23.7 54.1 MHz fDCO(6,0) DCO frequency (6, 0) (1) DCORSELx = 6, DCOx = 0, MODx = 0 4.6 10.7 MHz fDCO(6,31) DCO frequency (6, 31) (1) DCORSELx = 6, DCOx = 31, MODx = 0 39.0 88.0 MHz (1) fDCO(7,0) DCO frequency (7, 0) DCORSELx = 7, DCOx = 0, MODx = 0 8.5 19.6 MHz fDCO(7,31) DCO frequency (7, 31) (1) DCORSELx = 7, DCOx = 31, MODx = 0 60 135 MHz SDCORSEL Frequency step between range DCORSEL and DCORSEL + 1 SRSEL = fDCO(DCORSEL+1,DCO)/fDCO(DCORSEL,DCO) 1.2 2.3 ratio SDCO Frequency step between tap DCO and DCO + 1 SDCO = fDCO(DCORSEL,DCO+1)/fDCO(DCORSEL,DCO) 1.02 1.12 ratio Duty cycle Measured at SMCLK DCO frequency temperature drift fDCO = 1 MHz dfDCO/dT (1) 68 40 50 0.1 60 % %/°C When selecting the proper DCO frequency range (DCORSELx), the target DCO frequency, fDCO, should be set to reside within the range of fDCO(n, 0),MAX ≤ fDCO ≤ fDCO(n, 31),MIN, where fDCO(n, 0),MAX represents the maximum frequency specified for the DCO frequency, range n, tap 0 (DCOx = 0) and fDCO(n,31),MIN represents the minimum frequency specified for the DCO frequency, range n, tap 31 (DCOx = 31). This ensures that the target DCO frequency resides within the range selected. It should also be noted that if the actual fDCO frequency for the selected range causes the FLL or the application to select tap 0 or 31, the DCO fault flag is set to report that the selected range is at its minimum or maximum tap setting. Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 DCO Frequency (continued) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER dfDCO/dVCORE TEST CONDITIONS DCO frequency voltage drift MIN fDCO = 1 MHz TYP MAX 1.9 UNIT %/V Typical DCO Frequency, VCC = 3.0 V, TA = 25°C 100 fDCO – MHz 10 DCOx = 31 1 0.1 DCOx = 0 0 1 2 3 4 5 6 7 DCORSEL Figure 12. Typical DCO Frequency PMM, Brown-Out Reset (BOR) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS V(DVCC_BOR_IT–) BORH on voltage, DVCC falling level | dDVCC/dt | < 3 V/s V(DVCC_BOR_IT+) BORH off voltage, DVCC rising level | dDVCC/dt | < 3 V/s V(DVCC_BOR_hys) BORH hysteresis tRESET Pulse duration required at RST/NMI pin to accept a reset MIN 0.80 TYP 1.20 50 MAX UNIT 1.45 V 1.50 V 250 mV 2 µs PMM, Core Voltage over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT VCORE3(AM) Core voltage, active mode, PMMCOREV = 3 2.4 V ≤ DVCC ≤ 3.6 V 1.91 V VCORE2(AM) Core voltage, active mode, PMMCOREV = 2 2.2 V ≤ DVCC ≤ 3.6 V 1.81 V VCORE1(AM) Core voltage, active mode, PMMCOREV = 1 2 V ≤ DVCC ≤ 3.6 V 1.61 V VCORE0(AM) Core voltage, active mode, PMMCOREV = 0 1.8 V ≤ DVCC ≤ 3.6 V 1.41 V VCORE3(LPM) Core voltage, low-current mode, PMMCOREV = 3 2.4 V ≤ DVCC ≤ 3.6 V 1.94 V VCORE2(LPM) Core voltage, low-current mode, PMMCOREV = 2 2.2 V ≤ DVCC ≤ 3.6 V 1.92 V VCORE1(LPM) Core voltage, low-current mode, PMMCOREV = 1 2 V ≤ DVCC ≤ 3.6 V 1.73 V VCORE0(LPM) Core voltage, low-current mode, PMMCOREV = 0 1.8 V ≤ DVCC ≤ 3.6 V 1.52 V Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 69 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com PMM, SVS High Side over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN SVSHE = 0, DVCC = 3.6 V I(SVSH) SVS current consumption V(SVSH_IT–) V(SVSH_IT+) SVSH on voltage level SVSH off voltage level tpd(SVSH) SVSH propagation delay t(SVSH) SVSH on or off delay time dVDVCC/dt DVCC rise time 70 Submit Documentation Feedback TYP MAX 0 UNIT nA SVSHE = 1, DVCC = 3.6 V, SVSHFP = 0 200 nA SVSHE = 1, DVCC = 3.6 V, SVSHFP = 1 1.5 µA SVSHE = 1, SVSHRVL = 0 1.60 1.65 1.75 SVSHE = 1, SVSHRVL = 1 1.77 1.84 1.95 SVSHE = 1, SVSHRVL = 2 1.93 2.00 2.12 SVSHE = 1, SVSHRVL = 3 2.09 2.16 2.29 SVSHE = 1, SVSMHRRL = 0 1.65 1.75 1.85 SVSHE = 1, SVSMHRRL = 1 1.85 1.95 2.05 SVSHE = 1, SVSMHRRL = 2 2.05 2.15 2.25 SVSHE = 1, SVSMHRRL = 3 2.15 2.25 2.35 SVSHE = 1, SVSMHRRL = 4 2.30 2.40 2.55 SVSHE = 1, SVSMHRRL = 5 2.57 2.70 2.83 SVSHE = 1, SVSMHRRL = 6 2.90 3.05 3.20 SVSHE = 1, SVSMHRRL = 7 2.90 3.05 3.20 SVSHE = 1, dVDVCC/dt = 10 mV/µs, SVSHFP = 1 2.5 SVSHE = 1, dVDVCC/dt = 1 mV/µs, SVSHFP = 0 20 SVSHE = 0 → 1, dVDVCC/dt = 10 mV/µs, SVSHFP = 1 12.5 SVSHE = 0 → 1, dVDVCC/dt = 1 mV/µs, SVSHFP = 0 100 0 V V µs µs 1000 V/s Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 PMM, SVM High Side over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN SVMHE = 0, DVCC = 3.6 V I(SVMH) V(SVMH) SVMH current consumption SVMH on or off voltage level (1) t(SVMH) (1) SVMH propagation delay SVMH on or off delay time MAX UNIT 0 nA SVMHE = 1, DVCC = 3.6 V, SVMHFP = 0 200 nA SVMHE = 1, DVCC = 3.6 V, SVMHFP = 1 1.5 µA SVMHE = 1, SVSMHRRL = 0 1.63 1.73 1.83 SVMHE = 1, SVSMHRRL = 1 1.83 1.93 2.03 SVMHE = 1, SVSMHRRL = 2 2.03 2.13 2.23 SVMHE = 1, SVSMHRRL = 3 2.13 2.23 2.33 SVMHE = 1, SVSMHRRL = 4 2.28 2.40 2.53 SVMHE = 1, SVSMHRRL = 5 2.55 2.70 2.81 SVMHE = 1, SVSMHRRL = 6 2.88 3.02 3.18 SVMHE = 1, SVSMHRRL = 7 2.88 3.02 3.18 SVMHE = 1, SVMHOVPE = 1 tpd(SVMH) TYP V 3.77 SVMHE = 1, dVDVCC/dt = 10 mV/µs, SVMHFP = 1 2.5 SVMHE = 1, dVDVCC/dt = 1 mV/µs, SVMHFP = 0 20 SVMHE = 0 → 1, dVDVCC/dt = 10 mV/µs, SVMHFP = 1 12.5 SVMHE = 0 → 1, dVDVCC/dt = 1 mV/µs, SVMHFP = 0 100 µs µs The SVMH settings available depend on the VCORE (PMMCOREVx) setting. See the Power Management Module and Supply Voltage Supervisor chapter in the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208) on recommended settings and use. Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 71 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com PMM, SVS Low Side over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN SVSLE = 0, PMMCOREV = 2 I(SVSL) SVSL current consumption tpd(SVSL) SVSL propagation delay t(SVSL) SVSL on or off delay time TYP MAX 0 UNIT nA SVSLE = 1, PMMCOREV = 2, SVSLFP = 0 200 nA SVSLE = 1, PMMCOREV = 2, SVSLFP = 1 1.5 µA SVSLE = 1, dVCORE/dt = 10 mV/µs, SVSLFP = 1 2.5 SVSLE = 1, dVCORE/dt = 1 mV/µs, SVSLFP = 0 20 SVSLE = 0 → 1, dVCORE/dt = 10 mV/µs, SVSLFP = 1 12.5 SVSLE = 0 → 1, dVCORE/dt = 1 mV/µs, SVSLFP = 0 100 µs µs PMM, SVM Low Side over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN SVMLE = 0, PMMCOREV = 2 I(SVML) SVML current consumption tpd(SVML) t(SVML) SVML propagation delay SVML on or off delay time TYP MAX UNIT 0 nA SVMLE = 1, PMMCOREV = 2, SVMLFP = 0 200 nA SVMLE = 1, PMMCOREV = 2, SVMLFP = 1 1.5 µA SVMLE = 1, dVCORE/dt = 10 mV/µs, SVMLFP = 1 2.5 SVMLE = 1, dVCORE/dt = 1 mV/µs, SVMLFP = 0 20 SVMLE = 0 → 1, dVCORE/dt = 10 mV/µs, SVMLFP = 1 12.5 SVMLE = 0 → 1, dVCORE/dt = 1 mV/µs, SVMLFP = 0 100 µs µs Wake-Up From Low-Power Modes and Reset over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS tWAKE-UP-FAST Wake-up time from LPM2, LPM3, or LPM4 to active mode (1) PMMCOREV = SVSMLRRL = n (where n = 0, 1, 2, or 3), SVSLFP = 1 tWAKE-UP-SLOW Wake-up time from LPM2, LPM3 or LPM4 to active mode (2) PMMCOREV = SVSMLRRL = n (where n = 0, 1, 2, or 3), SVSLFP = 0 tWAKE-UP-LPM4.5 tWAKE-UP-RESET (1) (2) (3) 72 MIN TYP MAX fMCLK ≥ 4.0 MHz 5 fMCLK < 4.0 MHz 10 UNIT µs 150 165 µs Wake-up time from LPM4.5 to active mode (3) 2 3 ms Wake-up time from RST or BOR event to active mode (3) 2 3 ms This value represents the time from the wakeup event to the first active edge of MCLK. The wakeup time depends on the performance mode of the low side supervisor (SVSL) and low side monitor (SVML). Fastest wakeup times are possible with SVSLand SVML in full performance mode or disabled when operating in AM, LPM0, and LPM1. Various options are available for SVSLand SVML while operating in LPM2, LPM3, and LPM4. See the Power Management Module and Supply Voltage Supervisor chapter in the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208). This value represents the time from the wakeup event to the first active edge of MCLK. The wakeup time depends on the performance mode of the low side supervisor (SVSL) and low side monitor (SVML). In this case, the SVSLand SVML are in normal mode (low current) mode when operating in AM, LPM0, and LPM1. Various options are available for SVSLand SVML while operating in LPM2, LPM3, and LPM4. See the Power Management Module and Supply Voltage Supervisor chapter in the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208). This value represents the time from the wakeup event to the reset vector execution. Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Auxiliary Supplies Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) MIN VCC NOM MAX Supply voltage range for all supplies at pins DVCC, AVCC, AUX1, AUX2, AUX3 1.8 3.6 PMMCOREVx = 0 1.8 3.6 PMMCOREVx = 1 2.0 3.6 PMMCOREVx = 2 2.2 3.6 PMMCOREVx = 3 2.4 3.6 UNIT V VDSYS Digital system supply voltage range, VDSYS = VCC – RON × ILOAD VASYS Analog system supply voltage range, VASYS = VCC – RON × ILOAD TA Ambient temperature range TA,HTOL Ambient temperature during HTOL (module should be functional during HTOL) CVCC,CAUX1/2 Recommended capacitor at pins DVCC, AVCC, AUX1, AUX2 4.7 µF CVSYS Recommended capacitor at pins VDSYS1, VDSYS2 and VASYS1, VASYS2 4.7 µF CVCORE Recommended capacitance at pin VCORE 0.47 µF CAUX3 Recommended capacitor at pin AUX3 0.47 µF See modules -40 V V 85 150 °C °C Auxiliary Supplies - AUX3 (Backup Subsystem) Currents over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS VCC IAUX3,RTCon AUX3 current with RTC enabled RTC and 32-kHz oscillator in backup subsystem enabled 3V IAUX3,RTCoff AUX3 current with RTC disabled RTC and 32-kHz oscillator in backup subsystem disabled 3V TA MIN TYP MAX 25°C 0.86 85°C 1.2 25°C 120 85°C 220 UNIT µA nA Auxiliary Supplies - Auxiliary Supply Monitor over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT ICC,Monitor Average supply current for monitoring circuitry drawn from VDSYS LOCKAUX = 0, AUXMRx = 0 AUX0MD = 0, AUX1MD = 0, AUX2MD = 1, VDSYS = DVCC, VASYS = AVCC, Current measured at VDSYS 1.10 µA IMeas,Montior Average current drawn from monitored supply during measurement cycle LOCKAUX = 0, AUXMRx = 0 AUX0MD = 0, AUX1MD = 0, AUX2MD = 1, VDSYS = DVCC, VASYS = AVCC, Current measured at AUXVCC1 0.13 µA General VSVMH (SVSMHRRLx = AUXLVLx) VSVMH (SVSMHRRLx = AUXLVLx) X - 5% VMonitor Auxiliary supply threshold level (same as high-side SVM) VSVMH (SVSMHRRLx = AUXLVLx) X + 5% AUXLVLx = 0 1.65 1.75 1.85 AUXLVLx = 1 1.85 1.95 2.05 AUXLVLx = 2 2.05 2.15 2.25 AUXLVLx = 3 2.15 2.25 2.35 AUXLVLx = 4 2.30 2.40 2.55 AUXLVLx = 5 2.57 2.70 2.83 AUXLVLx = 6 2.90 3.00 3.20 AUXLVLx = 7 2.90 3.00 3.20 Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback V 73 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Auxiliary Supplies - Switch On-Resistance over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN TYP MAX UNIT RON,DVCC On-resistance of switch between DVCC and VDSYS ILOAD = ICORE + IIO = 10 mA + 10 mA = 20 mA 5 Ω RON,DAUX1 On-resistance of switch between AUX1 and VDSYS ILOAD = ICORE + IIO = 10 mA + 10 mA = 20 mA 5 Ω RON,DAUX2 On-resistance of switch between AUX2 and VDSYS ILOAD = ICORE + IIO = 10 mA + 10 mA = 20 mA 5 Ω RON,AVCC On-resistance of switch between AVCC and VASYS ILOAD = IModules = 10 mA 5 Ω RON,AAUX1 On-resistance of switch between AUX1 and VASYS ILOAD = IModules = 5 mA 20 Ω RON,AAUX2 On-resistance of switch between AUX2 and VASYS ILOAD = IModules = 5 mA 20 Ω Auxiliary Supplies - Switching Time over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS tSwitch Time from occurrence of trigger (SVM or software) to "new" supply connected to system supplies tRecover "Recovery time" after a switch over took place. During that time no further switching takes place. VCC MIN TYP 170 MAX UNIT 100 ns 480 µs Auxiliary Supplies - Switch Leakage over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS ISW,Lkg Current into DVCC, AVCC, AUX1, or AUX2 if not selected IVmax Current drawn from highest supply VCC MIN Per supply (but not the highest supply) TYP MAX UNIT 75 250 nA 500 700 nA UNIT Auxiliary Supplies - Auxiliary Supplies to ADC10_A over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS Supply voltage divider V3 = VSupply/3 V3 RV3 Load resistance tSample,V3 Sampling time required if V3 selected. Error of conversion result ≤ 1 LSB VCC MIN TYP MAX 1.8 V 0.57 0.6 0.63 3V 0.95 1.0 1.05 3.6 V 1.14 1.2 1.26 V AUXADCRx = 0 15 kΩ AUXADCRx = 1 1.5 kΩ AUXADCRx = 2 0.6 kΩ AUXADCRx = 0 1000 ns AUXADCRx = 1 1000 ns AUXADCRx = 2 1000 ns Auxiliary Supplies - Charge Limiting Resistor over operating free-air temperature range (unless otherwise noted) PARAMETER RCHARGE 74 Charge limiting resistor Submit Documentation Feedback TEST CONDITIONS VCC MIN TYP MAX CHCx = 1 3V 5 CHCx = 2 3V 10 CHCx = 3 3V 20 UNIT kΩ Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Timer_A over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC fTA Timer_A input clock frequency Internal: SMCLK or ACLK, External: TACLK, Duty cycle = 50% ± 10% 1.8 V, 3 V tTA,cap Timer_A capture timing All capture inputs. Minimum pulse duration required for capture. 1.8 V, 3 V MIN TYP MAX UNIT 25 MHz 20 ns eUSCI (UART Mode) Recommended Operating Conditions PARAMETER feUSCI eUSCI input clock frequency fBITCLK BITCLK clock frequency (equals baud rate in MBaud) CONDITIONS VCC MIN TYP Internal: SMCLK or ACLK, External: UCLK, Duty cycle = 50% ± 10% MAX UNIT fSYSTEM MHz 5 MHz UNIT eUSCI (UART Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC UCGLITx = 0 UCGLITx = 1 UART receive deglitch time (1) tt UCGLITx = 2 2 V, 3 V UCGLITx = 3 (1) MIN TYP MAX 10 15 25 30 50 85 50 80 150 70 120 200 ns Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To make sure that pulses are correctly recognized, their duration should exceed the maximum specification of the deglitch time. eUSCI (SPI Master Mode) Recommended Operating Conditions PARAMETER feUSCI CONDITIONS VCC MIN TYP Internal: SMCLK or ACLK, Duty cycle = 50% ± 10% eUSCI input clock frequency MAX UNIT fSYSTEM MHz MAX UNIT eUSCI (SPI Master Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) PARAMETER tSTE,LEAD STE lead time, STE low to clock tSTE,LAG STE lag time, Last clock to STE high VCC MIN UCSTEM = 0, UCMODEx = 01 or 10 TEST CONDITIONS 2 V, 3 V 150 UCSTEM = 1, UCMODEx = 01 or 10 2 V, 3 V 150 UCSTEM = 0, UCMODEx = 01 or 10 2 V, 3 V 200 UCSTEM = 1, UCMODEx = 01 or 10 2 V, 3 V 200 UCSTEM = 0, UCMODEx = 01 or 10 tSTE,ACC STE access time, STE low to SIMO data out UCSTEM = 1, UCMODEx = 01 or 10 UCSTEM = 0, UCMODEx = 01 or 10 tSTE,DIS STE disable time, STE high to SIMO high impedance UCSTEM = 1, UCMODEx = 01 or 10 tSU,MI (1) SOMI input data setup time TYP ns ns 2V 50 3V 30 2V 50 3V 30 2V 40 3V 25 2V 40 3V ns ns 25 2V 50 3V 30 ns fUCxCLK = 1/2tLO/HI with tLO/HI = max(tVALID,MO(eUSCI) + tSU,SI(Slave), tSU,MI(eUSCI) + tVALID,SO(Slave)). For the slave's parameters tSU,SI(Slave) and tVALID,SO(Slave) see the SPI parameters of the attached slave. Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 75 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com eUSCI (SPI Master Mode) (continued) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)(1) PARAMETER TEST CONDITIONS tHD,MI SOMI input data hold time tVALID,MO SIMO output data valid time (2) UCLK edge to SIMO valid, CL = 20 pF tHD,MO SIMO output data hold time (3) CL = 20 pF (2) (3) VCC MIN 2V 0 3V 0 TYP MAX ns 2V 9 3V 5 2V 0 3V 0 UNIT ns ns Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams in Figure 13 and Figure 14. Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 13 and Figure 14. UCMODEx = 01 tSTE,LEAD STE tSTE,LAG UCMODEx = 10 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW/HIGH tLOW/HIGH tSU,MI tHD,MI SOMI tSTE,ACC tSTE,DIS tVALID,MO SIMO Figure 13. SPI Master Mode, CKPH = 0 76 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 UCMODEx = 01 tSTE,LEAD STE tSTE,LAG UCMODEx = 10 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW/HIGH tLOW/HIGH tSU,MI tHD,MI SOMI tSTE,ACC tSTE,DIS tVALID,MO SIMO Figure 14. SPI Master Mode, CKPH = 1 eUSCI (SPI Slave Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) PARAMETER TEST CONDITIONS tSTE,LEAD STE lead time, STE low to clock tSTE,LAG STE lag time, Last clock to STE high tSTE,ACC STE access time, STE low to SOMI data out tSTE,DIS STE disable time, STE high to SOMI high impedance tSU,SI SIMO input data setup time tHD,SI SIMO input data hold time tVALID,SO SOMI output data valid time (2) UCLK edge to SOMI valid, CL = 20 pF tHD,SO SOMI output data hold time (3) CL = 20 pF (1) (2) (3) VCC MIN 2V 4 3V 3 2V 0 3V 0 TYP MAX ns ns 2V 46 3V 24 2V 38 3V 25 2V 2 3V 1 2V 2 3V 2 55 32 3V 16 ns ns 3V 24 ns ns 2V 2V UNIT ns ns fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(Master) + tSU,SI(eUSCI), tSU,MI(Master) + tVALID,SO(eUSCI)). For the master's parameters tSU,MI(Master) and tVALID,MO(Master) refer to the SPI parameters of the attached slave. Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams in Figure 15 and Figure 16. Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams in Figure 15 and Figure 16. Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 77 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com UCMODEx = 01 tSTE,LEAD STE tSTE,LAG UCMODEx = 10 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW/HIGH tSU,SIMO tLOW/HIGH tHD,SIMO SIMO tACC tDIS tVALID,SOMI SOMI Figure 15. SPI Slave Mode, CKPH = 0 UCMODEx = 01 tSTE,LEAD STE tSTE,LAG UCMODEx = 10 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW/HIGH tLOW/HIGH tHD,SI tSU,SI SIMO tACC tDIS tVALID,SO SOMI Figure 16. SPI Slave Mode, CKPH = 1 78 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 eUSCI (I2C Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 17) PARAMETER TEST CONDITIONS feUSCI eUSCI input clock frequency fSCL SCL clock frequency tHD,STA Hold time (repeated) START tSU,STA Setup time for a repeated START tHD,DAT Data hold time VCC MIN Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ± 10% 2 V, 3 V fSCL = 100 kHz fSCL > 100 kHz fSCL = 100 kHz fSCL > 100 kHz 2 V, 3 V 2 V, 3 V 2 V, 3 V fSCL = 100 kHz tSU,DAT Data setup time tSU,STO Setup time for STOP fSCL > 100 kHz fSCL = 100 kHz fSCL > 100 kHz 2 V, 3 V 2 V, 3 V UCGLITx = 0 Pulse duration of spikes suppressed by input filter tSP TYP UCGLITx = 1 UCGLITx = 2 2 V, 3 V UCGLITx = 3 0 Clock low timeout UCCLTOx = 2 tSU,STA fSYSTEM MHz 400 kHz µs 1.5 5.1 µs 1.4 0.4 µs 5.0 µs 1.3 5.2 µs 1.7 75 220 ns 35 120 ns 30 60 ns 20 35 ns 2 V, 3 V UCCLTOx = 3 tHD,STA UNIT 5.1 UCCLTOx = 1 tTIMEOUT MAX tHD,STA 30 ms 33 ms 37 ms tBUF SDA tLOW tHIGH tSP SCL tSU,DAT tSU,STO tHD,DAT Figure 17. I2C Mode Timing Schmitt-Trigger Inputs – RTC Tamper Detect Pin over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VIT+ Positive-going input threshold voltage VIT– Negative-going input threshold voltage Vhys Input voltage hysteresis (VIT+ – VIT–) RPull Pullup or pulldown resistor For pullup: VIN = VSS For pulldown: VIN = AUXVCC3 CI Input capacitance VIN = VSS or AUXVCC3 Copyright © 2012–2013, Texas Instruments Incorporated AUXVCC3 MIN 1.8 V 0.80 1.40 3V 1.50 2.10 1.8 V 0.45 1.00 3V 0.75 1.65 1.8 V 0.3 0.85 3V 0.4 1.0 20 TYP 35 MAX 50 5 Submit Documentation Feedback UNIT V V V kΩ pF 79 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Inputs – RTC Tamper Detect Pin (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) t(int) (1) (2) PARAMETER TEST CONDITIONS AUXVCC3 MIN External interrupt timing (2) Port P1, P2: P1.x to P2.x, External trigger pulse duration to set interrupt flag 2.2 V, 3 V 20 MAX UNIT ns Some devices may contain additional ports with interrupts. See the block diagram and terminal function descriptions. An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It may be set by trigger signals shorter than t(int). Leakage Current – RTC Tamper Detect Pin over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS AUXVCC3 MIN MAX UNIT -50 +50 nA (1) (2) Ilkg(Px.y) (1) (2) 1.8 V, 3V High-impedance leakage current The leakage current is measured with VSS or VCC applied to the corresponding pins, unless otherwise noted. The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is disabled. Outputs – RTC Tamper Detect Pin over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS I(OHmax) = –100 µA (1) VOH High-level output voltage I(OHmax) = –200µA (1) I(OHmax) = –100µA (1) I(OHmax) = –200µA (1) I(OLmax) = 100µA VOL Low-level output voltage 80 1.8 V 3V (1) I(OLmax) = 200µA (1) I(OLmax) = 100µA (1) I(OLmax) = 200µA (1) (1) AUXVCC3 1.8 V 3V MIN MAX 1.50 1.80 1.20 1.80 2.70 3.00 2.40 3.00 0.00 0.25 0.00 0.60 0.00 0.25 0.00 0.60 UNIT V V The maximum total current, I(OHmax), for all outputs combined should not exceed ±20 mA to hold the maximum voltage drop specified. See Recommended Operating Conditions for more details. Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 LCD_C Recommended Operating Conditions PARAMETER CONDITIONS MIN NOM MAX UNIT VCC,LCD_C,CP en,3.6 Supply voltage range, LCDCPEN = 1, 0000 < VLCDx ≤ 1111 (charge charge pump enabled, pump enabled, VLCD ≤ 3.6 V) VLCD ≤ 3.6 V 2.2 3.6 V VCC,LCD_C,CP en,3.3 Supply voltage range, LCDCPEN = 1, 0000 < VLCDx ≤ 1100 (charge charge pump enabled, pump enabled, VLCD ≤ 3.3 V) VLCD ≤ 3.3 V 2.0 3.6 V VCC,LCD_C,int. bias Supply voltage range, internal biasing, LCDCPEN = 0, VLCDEXT = 0 charge pump disabled 2.4 3.6 V VCC,LCD_C,ext. bias Supply voltage range, external biasing, LCDCPEN = 0, VLCDEXT = 0 charge pump disabled 2.4 3.6 V VCC,LCD_C,VLCDEXT Supply voltage range, external LCD voltage, internal or external biasing, charge pump disabled LCDCPEN = 0, VLCDEXT = 1 2.0 3.6 V VLCDCAP/R33 External LCD voltage at LCDCAP/R33, internal or external biasing, charge pump disabled LCDCPEN = 0, VLCDEXT = 1 2.4 3.6 V CLCDCAP Capacitor on LCDCAP LCDCPEN = 1, VLCDx > 0000 (charge pump when charge pump enabled) enabled 10 µF fFrame LCD frame frequency range 100 Hz fACLK,in ACLK input frequency range 40 kHz CPanel Panel capacitance 100-Hz frame frequency 10000 pF VR33 Analog input voltage at R33 LCDCPEN = 0, VLCDEXT = 1 VCC+0.2 V VR23,1/3bias Analog input voltage at R23 LCDREXT = 1, LCDEXTBIAS = 1, LCD2B = 0 VR03 + VR13 2/3*(VR33 -VR03) VR33 V VR13,1/3bias Analog input voltage at R13 with 1/3 biasing LCDREXT = 1, LCDEXTBIAS = 1, LCD2B = 0 VR03 + VR03 1/3*(VR33 -VR03) VR23 V VR13,1/2bias Analog input voltage at R13 with 1/2 biasing LCDREXT = 1, LCDEXTBIAS = 1, LCD2B = 1 VR03 + VR03 1/2*(VR33 -VR03) VR33 V VR03 Analog input voltage at R03 R0EXT = 1 VSS VLCD-VR03 Voltage difference between VLCD and R03 LCDCPEN = 0, R0EXT = 1 2.4 VLCDREF/R13 External LCD reference voltage applied at LCDREF/R13 VLCDREFx = 01 0.8 fLCD = 2 × mux × fFRAME with mux = 1 (static), 2, 3, 4. 4.7 0 30 Copyright © 2012–2013, Texas Instruments Incorporated 4.7 32 2.4 V 1.2 VCC+0.2 V 1.5 V Submit Documentation Feedback 81 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com LCD_C Electrical Characteristics over operating free-air temperature range (unless otherwise noted) PARAMETER VLCD LCD voltage TEST CONDITIONS VCC MIN TYP MAX UNIT VLCDx = 0000, VLCDEXT = 0 2.4 V to 3.6 V VCC V LCDCPEN = 1, VLCDx = 0001 2 V to 3.6 V 2.60 V LCDCPEN = 1, VLCDx = 0010 2 V to 3.6 V 2.66 V LCDCPEN = 1, VLCDx = 0011 2 V to 3.6 V 2.72 V LCDCPEN = 1, VLCDx = 0100 2 V to 3.6 V 2.78 V LCDCPEN = 1, VLCDx = 0101 2 V to 3.6 V 2.84 V LCDCPEN = 1, VLCDx = 0110 2 V to 3.6 V 2.90 V LCDCPEN = 1, VLCDx = 0111 2 V to 3.6 V 2.96 V LCDCPEN = 1, VLCDx = 1000 2 V to 3.6 V 3.02 V LCDCPEN = 1, VLCDx = 1001 2 V to 3.6 V 3.08 V LCDCPEN = 1, VLCDx = 1010 2 V to 3.6 V 3.14 V LCDCPEN = 1, VLCDx = 1011 2 V to 3.6 V 3.20 V LCDCPEN = 1, VLCDx = 1100 2 V to 3.6 V 3.26 V LCDCPEN = 1, VLCDx = 1101 2.2 V to 3.6 V 3.32 V LCDCPEN = 1, VLCDx = 1110 2.2 V to 3.6 V 3.38 LCDCPEN = 1, VLCDx = 1111 2.2 V to 3.6 V 3.50 V 3.72 V ICC,Peak,CP Peak supply currents due to charge pump activities LCDCPEN = 1, VLCDx = 1111 2.2 V 200 tLCD,CP,on Time to charge CLCD when discharged CLCD = 4.7 µF, LCDCPEN = 0→1, VLCDx = 1111 2.2 V 100 ICP,Load Maximum charge pump load current LCDCPEN = 1, VLCDx = 1111 2.2 V RLCD,Seg LCD driver output impedance, segment lines LCDCPEN = 1, VLCDx = 1000, ILOAD = ±10 µA 2.2 V 10 kΩ RLCD,COM LCD driver output impedance, common lines LCDCPEN = 1, VLCDx = 1000, ILOAD = ±10 µA 2.2 V 10 kΩ 82 Submit Documentation Feedback µA 500 50 ms µA Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 SD24_B Power Supply and Recommended Operating Conditions MIN AVCC Analog supply voltage TA Ambient temperature fSD Modulator clock frequency VI VIC VID,FS AVCC = DVCC, AVSS = DVSS = 0 V (1) (2) V 85 °C 0.03 2.3 MHz Absolute input voltage range AVSS - 1V AVCC V Common-mode input voltage range AVSS - 1V AVCC V VREF/GAIN +VREF/GAIN 0 +VREF/GAIN Differential full scale input voltage VREF load capacitance (2) Bipolar Mode, VID = VI,A+ - VI,AUnipolar Mode, VID = VI,A+ - VI,A- REFON = 1 SD24GAINx = 1 ±900 ±930 SD24GAINx = 2 ±450 ±460 SD24GAINx = 4 ±225 ±230 SD24GAINx = 8 ±112 ±120 SD24GAINx = 16 ±56 ±60 SD24GAINx = 32 ±28 ±30 SD24GAINx = 64 ±14 ±14 ±7 ±7.25 SD24REFS = 1 100 (1) nF Input capacitance TEST CONDITIONS VCC MIN Input impedance (pin A+ or A- to AVSS) Differential input impedance (pin A+ to pin A-) TYP SD24GAINx = 1 5.0 SD24GAINx = 2 5.0 SD24GAINx = 4 5.0 SD24GAINx = 8 5.0 SD24GAINx = 16 5.0 SD24GAINx = 32, 64, 128 ZID mV (1) PARAMETER ZI mV The full-scale range (FSR) is defined by VFS+ = +VREF/GAIN and VFS- = -VREF/GAIN: FSR = VFS+ - VFS- = 2*VREF/GAIN. If VREF is sourced externally, the analog input range should not exceed 80% of VFS+ or VFS-; that is, VID = 0.8 VFS- to 0.8 VFS+. If VREF is sourced internally, the given VID ranges apply. MIN values are calculated based on a VREF of 1.125V. TYP values are calculated based on a VREF of 1.16 V. There is no capacitance required on VREF. However, a capacitance of 100nF is recommended to reduce any reference voltage noise. SD24_B Analog Input CI UNIT -40 SD24GAINx = 128 CREF MAX 3.6 Differential input voltage for specified performance (1) VID TYP 2.4 fSD24 = 1MHz fSD24 = 1MHz MAX UNIT pF 5.0 SD24GAINx = 1 3V 200 SD24GAINx = 8 3V 200 SD24GAINx = 32 3V SD24GAINx = 1 3V SD24GAINx = 8 3V SD24GAINx = 32 3V kΩ 200 300 400 400 300 kΩ 400 All parameters pertain to each SD24_B converter. Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 83 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com 1600 Input Leakage Current – nA 1400 1200 1000 800 600 400 200 0 -200 -1 -0.5 0 0.5 1 1.5 2 2.5 3 Input Voltage – V Figure 18. Input Leakage Current vs Input Voltage (Modulator OFF) SD24_B Supply Currents PARAMETER ISD,256 ISD,512 TEST CONDITIONS Analog plus digital supply current per converter (reference not included) Analog plus digital supply current per converter (reference not included) fSD24 = 1 MHz, SD24OSR = 256 fSD24 = 2 MHz, SD24OSR = 512 TYP MAX SD24GAIN: 1 VCC 3V MIN 490 600 SD24GAIN: 2 3V 490 600 SD24GAIN: 4 3V 490 600 SD24GAIN: 8 3V 559 700 SD24GAIN: 16 3V 559 700 SD24GAIN: 32 3V 627 800 SD24GAIN: 64 3V 627 800 SD24GAIN: 128 3V 627 800 SD24GAIN: 1 3V 600 700 SD24GAIN: 8 3V 677 800 SD24GAIN: 32 3V 740 900 UNIT µA µA SD24_B Performance fSD24 = 1 MHz, SD24OSRx = 256, SD24REFON = 1 PARAMETER INL Gnom 84 Integral nonlinearity, endpoint fit Nominal gain TEST CONDITIONS MIN TYP MAX SD24GAIN: 1 3V -0.01 +0.01 SD24GAIN: 8 3V -0.01 +0.01 SD24GAIN: 32 3V -0.01 +0.01 SD24GAIN: 1 3V 1 SD24GAIN: 2 3V 2 SD24GAIN: 4 3V 4 SD24GAIN: 8 3V 8 SD24GAIN: 16 3V 16 SD24GAIN: 32 3V 32 SD24GAIN: 64 3V 64 SD24GAIN: 128 3V 128 Submit Documentation Feedback UNIT % of FSR Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 SD24_B Performance (continued) fSD24 = 1 MHz, SD24OSRx = 256, SD24REFON = 1 PARAMETER TEST CONDITIONS Gain error (1) EG ΔEG/ΔT Gain error temperature coefficient (2), internal reference ΔEG/ΔT Gain error temperature coefficient (2), external reference ΔEG/ΔVCC EOS[V] EOS[FS] ΔEOS/ΔT ΔEOS/ΔVCC CMRR,DC (1) (2) (3) (4) (5) (6) (7) Gain error vs VCC (3) Offset error (4) Offset error (4) Offset error temperature coefficient (5) Offset error vs VCC (6) Common mode rejection at DC (7) MIN TYP MAX UNIT SD24GAIN: 1, with external reference (1.2 V) 3V -1 +1 SD24GAIN: 8, with external reference (1.2 V) 3V -2 +2 SD24GAIN: 32, with external reference (1.2 V) 3V -2 +2 SD24GAIN: 1, 8, or 32 (with internal reference) 3V 80 SD24GAIN: 1 (with external reference) 3V 15 SD24GAIN: 8 (with external reference) 3V 15 SD24GAIN: 32 (with external reference) 3V 15 SD24GAIN: 1 3V 0.1 SD24GAIN: 8 3V 0.1 SD24GAIN: 32 3V 0.4 SD24GAIN: 1 (with Vdiff = 0V) 3V SD24GAIN: 8 3V 1 SD24GAIN: 32 3V 0.5 SD24GAIN: 1 (with Vdiff = 0V) 3V -0.2 +0.2 % FS SD24GAIN: 8 3V -0.7 +0.7 % FS SD24GAIN: 32 3V -1.4 +1.4 % FS SD24GAIN: 1 3V 2 SD24GAIN: 8 3V 0.25 SD24GAIN: 32 3V 0.1 SD24GAIN: 1 3V 500 SD24GAIN: 8 3V 125 SD24GAIN: 32 3V 50 SD24GAIN: 1 3V -120 SD24GAIN: 8 3V -110 SD24GAIN: 32 3V -100 % ppm/°C ppm/°C %/V 2.3 mV µV/°C µV/V dB The gain error EG specifies the deviation of the actual gain Gact from the nominal gain Gnom: EG = (Gact - Gnom)/Gnom. It covers process, temperature and supply voltage variations. The gain error temperature coefficient ΔEG/ ΔT specifies the variation of the gain error EG over temperature (EG(T) = (Gact(T) Gnom)/Gnom) using the box method (that is, minimum and maximum values): ΔEG/ ΔT = (MAX(EG(T)) - MIN(EG(T) ) / (MAX(T) - MIN(T)) = (MAX(Gact(T)) - MIN(Gact(T)) / Gnom / (MAX(T) - MIN(T)) with T ranging from -40°C to +85°C. The gain error vs VCC coefficient ΔEG/ ΔVCC specifies the variation of the gain error EG over supply voltage (EG(VCC) = (Gact(VCC) Gnom)/Gnom) using the box method (that is, minimum and maximum values): ΔEG/ ΔVCC = (MAX(EG(VCC)) - MIN(EG(VCC) ) / (MAX(VCC) - MIN(VCC)) = (MAX(Gact(VCC)) - MIN(Gact(VCC)) / Gnom / (MAX(VCC) MIN(VCC)) with VCC ranging from 2.4V to 3.6V. The offset error EOS is measured with shorted inputs in 2s complement mode with +100% FS = VREF/G and -100% FS = -VREF/G. Conversion between EOS [FS] and EOS [V] is as follows: EOS [FS] = EOS [V]×G/VREF; EOS [V] = EOS [FS]×VREF/G. The offset error temperature coefficient ΔEOS/ ΔT specifies the variation of the offset error EOS over temperature using the box method (that is, minimum and maximum values): ΔEOS/ ΔT = (MAX(EOS(T)) - MIN(EOS(T) ) / (MAX(T) - MIN(T)) with T ranging from -40°C to +85°C. The offset error vs VCC ΔEOS/ ΔVCC specifies the variation of the offset error EOS over supply voltage using the box method (that is, minimum and maximum values): ΔEOS/ ΔVCC = (MAX(EOS(VCC)) - MIN(EOS(VCC) ) / (MAX(VCC) - MIN(VCC)) with VCC ranging from 2.4V to 3.6V. The DC CMRR specifies the change in the measured differential input voltage value when the common mode voltage varies: DC CMRR = -20log(ΔMAX/FSR) with ΔMAX being the difference between the minium value and the maximum value measured when sweeping the common mode voltage. The DC CMRR is measured with both inputs connected to the common mode voltage (that is, no differential input signal is applied), and the common mode voltage is swept from -1V to VCC. Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 85 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com SD24_B Performance (continued) fSD24 = 1 MHz, SD24OSRx = 256, SD24REFON = 1 PARAMETER CMRR,50Hz AC PSRR,ext AC PSRR,int XT Common mode rejection at 50 Hz (8) AC power supply rejection ratio, external reference (9) AC power supply rejection ratio, internal reference (9) Crosstalk between converters (10) TEST CONDITIONS MIN TYP SD24GAIN: 1, fCM = 50 Hz, VCM = 930 mV 3V -120 SD24GAIN: 8, fCM = 50 Hz, VCM = 120 mV 3V -110 SD24GAIN: 32, fCM = 50 Hz, VCM = 30 mV 3V -100 SD24GAIN: 1, VCC = 3 V + 50 mV × sin(2π × fVCC × t), fVCC = 50 Hz -61 SD24GAIN: 8, VCC = 3 V + 50 mV × sin(2π × fVCC × t), fVCC = 50 Hz -75 SD24GAIN: 32, VCC = 3 V + 50 mV × sin(2π × fVCC × t), fVCC = 50 Hz -79 SD24GAIN: 1, VCC = 3 V + 50 mV × sin(2π × fVCC × t), fVCC = 50 Hz -61 SD24GAIN: 8, VCC = 3 V + 50 mV × sin(2π × fVCC × t), fVCC = 50 Hz -75 SD24GAIN: 32, VCC = 3 V + 50 mV × sin(2π × fVCC × t), fVCC = 50 Hz -79 Crosstalk source: SD24GAIN: 1, Sine-wave with maximum possible Vpp, fIN = 50 Hz, 100 Hz, Converter under test: SD24GAIN: 1 3V -120 Crosstalk source: SD24GAIN: 1, Sine-wave with maximum possible Vpp, fIN = 50 Hz, 100 Hz, Converter under test: SD24GAIN: 8 3V -115 Crosstalk source: SD24GAIN: 1, Sine-wave with maximum possible Vpp, fIN = 50 Hz, 100 Hz, Converter under test: SD24GAIN: 32 3V -110 MAX UNIT dB dB dB dB (8) The AC CMRR is the difference between a hypothetical signal with the amplitude and frequency of the applied common mode ripple applied to the inputs of the ADC and the actual common mode signal spur visible in the FFT spectrum: AC CMRR = Error Spur [dBFS] - 20log(VCM/1.2V/G) [dBFS] with a common mode signal of VCM × sin(2π × fCM × t) applied to the analog inputs. The AC CMRR is measured with the both inputs connected to the common mode signal; that is, no differential input signal is applied. With the specified typical values the error spur is within the noise floor (as specified by the SINAD values). (9) The AC PSRR is the difference between a hypothetical signal with the amplitude and frequency of the applied supply voltage ripple applied to the inputs of the ADC and the actual supply ripple spur visible in the FFT spectrum: AC PSRR = Error Spur [dBFS] - 20log(50mV/1.2V/G) [dBFS] with a signal of 50mV × sin(2π × fVCC × t) added to VCC. The AC PSRR is measured with the inputs grounded; that is, no analog input signal is applied. With the specified typical values the error spur is within the noise floor (as specified by the SINAD values). SD24GAIN: 1 → Hypothetical signal: 20log(50mV/1.2V/1) = -27.6 dBFS SD24GAIN: 8 → Hypothetical signal: 20log(50mV/1.2V/8) = -9.5 dBFS SD24GAIN: 32 → Hypothetical signal: 20log(50mV/1.2V/32) = 2.5 dBFS (10) The crosstalk XT is specified as the tone level of the signal applied to the crosstalk source seen in the spectrum of the converter under test. It is measured with the inputs of the converter under test being grounded. 86 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 SD24_B, AC Performance fSD24 = 1 MHz, SD24OSRx = 256, SD24REFON = 1 PARAMETER SINAD THD Signal-to-noise + distortion ratio Total harmonic distortion TEST CONDITIONS VCC MIN TYP SD24GAIN: 1 3V 84 86 SD24GAIN: 2 3V SD24GAIN: 4 3V SD24GAIN: 8 3V fIN = 50Hz (1) SD24GAIN: 16 3V 83 dB 80 3V 3V 67 SD24GAIN: 128 3V 61 SD24GAIN: 1 3V 95 3V 90 3V 86 SD24GAIN: 32 (1) 84 81 SD24GAIN: 64 fIN = 50Hz (1) UNIT 85 SD24GAIN: 32 SD24GAIN: 8 MAX 71 73 dB The following voltages were applied to the SD24_B inputs: VI,A+(t) = 0 V + VPP/2 × sin(2π × fIN × t) and VI,A-(t) = 0 V - VPP/2 × sin(2π × fIN × t) resulting in a differential voltage of VID = VI,A+(t) - VI,A-(t) = VPP × sin(2π × fIN × t) with VPP being selected as the maximum value allowed for a given range (according to SD24_B recommended operating conditions). SD24_B, AC Performance fSD24 = 2 MHz, SD24OSRx = 512, SD24REFON = 1 PARAMETER SINAD (1) Signal-to-noise + distortion ratio TEST CONDITIONS VCC MIN TYP SD24GAIN: 1 3V 87 SD24GAIN: 2 3V 85 SD24GAIN: 4 3V 84 3V 83 3V 81 SD24GAIN: 32 3V 76 SD24GAIN: 64 3V 71 SD24GAIN: 128 3V 65 SD24GAIN: 8 fIN = 50Hz (1) SD24GAIN: 16 MAX UNIT dB The following voltages were applied to the SD24_B inputs: VI,A+(t) = 0 V + VPP/2 × sin(2π × fIN × t) and VI,A-(t) = 0 V - VPP/2 × sin(2π × fIN × t) resulting in a differential voltage of VID = VI,A+(t) - VI,A-(t) = VPP × sin(2π × fIN × t) with VPP being selected as the maximum value allowed for a given range (according to SD24_B recommended operating conditions). SD24_B, AC Performance fSD24 = 32 kHz, SD24OSRx = 512, SD24REFON = 1 PARAMETER SINAD (1) Signal-to-noise + distortion ratio TEST CONDITIONS VCC MIN TYP SD24GAIN: 1 3V 89 SD24GAIN: 2 3V 85 SD24GAIN: 4 3V 84 SD24GAIN: 8 3V 82 3V 80 SD24GAIN: 32 3V 76 SD24GAIN: 64 3V 67 SD24GAIN: 128 3V 61 SD24GAIN: 16 fIN = 50Hz (1) MAX UNIT dB The following voltages were applied to the SD24_B inputs: VI,A+(t) = 0 V + VPP/2 × sin(2π × fIN × t) and VI,A-(t) = 0 V - VPP/2 × sin(2π × fIN × t) resulting in a differential voltage of VID = VI,A+(t) - VI,A-(t) = VPP × sin(2π × fIN × t) with VPP being selected as the maximum value allowed for a given range (according to SD24_B recommended operating conditions). Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 87 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com 110.0 theoretical limit (2nd order) 100.0 SINAD − dB 90.0 80.0 70.0 60.0 50.0 10 100 1000 OSR Figure 19. SINAD vs OSR (fSD24 = 1MHz, SD24REFON = 1, SD24GAIN: 1) 100.0 SINAD − dB 80.0 60.0 40.0 20.0 0.0 0 0.2 0.4 0.6 Vpp/Vref/Gain 0.8 1 Figure 20. SINAD vs VPP SD24_B External Reference Input ensure correct input voltage range according to VREF VCC MIN TYP MAX VREF(I) Input voltage PARAMETER SD24REFS = 0 3V 1.0 1.20 1.5 V IREF(I) Input current SD24REFS = 0 3V 50 nA 88 Submit Documentation Feedback TEST CONDITIONS UNIT Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 10-Bit ADC Power Supply and Input Range Conditions over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS AVCC Analog supply voltage AVCC and DVCC are connected together, AVSS and DVSS are connected together, V(AVSS) = V(DVSS) = 0 V V(Ax) Analog input voltage range (1) All ADC10_A pins Operating supply current into AVCC terminal, REF module and reference buffer off fADC10CLK = 5 MHz, ADC10ON = 1, REFON = 0, SHT0 = 0, SHT1 = 0, ADC10DIV = 0, ADC10SREF = 00 Operating supply current into AVCC terminal, REF module on, reference buffer on VCC MIN TYP MAX UNIT 1.8 3.6 V 0 AVCC V 2.2 V 68 100 3V 78 110 fADC10CLK = 5 MHz, ADC10ON = 1, REFON = 1, SHT0 = 0, SHT1 = 0, ADC10DIV = 0, ADC10SREF = 01 3V 124 180 µA Operating supply current into AVCC terminal, REF module off, reference buffer on fADC10CLK = 5 MHz, ADC10ON = 1, REFON = 0, SHT0 = 0, SHT1 = 0, ADC10DIV = 0, ADC10SREF = 10, VEREF = 2.5 V 3V 105 160 µA Operating supply current into AVCC terminal, REF module off, reference buffer off fADC10CLK = 5 MHz, ADC10ON = 1, REFON = 0, SHT0 = 0, SHT1 = 0, ADC10DIV = 0, ADC10SREF = 11, VEREF = 2.5 V 3V 72 110 µA CI Input capacitance Only one terminal Ax can be selected at one time from the pad to the ADC10_A capacitor array including wiring and pad. 2.2 V 3.5 RI Input MUX ON resistance IADC10_A (1) µA pF AVCC > 2.0V, 0 V ≤ VAx ≤ AVCC 36 1.8V < AVCC < 2.0V, 0 V ≤ VAx ≤ AVCC 96 kΩ The analog input voltage range must be within the selected reference voltage range VR+ to VR– for valid conversion results. The external reference voltage requires decoupling capacitors. Two decoupling capacitors, 10 µF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external reference source if it is used for the ADC10_A. Also see the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208). 10-Bit ADC Timing Parameters over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VCC MIN TYP MAX UNIT For specified performance of ADC10_A linearity parameters 2.2 V, 3 V 0.45 5 5.5 MHz Internal ADC10_A oscillator (1) ADC10DIV = 0, fADC10CLK = fADC10OSC 2.2 V, 3 V 4.4 4.9 5.6 MHz 2.2 V, 3 V 2.4 Conversion time REFON = 0, Internal oscillator, 12 ADC10CLK cycles, 10-bit mode, fADC10OSC = 4 MHz to 5 MHz fADC10CLK fADC10OSC tCONVERT TEST CONDITIONS µs External fADC10CLK from ACLK, MCLK or SMCLK, ADC10SSEL ≠ 0 tADC10ON Turn on settling time of the ADC tSample Sampling time (1) (2) (3) (4) See 3.0 See (2) (3) 100 ns RS = 1000 Ω, RI = 96 kΩ, CI = 3.5 pF (4) 1.8 V 3 µs RS = 1000 Ω, RI = 36 kΩ, CI = 3.5 pF (4) 3V 1 µs The ADC10OSC is sourced directly from MODOSC inside the UCS. 12 × ADC10DIV × 1/fADC10CLK The condition is that the error in a conversion started after tADC10ON is less than ±0.5 LSB. The reference and input signal are already settled. Approximately eight Tau (τ) are needed to get an error of less than ±0.5 LSB Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 89 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com 10-Bit ADC Linearity Parameters over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS EI Integral linearity error 1.4 V ≤ (VeREF+ – VREF–/VeREF–)min ≤ 1.6 V ED Differential linearity error (VeREF+ – VREF–/VeREF–)min ≤ (VeREF+ – VREF–/VeREF–), CVREF+ = 20 pF EO Offset error EG ET VCC MIN TYP MAX UNIT -1.0 +1.0 -1.0 +1.0 2.2 V, 3 V -1.0 +1.0 LSB (VeREF+ – VREF–/VeREF–)min ≤ (VeREF+ – VREF–/VeREF–), Internal impedance of source RS < 100 Ω, CVREF+ = 20 pF 2.2 V, 3 V -1.0 +1.0 LSB Gain error (VeREF+ – VREF–/VeREF–)min ≤ (VeREF+ – VREF–/VeREF–), CVREF+ = 20 pF 2.2 V, 3 V -1.0 +1.0 LSB Total unadjusted error (VeREF+ – VREF–/VeREF–)min ≤ (VeREF+ – VREF–/VeREF–), CVREF+ = 20 pF 2.2 V, 3 V -2.0 +2.0 LSB MAX UNIT 1.6 V < (VeREF+ – VREF–/VeREF–)min ≤ VAVCC 2.2 V, 3 V LSB 10-Bit ADC External Reference over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) PARAMETER TEST CONDITIONS VCC MIN TYP VeREF+ Positive external reference VeREF+ > VREF–/VeREF– voltage input (2) 1.4 AVCC V VeREF– Negative external reference voltage input VeREF+ > VREF–/VeREF– (3) 0 1.2 V (VeREF+ – VeREF–) Differential external reference voltage input VeREF+ > VREF–/VeREF– (4) 1.4 AVCC V IVeREF+ IVeREF– CVREF+ (1) (2) (3) (4) (5) 90 Static input current Capacitance at VREF+ terminal 1.4 V ≤ VeREF+ ≤ VAVCC , VeREF– = 0 V, fADC10CLK = 5 MHz, ADC10SHTx = 0x0001, Conversion rate 200 ksps 2.2 V, 3 V -26 +26 µA 1.4 V ≤ VeREF+ ≤ VAVCC , VeREF– = 0 V, fADC10CLK = 5 MHZ, ADC10SHTX = 0x1000, Conversion rate 20 ksps 2.2 V, 3 V -1 +1 µA (5) 10 µF The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, CI, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements. The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements. Two decoupling capacitors, 10 µF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external reference source if it is used for the ADC10_A. Also see the MSP430x5xx and MSP430x6xx Family User's Guide (SLAU208). Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 REF Built-In Reference over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VREF+ Positive built-in reference voltage TEST CONDITIONS VCC MIN TYP MAX REFVSEL = {2} for 2.5 V, REFON = 1 3V 2.47 2.51 2.55 REFVSEL = {1} for 2 V, REFON = 1 3V 1.96 1.99 2.02 2.2 V, 3 V 1.48 1.5 1.52 REFVSEL = {0} for 1.5 V, REFON = 1 AVCC(min) IREF+ AVCC minimum voltage, Positive built-in reference active Operating supply current into AVCC terminal (1) REFVSEL = {0} for 1.5 V 2.2 REFVSEL = {1} for 2 V 2.2 REFVSEL = {2} for 2.5 V 2.7 UNIT V V fADC10CLK = 5.0 MHz, REFON = 1, REFBURST = 0, REFVSEL = {2} for 2.5 V 3V 18 24 µA fADC10CLK = 5.0 MHz, REFON = 1, REFBURST = 0, REFVSEL = {1} for 2 V 3V 16.1 21 µA fADC10CLK = 5.0 MHz, REFON = 1, REFBURST = 0, REFVSEL = {0} for 1.5 V 3V 14.4 21 µA < 18 50 ppm/ °C TCREF+ Temperature coefficient of built-in reference (2) IVREF+ = 0 A, REFVSEL = (0, 1, 2}, REFON = 1 ISENSOR Operating supply current into AVCC terminal (3) REFON = 0, INCH = 0Ah, ADC10ON = N/A, TA = 30°C 2.2 V 17 22 3V 17 22 VSENSOR See ADC10ON = 1, INCH = 0Ah, TA = 30°C 2.2 V 770 3V 770 VMID AVCC divider at channel 11 ADC10ON = 1, INCH = 0Bh, VMID is approximately 0.5 × VAVCC 2.2 V 1.06 1.1 1.14 3V 1.46 1.5 1.54 tSENSOR(sample) Sample time required if channel 10 is selected (5) ADC10ON = 1, INCH = 0Ah, Error of conversion result ≤ 1 LSB 30 µs tVMID(sample) Sample time required if channel 11 is selected (6) ADC10ON = 1, INCH = 0Bh, Error of conversion result ≤ 1 LSB 1 µs PSRR_DC Power supply rejection ratio (dc) AVCC = AVCC (min) - AVCC(max), TA = 25°C, REFVSEL = (0, 1, 2}, REFON = 1 120 µV/V PSRR_AC Power supply rejection ratio (ac) AVCC = AVCC (min) - AVCC(max), TA = 25°C, f = 1 kHz, ΔVpp = 100 mV, REFVSEL = (0, 1, 2}, REFON = 1 6.4 mV/V tSETTLE Settling time of reference voltage (7) AVCC = AVCC (min) - AVCC(max), REFVSEL = (0, 1, 2}, REFON = 0 → 1 75 µs VSD24REF SD24_B internal reference voltage SD24REFS = 1 3V 1.151 1.1623 tON SD24_B internal reference turn-on time SD24REFS = 0->1, CREF = 100 nF 3V 200 (1) (2) (3) (4) (5) (6) (7) (4) µA mV 1.174 V V µs The internal reference current is supplied via terminal AVCC. Consumption is independent of the ADC10ON control bit, unless a conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion. Calculated using the box method: (MAX(-40 to 85°C) – MIN(-40 to 85°C)) / MIN(-40 to 85°C)/(85°C – (–40°C)). The sensor current ISENSOR is consumed if (ADC10ON = 1 and REFON = 1) or (ADC10ON = 1 and INCH = 0Ah and sample signal is high). When REFON = 1, ISENSOR is already included in IREF+. The temperature sensor offset can be as much as ±20°C. A single-point calibration is recommended in order to minimize the offset error of the built-in temperature sensor. The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time tSENSOR(on). The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed. The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB. Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 91 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Comparator_B over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VCC TEST CONDITIONS VCC Supply voltage MIN TYP MAX 1.8 3.6 1.8 V IAVCC_COMP IAVCC_REF CBPWRMD = 00, CBON = 1, CBRSx = 00 Comparator operating supply current into AVCC, Excludes CBPWRMD = 01, CBON = 1, CBRSx = 00 reference resistor ladder Quiescent current of resistor ladder into AVCC, Includes REF module current VIC Common mode input range VOFFSET Input offset voltage CIN Input capacitance RSIN Propagation delay, response time tPD Propagation delay with filter active tPD,filter tEN_CMP Comparator enable time tEN_REF Resistor reference enable time TCREF Temperature coefficient reference VCB_REF Reference voltage for a given tap V 40 2.2 V 22 50 3V 32 65 2.2 V, 3 V 10 30 CBPWRMD = 10, CBON = 1, CBRSx = 00 2.2 V, 3 V 0.2 0.85 CBREFACC = 1, CBREFLx = 01, CBRSx = 10, REFON = 0, CBON = 0 2.2 V, 3 V 10 22 µA CBREFACC = 0, CBREFLx = 01, CBRSx = 10, REFON = 0, CBON = 0 2.2 V, 3 V 33 40 µA 0 VCC-1 V CBPWRMD = 00 -20 +20 mV CBPWRMD = 01, 10 -20 +20 mV 4 kΩ µA 5 Series input resistance UNIT ON - switch closed pF 3 OFF - switch opened 50 MΩ CBPWRMD = 00, CBF = 0 450 ns CBPWRMD = 01, CBF = 0 600 ns CBPWRMD = 10, CBF = 0 50 µs CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 00 0.30 0.6 1.5 µs CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 01 0.5 1.0 1.8 µs CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 10 0.8 1.8 3.4 µs CBPWRMD = 00, CBON = 1, CBF = 1, CBFDLY = 11 1.5 3.4 6.5 µs CBON = 0 to CBON = 1, CBPWRMD = 00, 01 1 CBON = 0 to CBON = 1, CBPWRMD = 10 CBON = 0 to CBON = 1 1.0 VIN × (n+1.5) /32 VIN = reference into resistor ladder, n = 0 to 31 VIN × (n+1) /32 2 µs 50 µs 1.5 µs 50 ppm/ °C VIN × (n+0.5) /32 V Flash Memory over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER DVCC(PGM/ERASE) Program and erase supply voltage TEST CONDITIONS MIN TYP 1.8 MAX 3.6 UNIT V IPGM Average supply current from DVCC during program 3 5 mA IERASE Average supply current from DVCC during erase 6 15 mA IMERASE, IBANK Average supply current from DVCC during mass erase or bank erase 6 15 mA 92 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Flash Memory (continued) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER tCPT Cumulative program time TEST CONDITIONS See Data retention duration TYP 104 105 (1) MAX 16 Program and erase endurance tRetention MIN TJ = 25°C UNIT ms cycles 100 years Word or byte program time See (2) 64 85 µs 0 Block program time for first byte or word See (2) 49 65 µs tBlock, 1–(N–1) Block program time for each additional byte or word, except for last byte or word See (2) 37 49 µs tBlock, N Block program time for last byte or word See (2) 55 73 µs See (2) 23 32 ms 0 1 MHz tWord tBlock, tErase Erase time for segment erase, mass erase, and bank erase when available fMCLK,MGR MCLK frequency in marginal read mode (FCTL4.MGR0 = 1 or FCTL4. MGR1 = 1) (1) (2) The cumulative program time must not be exceeded when writing to a 128-byte flash block. This parameter applies to all programming methods: individual word/byte write and block write modes. These values are hardwired into the flash controller's state machine. JTAG and Spy-Bi-Wire Interface over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT fSBW Spy-Bi-Wire input frequency 2.2 V, 3 V 0 20 MHz tSBW,Low Spy-Bi-Wire low clock pulse length 2.2 V, 3 V 0.025 15 µs tSBW, En Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge) (1) 2.2 V/3 V 1 µs tSBW,Rst Spy-Bi-Wire return to normal operation time fTCK TCK input frequency for 4-wire JTAG (2) Rinternal Internal pulldown resistance on TEST (1) (2) 2.2 V 15 100 0 5 MHz 10 MHz 80 kΩ 3V 0 2.2 V, 3 V 45 60 µs Tools accessing the Spy-Bi-Wire interface need to wait for the minimum tSBW,En time after pulling the TEST/SBWTCK pin high before applying the first SBWTCK clock edge. fTCK may be restricted to meet the timing requirements of the module selected. Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 93 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com INPUT/OUTPUT SCHEMATICS Port P1, P1.0 Through P1.3 Input/Output With Schmitt Trigger (MSP430F677xIPEU Only) A0..A3 From ADC P1REN.x P1DIR.x DVSS 0 DVCC 1 00 01 10 11 P1OUT.x 00 From Timer_A, ACLK, ADC10CLK 01 DVSS 11 10 (MSP430F677xIPEU only) P1.0/TA1.1/VeREF-/A0 P1.1/TA2.1/VeREF+/A1 P1.2/ACLK/A2 P1.3/ADC10CLK/A3 P1DS.x P1SEL0.x P1SEL1.x P1IN.x EN To Timer_A D Bus Keeper P1IE.x P1IRQ.x EN P1IFG.x SET P1SEL.x Interrupt Edge Select P1IES.x 94 Q Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Table 68. Port P1 (P1.0 Through P1.3) Pin Functions (MSP430F677xIPEU Only) PIN NAME (P1.x) x FUNCTION P1.0 (I/O) P1.0/TA1.1/VeREF-/A0 0 1 2 (1) 3 P1SEL0.x 0 0 0 0 1 TA1.1 1 0 1 N/A 0 1 0 DVSS 1 1 0 VeREF-/A0 X 1 1 I:0; O:1 0 0 TA2.CCI1A 0 0 1 TA2.1 1 0 1 N/A 0 1 0 DVSS 1 1 0 VeREF+/A1 X 1 1 I:0; O:1 0 0 ACLK 1 0 1 N/A 0 1 0 DVSS 1 1 0 A2 X 1 1 P1.3 (I/O) P1.3/ADC10CLK/A3 P1SEL1.x I:0; O:1 P1.2 (I/O) P1.2/ACLK/A2 P1DIR.x TA1.CCI1A P1.1 (I/O) P1.1/TA2.1/VeREF+/A1 CONTROL BITS OR SIGNALS (1) I:0; O:1 0 0 ADC10CLK 1 0 1 N/A 0 1 0 DVSS 1 1 0 A3 X 1 1 X = don't care Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 95 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Port P1, P1.0 Through P1.3 Input/Output With Schmitt Trigger (MSP430F677xIPZ Only) A0..A3 From ADC P1REN.x P1DIR.x DVSS 0 DVCC 1 00 01 10 11 P1OUT.x 00 From Comparator_B From Timer_A, ACLK, ADC10CLK DVSS 01 10 11 (MSP430F677xIPZ only) P1.0/TA1.1/VeREF-/A0 P1.1/TA2.1/CBOUT/VeREF+/A1 P1.2/ACLK/A2 P1.3/ADC10CLK/A3 P1DS.x P1SEL0.x P1SEL1.x P1IN.x EN To Timer_A D Bus Keeper P1IE.x P1IRQ.x EN SET P1SEL.x Interrupt Edge Select P1IES.x 96 Q P1IFG.x Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Table 69. Port P1 (P1.0, P1.1, P1.2, and P1.3) Pin Functions (MSP430F677xIPZ Only) PIN NAME (P1.x) x FUNCTION P1.0 (I/O) P1.0/TA1.1/VeREF-/A0 0 1 2 (1) 3 P1SEL0.x 0 0 0 0 1 TA1.1 1 0 1 N/A 0 1 0 DVSS 1 1 0 VeREF-/A0 X 1 1 I:0; O:1 0 0 TA2.CCI1A 0 0 1 TA2.1 1 0 1 N/A 0 1 0 CBOUT 1 1 0 VeREF+/A1 X 1 1 I:0; O:1 0 0 ACLK 1 0 1 N/A 0 1 0 DVSS 1 1 0 A2 X 1 1 P1.3 (I/O) P1.3/ADC10CLK/A3 P1SEL1.x I:0; O:1 P1.2 (I/O) P1.2/ACLK/A2 P1DIR.x TA1.CCI1A P1.1 (I/O) P1.1/TA2.1/CBOUT/VeREF+/A1 CONTROL BITS OR SIGNALS (1) I:0; O:1 0 0 ADC10CLK 1 0 1 N/A 0 1 0 DVSS 1 1 0 A3 X 1 1 X = don't care Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 97 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Port P1, P1.4 and P1.5 Input/Output With Schmitt Trigger (MSP430F677xIPEU and MSP430F677xIPZ) to Comparator_B from Comparator_B CBPD.z A0..A3 From ADC P1REN.x P1DIR.x DVSS 0 DVCC 1 00 01 10 11 P1OUT.x 00 01 From MCLK, SMCLK 10 DVSS 11 P1.4/MCLK/CB1/A4 P1.5/SMCLK/CB0/A5 P1DS.x P1SEL0.x P1SEL1.x P1IN.x EN Not Used D Bus Keeper P1IE.x P1IRQ.x EN SET P1SEL.x Interrupt Edge Select P1IES.x 98 Q P1IFG.x Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Table 70. Port P1 (P1.4 and P1.5) Pin Functions (MSP430F677xIPEU and MSP430F677xIPZ) PIN NAME (P1.x) x FUNCTION P1.4 (I/O) P1.4/MCLK/CB1/A4 4 (1) 5 P1DIR.x P1SEL1.x P1SEL0.x CPBD.z I:0; O:1 0 0 0 MCLK 1 0 1 0 N/A 0 1 0 0 DVSS 1 1 0 0 A4 X 1 1 0 CB1 X X X 1 (z = 1) I:0; O:1 0 0 0 SMCLK 1 0 1 0 N/A 0 1 0 0 DVSS 1 1 0 0 A5 X 1 1 0 CB0 X X X 1 (z = 0) P1.5 (I/O) P1.5/SMCLK/CB0/A5 CONTROL BITS OR SIGNALS (1) X = don't care Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 99 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Port P1, P1.6 and P1.7 Input/Output With Schmitt Trigger (MSP430F677xIPEU and MSP430F677xIPZ) COM2 to COM3 From LCD_C P1REN.x P1DIR.x DVSS 0 DVCC 1 00 01 10 11 P1OUT.x 00 01 DVSS 10 11 P1.6/COM2 P1.7/COM3 P1DS.x P1SEL0.x P1SEL1.x P1IN.x EN Not Used D Bus Keeper P1IE.x P1IRQ.x Q EN P1IFG.x SET P1SEL.x Interrupt Edge Select P1IES.x Table 71. Port P1 (P1.6 and P1.7) Pin Functions (MSP430F677xIPEU and MSP430F677xIPZ) PIN NAME (P1.x) x FUNCTION P1.6 (I/O) P1.6/COM2 6 (1) 100 7 P1DIR.x P1SEL1.x P1SEL0.x COM Enable I:0; O:1 X 0 0 N/A 0 X 1 0 DVSS 1 X 1 0 COM2 X X X 1 P1.7 (I/O) P1.7/COM3 CONTROL BITS OR SIGNALS (1) I:0; O:1 X 0 0 N/A 0 X 1 0 DVSS 1 X 1 0 COM3 X X X 1 X = don't care Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Port P2, P2.0 Through P2.7, Input/Output With Schmitt Trigger (MSP430F677xIPEU Only) P2REN.x P2MAP.x = PMAP_ANALOG P2DIR.x 0 from Port Mapping 1 P2OUT.x 0 from Port Mapping 1 DVSS 0 DVCC 1 (MSP430F677xIPEU only) P2.0/PM_TA0.0 P2.1/PM_TA0.1 P2.2/PM_TA0.2 P2.3/PM_TA1.0 P2.4/PM_TA2.0 P2.5/PM_UCB0SOMI/PM_UCB0SCL P2.6/PM_UCB0SIMO/PM_UCB0SDA P2.7/PM_UCB0CLK P2DS.x P2SEL0.x P2IN.x EN to Port Mapping D Bus Keeper P2IE.x P2IRQ.x Q EN P2IFG.x SET P2SEL.x Interrupt Edge Select P2IES.x Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 101 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Table 72. Port P2 (P2.0 Through P2.7) Pin Functions (MSP430F677xIPEU Only) PIN NAME (P2.x) x FUNCTION P2.0 (I/O) P2.0/PM_TA0.0 0 Mapped Secondary digital function Output driver and input Schmitt trigger disabled 1 2 3 4 X 1 ≤ 30 Output driver and input Schmitt trigger disabled X 1 = 31 I:0; O:1 0 X Mapped Secondary digital function X 1 ≤ 30 Output driver and input Schmitt trigger disabled X 1 = 31 I:0; O:1 0 X Mapped Secondary digital function X 1 ≤ 30 Output driver and input Schmitt trigger disabled X 1 = 31 I:0; O:1 0 X X 1 ≤ 30 = 31 Mapped Secondary digital function Mapped Secondary digital function P2.6 (I/O) 6 Mapped Secondary digital function Output driver and input Schmitt trigger disabled (1) 102 7 X 1 I:0; O:1 0 X X 1 ≤ 30 = 31 X 1 I:0; O:1 0 X X 1 ≤ 30 = 31 X 1 I:0; O:1 0 X Mapped Secondary digital function X 1 ≤ 30 Output driver and input Schmitt trigger disabled X 1 = 31 P2.7 (I/O) P2.7/PM_UCB0CLK ≤ 30 Mapped Secondary digital function Output driver and input Schmitt trigger disabled P2.6/PM_UCB0SIMO/ PM_UCB0SDA X 1 X P2.5 (I/O) 5 0 X = 31 Output driver and input Schmitt trigger disabled P2.5/PM_UCB0SOMI/ PM_UCB0SCL I:0; O:1 0 P2.4 (I/O) P2.4/PM_TA2.0 P2MAP.x 1 P2.3 (I/O) P2.3/PM_TA1.0 P2SEL0.x X P2.2 (I/O) P2.2/PM_TA0.2 P2DIR.x I:0; O:1 P2.1 (I/O) P2.1/PM_TA0.1 CONTROL BITS OR SIGNALS (1) X = don't care Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Port P2, P2.0 Through P2.3, Input/Output With Schmitt Trigger (MSP430F677xIPZ Only) COM4 to COM7 from LCD_C P2REN.x P2MAP.x = PMAP_ANALOG P2DIR.x 0 from Port Mapping 1 P2OUT.x 0 from Port Mapping 1 DVSS 0 DVCC 1 (MSP430F677xIPZ only) P2.0/PM_TA0.0/COM4 P2.1/PM_TA0.1/COM5 P2.2/PM_TA0.2/COM6 P2.3/PM_TA1.0/COM7 P2DS.x P2SEL0.x P2IN.x EN to Port Mapping D Bus Keeper P2IE.x P2IRQ.x Q EN P2IFG.x SET P2SEL.x Interrupt Edge Select P2IES.x Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 103 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Table 73. Port P2 (P2.0 Through P2.3) Pin Functions (MSP430F677xIPZ Only) CONTROL BITS OR SIGNALS (1) PIN NAME (P2.x) x FUNCTION P2.0 (I/O) P2.0/PM_TA0.0/ COM4 0 2 0 X 0 1 ≤ 30 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 X X X 1 I:0; O:1 0 X 0 Mapped secondary digital function X 1 ≤ 30 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 COM5 X X X 1 I:0; O:1 0 X 0 Mapped secondary digital function X 1 ≤ 30 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 COM6 X X X 1 I:0; O:1 0 X 0 Mapped secondary digital function X 1 ≤ 30 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 COM7 X X X 1 P2.3 (I/O) P2.3/PM_TA1.0/ COM7 (1) 104 3 COM Enable X P2.2 (I/O) P2.2/PM_TA0.2/ COM6 P2MAP.x I:0; O:1 P2.1 (I/O) 1 P2SEL0.x Mapped secondary digital function COM4 P2.1/PM_TA0.1/ COM5 P2DIR.x X = don't care Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Port P2, P2.4 Through P2.6, Input/Output With Schmitt Trigger (MSP430F677xIPZ Only) P2REN.x P2MAP.x = PMAP_ANALOG P2DIR.x 0 from Port Mapping 1 P2OUT.x 0 from Port Mapping 1 DVSS 0 DVCC 1 (MSP430F677xIPZ only) P2.4/PM_TA2.0 P2.5/PM_UCB0SOMI/PM_UCB0SCL P2.6/PM_UCB0SIMO/PM_UCB0SDA P2DS.x P2SEL0.x P2IN.x EN to Port Mapping D Bus Keeper P2IE.x P2IRQ.x Q EN P2IFG.x SET P2SEL.x Interrupt Edge Select P2IES.x Table 74. Port P2 (P2.4 and P2.6) Pin Functions (MSP430F677xIPZ Only) PIN NAME (P2.x) x FUNCTION P2.4 (I/O) P2.4/PM_TA2.0/R23 4 Mapped secondary digital function R23 P2.5 (I/O) P2.5/PM_UCB0SOMI/ PM_UCB0SCL/R13 5 Mapped secondary digital function R13 (1) 6 P2DIR.x P2SEL0.x I:0; O:1 0 P2MAP.x X X 1 ≤ 30 = 31 X 1 I:0; O:1 0 X X 1 ≤ 30 = 31 X 1 I:0; O:1 0 X Mapped secondary digital function X 1 ≤ 30 R03 X 1 = 31 P2.6 (I/O) P2.6/PM_UCB0SIMO/ PM_UCB0SDA/R03 CONTROL BITS OR SIGNALS (1) X = don't care Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 105 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Port P2, P2.7, Input/Output With Schmitt Trigger (MSP430F677xIPZ Only) Comparator_B CBPD.z P2REN.x P2MAP.x = PMAP_ANALOG P2DIR.x 0 from Port Mapping 1 P2OUT.x 0 from Port Mapping 1 DVSS 0 DVCC 1 (MSP430F677xIPZ only) P2.7/PM_UCB0CLK/CB2 P2DS.x P2SEL0.x P2IN.x EN to Port Mapping D Bus Keeper P2IE.x P2IRQ.x Q EN P2IFG.x SET P2SEL.x Interrupt Edge Select P2IES.x Table 75. Port P2 (P2.7) Pin Functions (MSP430F677xIPZ Only) PIN NAME (P2.x) x FUNCTION P2DIR.x P2SEL0.x P2MAP.x CBPD.z I:0; O:1 0 X 0 Mapped secondary digital function X 1 ≤ 30 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 CB2 X X X 1 (z = 2) P2.7 (I/O) P2.7/PM_UCB0CLK/ CB2 (1) 106 7 CONTROL BITS OR SIGNALS (1) X = don't care Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Port P3, P3.0 Through P3.7, Input/Output With Schmitt Trigger (MSP430F677xIPEU Only) P3REN.x P3MAP.x = PMAP_ANALOG P3DIR.x 0 from Port Mapping 1 P3OUT.x 0 from Port Mapping 1 DVSS 0 DVCC 1 (MSP430F677xIPEU only) P3.0/PM_UCA0RXD/PM_UCA0SOMI P3.1/PM_UCA0TXD/PM_UCA0SIMO P3.2/PM_UCA0CLK P3.3/PM_UCA1CLK P3.4/PM_UCA1RXD/PM_UCA1SOMI P3.5/PM_UCA1TXD/PM_UCA1SIMO P3.6/PM_UCA2RXD/PM_UCA2SOMI P3.7/PM_UCA2TXD/PM_UCA2SIMO P3DS.x P3SEL0.x P3IN.x EN to Port Mapping D Bus Keeper Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 107 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Table 76. Ports P3 (P3.0 Through P3.7) Pin Functions (MSP430F677xIPEU Only) PIN NAME (P3.x) x P3.0/PM_UCA0RXD/ PM_UCA0SOMI 0 FUNCTION P3.0 (I/O) Mapped Secondary digital function Output driver and input Schmitt trigger disabled 1 2 3 4 X 1 ≤ 30 Output driver and input Schmitt trigger disabled X 1 = 31 I:0; O:1 0 X Mapped Secondary digital function X 1 ≤ 30 Output driver and input Schmitt trigger disabled X 1 = 31 I:0; O:1 0 X Mapped Secondary digital function X 1 ≤ 30 Output driver and input Schmitt trigger disabled X 1 = 31 I:0; O:1 0 X X 1 ≤ 30 = 31 Mapped Secondary digital function Mapped Secondary digital function P3.6 (I/O) 6 Mapped Secondary digital function Output driver and input Schmitt trigger disabled (1) 108 7 X 1 I:0; O:1 0 X X 1 ≤ 30 = 31 X 1 I:0; O:1 0 X X 1 ≤ 30 = 31 X 1 I:0; O:1 0 X Mapped Secondary digital function X 1 ≤ 30 Output driver and input Schmitt trigger disabled X 1 = 31 P3.7 (I/O) P3.7/PM_UCA2TXD/ PM_UCA2SIMO ≤ 30 Mapped Secondary digital function Output driver and input Schmitt trigger disabled P3.6/PM_UCA2RXD/ PM_UCA2SOMI X 1 X P3.5 (I/O) 5 0 X = 31 Output driver and input Schmitt trigger disabled P3.5/PM_UCA1TXD/ PM_UCA1SIMO I:0; O:1 0 P3.4 (I/O) P3.4/PM_UCA1RXD/ PM_UCA1SOMI P3MAP.x 1 P3.3 (I/O) P3.3/PM_UCA1CLK P3SEL0.x X P3.2 (I/O) P3.2/PM_UCA0CLK P3DIR.x I:0; O:1 P3.1 (I/O) P3.1/PM_UCA0TXD/ PM_UCA0SIMO CONTROL BITS OR SIGNALS (1) X = don't care Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Port P3, P3.0, Input/Output With Schmitt Trigger (MSP430F677xIPZ Only) P3REN.x P3MAP.x = PMAP_ANALOG P3DIR.x 0 from Port Mapping 1 P3OUT.x 0 from Port Mapping 1 DVSS 0 DVCC 1 (MSP430F677xIPZ only) P3.0/PM_UCA0RXD/PM_UCA0SOMI P3DS.x P3SEL0.x P3IN.x EN to Port Mapping D Bus Keeper Table 77. Ports P3 (P3.0) Pin Functions (MSP430F677xIPZ Only) PIN NAME (P3.x) x FUNCTION P3DIR.x P3SEL0.x P3MAP.x I:0; O:1 0 X Mapped Secondary digital function X 1 ≤ 30 Output driver and input Schmitt trigger disabled X 1 = 31 P3.0 (I/O) P3.0/PM_UCA0RXD/ PM_UCA0SOMI (1) 0 CONTROL BITS OR SIGNALS (1) X = don't care Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 109 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Port P3, P3.1 Through P3.7, Input/Output With Schmitt Trigger (MSP430F677xIPZ Only) S39..S33 LCDS39..LCDS33 P3REN.x P3MAP.x = PMAP_ANALOG P3DIR.x 0 from Port Mapping 1 P3OUT.x 0 from Port Mapping 1 DVSS 0 DVCC 1 (MSP430F677xIPZ only) P3.1/PM_UCA0TXD/PM_UCA0SIMO/S39 P3.2/PM_UCA0CLK/S38 P3.3/PM_UCA1CLK/S37 P3.4/PM_UCA1RXD/PM_UCA1SOMI/S36 P3.5/PM_UCA1TXD/PM_UCA1SIMO/S35 P3.6/PM_UCA2RXD/PM_UCA2SOMI/S34 P3.7/PM_UCA2TXD/PM_UCA2SIMO/S33 P3DS.x P3SEL0.x P3IN.x EN to Port Mapping D Bus Keeper 110 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Table 78. Ports P3 (P3.1 Through P3.7) Pin Functions (MSP430F677xIPZ Only) PIN NAME (P3.x) x FUNCTION P3.1 (I/O) P3.1/PM_UCA0TXD/ PM_UCA0SIMO/S39 1 2 4 X 0 1 ≤ 30 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 S39 X X X 1 I:0; O:1 0 X 0 Mapped secondary digital function X 1 ≤ 30 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 X X X 1 I:0; O:1 0 X 0 Mapped secondary digital function X 1 ≤ 30 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 S37 X X X 1 I:0; O:1 0 X 0 Mapped secondary digital function X 1 ≤ 30 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 S36 X X X 1 I:0; O:1 0 X 0 Mapped secondary digital function X 1 ≤ 30 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 S35 X X X 1 P3.5 (I/O) P3.5/PM_UCA1TXD/ PM_UCA1SIMO/S35 5 P3.6 (I/O) P3.6/PM_UCA2RXD / PM_UCA2SOMI/S34 6 I:0; O:1 0 X 0 Mapped secondary digital function X 1 ≤ 30 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 S34 X X X 1 P3.7 (I/O) P3.7/PM_UCA2TXD/ PM_UCA2SIMO/S33 (1) 7 LCD39..33 0 P3.4 (I/O) P3.4/PM_UCA1RXD / PM_UCA1SOMI/S36 P3MAP.x X P3.3 (I/O) 3 P3SEL0.x I:0; O:1 S38 P3.3/PM_UCA1CLK/ S37 P3DIR.x Mapped secondary digital function P3.2 (I/O) P3.2/PM_UCA0CLK/ S38 CONTROL BITS OR SIGNALS (1) I:0; O:1 0 X 0 Mapped secondary digital function X 1 ≤ 30 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 S33 X X X 1 X = don't care Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 111 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Port P4, P4.0 Through P4.7, Input/Output With Schmitt Trigger (MSP430F677xIPEU Only) P4REN.x P4MAP.x = PMAP_ANALOG P4DIR.x 0 from Port Mapping 1 P4OUT.x 0 from Port Mapping 1 DVSS 0 DVCC 1 (MSP430F677xIPEU only) P4.0/PM_UCA2CLK P4.1/PM_UCA3RXD/PM_UCA3SOMI P4.2/PM_UCA3TXD/PM_UCA3SIMO P4.3/PM_UCA3CLK P4.4/PM_UCB1SOMI/PM_UCB1SCL P4.5/PM_UCB1SIMO/PM_UCB1SDA P4.6/PM_UCB1CLK P4.7/PM_TA3.0 P4DS.x P4SEL0.x P4IN.x EN to Port Mapping D Bus Keeper 112 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Table 79. Port P4 (P4.0 Through P4.7) Pin Functions (MSP430F677xIPEU Only) PIN NAME (P4.x) x FUNCTION P4.0 (I/O) P4.0/PM_UCA2CLK 0 Mapped Secondary digital function Output driver and input Schmitt trigger disabled 1 2 3 4 X 1 ≤ 30 Output driver and input Schmitt trigger disabled X 1 = 31 I:0; O:1 0 X Mapped Secondary digital function X 1 ≤ 30 Output driver and input Schmitt trigger disabled X 1 = 31 I:0; O:1 0 X Mapped Secondary digital function X 1 ≤ 30 Output driver and input Schmitt trigger disabled X 1 = 31 I:0; O:1 0 X X 1 ≤ 30 = 31 Mapped Secondary digital function Mapped Secondary digital function P4.6 (I/O) 6 Mapped Secondary digital function Output driver and input Schmitt trigger disabled (1) 7 X 1 I:0; O:1 0 X X 1 ≤ 30 = 31 X 1 I:0; O:1 0 X X 1 ≤ 30 = 31 X 1 I:0; O:1 0 X Mapped Secondary digital function X 1 ≤ 30 Output driver and input Schmitt trigger disabled X 1 = 31 P4.7 (I/O) P4.7/PM_TA3.0 ≤ 30 Mapped Secondary digital function Output driver and input Schmitt trigger disabled P4.6/PM_UCB1CLK X 1 X P4.5 (I/O) 5 0 X = 31 Output driver and input Schmitt trigger disabled P4.5/PM_UCB1SIMO/ PM_UCB1SDA I:0; O:1 0 P4.4 (I/O) P4.4/PM_UCB1SOMI/ PM_UCB1SCL P4MAP.x 1 P4.3 (I/O) P4.3/PM_UCA3CLK P4SEL0.x X P4.2 (I/O) P4.2/PM_UCA3TXD/ PM_UCA3SIMO P4DIR.x I:0; O:1 P4.1 (I/O) P4.1/PM_UCA3RXD/ PM_UCA3SOMI CONTROL BITS OR SIGNALS (1) X = don't care Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 113 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Port P4, P4.0 Through P4.7, Input/Output With Schmitt Trigger (MSP430F677xIPZ Only) S32..S25 LCDS32..LCDS25 P4REN.x P4MAP.x = PMAP_ANALOG P4DIR.x 0 from Port Mapping 1 P4OUT.x 0 from Port Mapping 1 DVSS 0 DVCC 1 (MSP430F677xIPZ only) P4.0/PM_UCA2CLK/S32 P4.1/PM_UCA3RXD/PM_UCA3SOMI/S31 P4.2/PM_UCA3TXD/PM_UCA3SIMO/S30 P4.3/PM_UCA3CLK/S29 P4.4/PM_UCB1SOMI/PM_UCB1SCL/S28 P4.5/PM_UCB1SIMO/PM_UCB1SDA/S27 P4.6/PM_UCB1CLK/S26 P4.7/PM_TA3.0/S25 P4DS.x P4SEL0.x P4IN.x EN to Port Mapping D Bus Keeper 114 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Table 80. Port P4 (P4.0 Through P4.7) Pin Functions (MSP430F677xIPZ Only) PIN NAME (P4.x) x FUNCTION P4.0 (I/O) P4.0/PM_UCA2CLK/ S32 0 1 3 X 0 1 ≤ 30 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 S32 X X X 1 I:0; O:1 0 X 0 Mapped secondary digital function X 1 ≤ 30 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 X X X 1 I:0; O:1 0 X 0 Mapped secondary digital function X 1 ≤ 30 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 S30 X X X 1 I:0; O:1 0 X 0 Mapped secondary digital function X 1 ≤ 30 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 S29 X X X 1 I:0; O:1 0 X 0 Mapped secondary digital function X 1 ≤ 30 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 S28 X X X 1 P4.4 (I/O) P4.4/ PM_UCB1SOMI/ PM_UCB1SCL/S28 4 P4.5 (I/O) P4.5/ PM_UCB1SIMO/ PM_UCB1SDA/S27 5 I:0; O:1 0 X 0 Mapped secondary digital function X 1 ≤ 30 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 S27 X X X 1 P4.6 (I/O) P4.6/PM_UCB1CLK/ S26 6 I:0; O:1 0 X 0 Mapped secondary digital function X 1 ≤ 30 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 S26 X X X 1 I:0; O:1 0 X 0 Mapped secondary digital function X 1 ≤ 30 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 S25 X X X 1 P4.7 (I/O) P4.7/PM_TA3.0/S25 (1) 7 LCD32..25 0 P4.3 (I/O) P4.3/PM_UCA3CLK/ S29 P4MAP.x X P4.2 (I/O) 2 P4SEL0.x I:0; O:1 S31 P4.2/PM_UCA3TXD/ PM_UCA3SIMO/S30 P4DIR.x Mapped secondary digital function P4.1 (I/O) P4.1/PM_UCA3RXD / PM_UCA3SOMI/S31 CONTROL BITS OR SIGNALS (1) X = don't care Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 115 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Port P5, P5.0 Through P5.3, Input/Output With Schmitt Trigger (MSP430F677xIPEU Only) COM4 to COM7 From LCD_C P5REN.x P5DIR.x DVSS 0 DVCC 1 00 01 10 11 P5OUT.x 00 01 DVSS 10 11 (MSP430F677xIPEU only) P5.0/COM4 P5.1/COM5 P5.2/COM6 P5.3/COM7 P5DS.x P5SEL0.x P5SEL1.x P5IN.x EN Not Used D Bus Keeper 116 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Table 81. Port P5 (P5.0 Through P5.3) Pin Functions (MSP430F677xIPEU Only) PIN NAME (P5.x) x FUNCTION P5.0 (I/O) P5.0/COM4 0 1 (1) 3 COM Enable X 0 0 X 1 0 DVSS 1 X 1 0 COM4 X X X 1 I:0; O:1 X 0 0 N/A 0 X 1 0 DVSS 1 X 1 0 X X X 1 I:0; O:1 X 0 0 0 X 1 0 DVSS 1 X 1 0 COM6 X X X 1 I:0; O:1 X 0 0 0 X 1 0 DVSS 1 X 1 0 COM7 X X X 1 N/A P5.3 (I/O) P5.3/COM7 P5SEL0.x 0 P5.2 (I/O) 2 P5SEL1.x I:0; O:1 COM5 P5.2/COM6 P5DIR.x N/A P5.1 (I/O) P5.1/COM5 CONTROL BITS OR SIGNALS (1) N/A X = don't care Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 117 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Port P5, P5.4 Through P5.6, Input/Output With Schmitt Trigger (MSP430F677xIPEU Only) R23, R13, R03, LCDREF P5REN.x P5DIR.x DVSS 0 DVCC 1 00 01 from SD24_B 10 11 P5OUT.x 00 01 from SD24_B 10 DVSS 11 (MSP430F677xIPEU only) P5.4/SDCLK/R23 P5.5/SD0DIO/LCDREF/R13 P5.6/SD1DIO/R03 P5DS.x P5SEL0.x P5SEL1.x P5IN.x EN to SD24_B D Bus Keeper 118 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Table 82. Port P5 (P5.4 Through P5.6) Pin Functions (MSP430F677xIPEU Only) PIN NAME (P5.x) x FUNCTION P5.4 (I/O) P5.4/SDCLK/R23 4 (1) 6 P5SEL0.x 0 0 X 0 1 N/A 0 1 0 DVSS 1 1 0 X 1 1 I:0; O:1 0 0 Secondary digital function X 0 1 N/A 0 1 0 DVSS 1 1 0 LCDREF/R13 X 1 1 P5.6 (I/O) PT.6/SD1DIO/R03 P5SEL1.x I:0; O:1 P5.5 (I/O) 5 P5DIR.x Secondary digital function R23 P5.5/SD0DIO/LCDREF/R13 CONTROL BITS OR SIGNALS (1) I:0; O:1 0 0 Secondary digital function X 0 1 N/A 0 1 0 DVSS 1 1 0 R03 X 1 1 X = don't care Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 119 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Port P5, P5.7, Input/Output With Schmitt Trigger (MSP430F677xIPEU Only) to Comparator_B CBPD.z P5REN.x P5DIR.x DVSS 0 DVCC 1 00 01 from SD24_B 10 11 P5OUT.x 00 01 10 from SD24_B 11 (MSP430F677xIPEU only) P5.7/SD2DIO/CB2 P5DS.x P5SEL0.x P5SEL1.x P5IN.x EN to SD24_B D Bus Keeper Table 83. Port P5 (P5.7) Pin Function (MSP430F677xIPEU Only) PIN NAME (P5.x) x FUNCTION P5.7 (I/O) P5.7/SD2DIO/CB2 7 Secondary digital function CB2 (1) 120 CONTROL BITS OR SIGNALS (1) P5DIR.x P5SEL1.x P5SEL0.x CBPD.z I:0; O:1 X 0 0 X X 1 0 X X X 1 (z = 2) X = don't care Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Port P5, P5.0 Through P5.7, Input/Output With Schmitt Trigger (MSP430F677xIPZ Only) S24..S17 LCDS24..LCDS17 P5REN.x P5DIR.x DVSS 0 DVCC 1 00 01 from SD24_B 10 11 P5OUT.x 00 01 from SD24_B 10 11 (MSP430F677xIPZ only) P5.0/SDCLK/S24 P5.1/SD0DIO/S23 P5.2/SD1DIO/S22 P5.3/SD2DIO/S21 P5.4/SD3DIO/S20 P5.5/SD4DIO/S19 P5.6/SD5DIO/S18 P5.7/SD6DIO/S17 P5DS.x P5SEL0.x P5SEL1.x P5IN.x EN to SD24_B D Bus Keeper Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 121 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Table 84. Port P5 (P5.0 Through P5.7) Pin Function (MSP430F677xIPZ Only) PIN NAME (P5.x) x FUNCTION P5.0 (I/O) P5.0/SDCLK/S24 0 Secondary digital function S24 P5.1 (I/O) P5.1/SD0DIO/S23 1 Secondary digital function S23 P5.2 (I/O) P5.2/SD1DIO/S22 2 Secondary digital function S22 P5.3 (I/O) P5.3/SD2DIO/S21 3 Secondary digital function S21 P5.4 (I/O) P5.4/SD3DIO/S20 4 Secondary digital function S20 P5.5 (I/O) P5.5/SD4DIO/S19 5 Secondary digital function S19 P5.6 (I/O) P5.6/SD5DIO/S18 6 Secondary digital function S18 P5.7 (I/O) P5.7/SD6DIO/S17 7 Secondary digital function S17 (1) 122 CONTROL BITS OR SIGNALS (1) P5DIR.x P5SEL1.x P5SEL0.x LCD24..17 I:0; O:1 X 0 0 X X 1 0 X X X 1 I:0; O:1 X 0 0 X X 1 0 X X X 1 I:0; O:1 X 0 0 X X 1 0 X X X 1 I:0; O:1 X 0 0 X X 1 0 X X X 1 I:0; O:1 X 0 0 X X 1 0 X X X 1 I:0; O:1 X 0 0 X X 1 0 X X X 1 I:0; O:1 X 0 0 X X 1 0 X X X 1 I:0; O:1 X 0 0 X X 1 0 X X X 1 X = don't care Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Port P6, P6.0, Input/Output With Schmitt Trigger (MSP430F677xIPEU Only) P6REN.x P6DIR.x 0 from SD24_B 1 P6OUT.x 0 from SD24_B 1 DVSS 0 DVCC 1 (MSP430F677xIPEU only) P6.0/SD3DIO P6DS.x P6SEL0.x P6IN.x EN to SD24_B D Bus Keeper Table 85. Port P6 (P6.0) Pin Functions (MSP430F677xIPEU Only) PIN NAME (P6.x) P6.0/SD3DIO (1) x 0 FUNCTION P6.0 (I/O) Secondary digital function CONTROL BITS OR SIGNALS (1) P6DIR.x P6SEL0.x I:0; O:1 0 X 1 X = don't care Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 123 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Port P6, P6.1 Through P6.3, Input/Output With Schmitt Trigger (MSP430F677xIPEU Only) S39...S37 LCDS39...LCDS37 P6REN.x P6DIR.x 0 from SD24_B 1 P6OUT.x 0 from SD24_B 1 DVSS 0 DVCC 1 (MSP430F677xIPEU only) P6.1/SD4DIO/S39 P6.2/SD5DIO/S38 P6.3/SD6DIO/S37 P6DS.x P6SEL0.x P6IN.x EN to SD24_B D Bus Keeper 124 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Table 86. Port P6 (P6.1 Through P6.3) Pin Functions (MSP430F677xIPEU Only) PIN NAME (P6.x) x FUNCTION P6.1 (I/O) P6.1/SD4DIO/S39 1 2 (1) 3 P6SEL0.x LCD39..37 I:0; O:1 0 0 X 1 0 S39 X X 1 I:0; O:1 0 0 Secondary digital function X 1 0 S38 X X 1 I:0; O:1 0 0 P6.3 (I/O) P6.3/SD6DIO/S37 P6DIR.x Secondary digital function P6.2 (I/O) P6.2/SD5DIO/S38 CONTROL BITS OR SIGNALS (1) Secondary digital function X 1 0 S37 X X 1 X = don't care Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 125 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Port P6, P6.4 Through P6.7, Input/Output With Schmitt Trigger (MSP430F677xIPEU Only) S36...S0 LCDS36...LCDS0 P6REN.x P6DIR.x DVSS 0 DVCC 1 0 1 P6OUT.x 0 DVSS 1 (MSP430F677xIPEU only) P6.4/S36 P6.5/S35 P6.6/S34 P6.7/S33 P6DS.x P6SEL0.x P6IN.x EN Not Used D Bus Keeper 126 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Table 87. Port P6 (P6.4 Through P6.7) Pin Functions (MSP430F67xxIPEU Only) PIN NAME (P6.x) x FUNCTION P6.4 (I/O) P6.4/S36 4 5 0 0 1 0 DVSS 1 1 0 S36 X X 1 I:0; O:1 0 0 N/A 0 1 0 DVSS 1 1 0 N/A (1) 7 X X 1 I:0; O:1 0 0 0 1 0 DVSS 1 1 0 S34 X X 1 I:0; O:1 0 0 0 1 0 P6.7 (I/O) P6.7/S33 LCD36..33 0 P6.6(I/O) 6 P6SEL0.x I:0; O:1 S35 P6.6/S34 P6DIR.x N/A P6.5 (I/O) P6.5/S35 CONTROL BITS OR SIGNALS (1) N/A DVSS 1 1 0 S33 X X 1 X = don't care Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 127 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Port P6, P6.0 Through P6.7, Input/Output With Schmitt Trigger (MSP430F677xIPZ Only) S16...S9 LCDS16...LCDS9 P6REN.x P6DIR.x DVSS 0 DVCC 1 0 1 P6OUT.x 0 DVSS 1 (MSP430F677xIPZ only) P6.0/S16 P6.1/S15 P6.2/S14 P6.3/S13 P6.4/S12 P6.5/S11 P6.6/S10 P6.7/S9 P6DS.x P6SEL0.x P6IN.x EN Not Used D Bus Keeper 128 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Table 88. Port P6 (P6.0 Through P6.7) Pin Functions (MSP430F67xxIPZ Only) PIN NAME (P6.x) x FUNCTION P6.0 (I/O) P6.0/S16 0 1 0 0 1 0 DVSS 1 1 0 S16 X X 1 I:0; O:1 0 0 N/A 0 1 0 DVSS 1 1 0 N/A 3 4 5 6 (1) 0 1 0 1 I:0; O:1 0 0 0 1 0 N/A DVSS 1 1 0 S13 X X 1 I:0; O:1 0 0 N/A 0 1 0 DVSS 1 1 0 S12 X X 1 I:0; O:1 0 0 N/A 0 1 0 DVSS 1 1 0 S11 X X 1 I:0; O:1 0 0 N/A 0 1 0 DVSS 1 1 0 P6.7 (I/O) 7 1 X S10 P6.7/S9 0 0 1 P6.6 (I/O) P6.6/S10 1 0 X P6.5 (I/O) P6.5/S11 X S14 P6.4 (I/O) P6.4/S12 X I:0; O:1 DVSS P6.3 (I/O) P6.3/S13 LCD16..9 0 P6.2 (I/O) 2 P6SEL0.x I:0; O:1 S15 P6.2/S14 P6DIR.x N/A P6.1 (I/O) P6.1/S15 CONTROL BITS OR SIGNALS (1) N/A X X 1 I:0; O:1 0 0 0 1 0 DVSS 1 1 0 S9 X X 1 X = don't care Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 129 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Port P7, P7.0 Through P7.7, Input/Output With Schmitt Trigger (MSP430F67xxIPEU Only) S32...S25 LCDS32...LCDS25 P7REN.x P7DIR.x DVSS 0 DVCC 1 0 1 P7OUT.x 0 DVSS 1 (MSP430F677xIPEU only) P7.0/S32 P7.1/S31 P7.2/S30 P7.3/S29 P7.4/S28 P7.5/S27 P7.6/S26 P7.7/S25 P7DS.x P7SEL0.x P7IN.x EN Not Used D Bus Keeper 130 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Table 89. Port P7 (P7.0 Through P7.7) Pin Functions (MSP430F67xxIPEU Only) PIN NAME (P7.x) x FUNCTION P7.0 (I/O) P7.0/S32 0 1 0 0 1 0 DVSS 1 1 0 S32 X X 1 I:0; O:1 0 0 N/A 0 1 0 DVSS 1 1 0 N/A 3 4 5 6 (1) 0 1 0 1 I:0; O:1 0 0 0 1 0 N/A DVSS 1 1 0 S29 X X 1 I:0; O:1 0 0 N/A 0 1 0 DVSS 1 1 0 S28 X X 1 I:0; O:1 0 0 N/A 0 1 0 DVSS 1 1 0 S27 X X 1 I:0; O:1 0 0 N/A 0 1 0 DVSS 1 1 0 P7.7 (I/O) 7 1 X S26 P7.7/S25 0 0 1 P7.6 (I/O) P7.6/S26 1 0 X P7.5 (I/O) P7.5/S27 X S30 P7.4 (I/O) P7.4/S28 X I:0; O:1 DVSS P7.3 (I/O) P7.3/S29 LCD32..25 0 P7.2 (I/O) 2 P7SEL0.x I:0; O:1 S31 P7.2/S30 P7DIR.x N/A P7.1 (I/O) P7.1/S31 CONTROL BITS OR SIGNALS (1) N/A X X 1 I:0; O:1 0 0 0 1 0 DVSS 1 1 0 S25 X X 1 X = don't care Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 131 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Port P7, P7.0 Through P7.7, Input/Output With Schmitt Trigger (MSP430F67xxIPZ Only) S8...S1 LCDS8...LCDS1 P7REN.x P7DIR.x DVSS 0 DVCC 1 0 1 P7OUT.x 0 DVSS 1 (MSP430F677xIPZ only) P7.0/S8 P7.1/S7 P7.2/S6 P7.3/S5 P7.4/S4 P7.5/S3 P7.6/S2 P7.7/S1 P7DS.x P7SEL0.x P7IN.x EN Not Used D Bus Keeper 132 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Table 90. Port P7 (P7.0 Through P7.7) Pin Functions (MSP430F67xxIPZ Only) PIN NAME (P7.x) x FUNCTION P7.0 (I/O) P7.0/S8 0 1 0 0 1 0 DVSS 1 1 0 S8 X X 1 I:0; O:1 0 0 N/A 0 1 0 DVSS 1 1 0 N/A 3 4 5 6 (1) 0 1 0 1 I:0; O:1 0 0 0 1 0 N/A DVSS 1 1 0 S5 X X 1 I:0; O:1 0 0 N/A 0 1 0 DVSS 1 1 0 S4 X X 1 I:0; O:1 0 0 N/A 0 1 0 DVSS 1 1 0 S3 X X 1 I:0; O:1 0 0 N/A 0 1 0 DVSS 1 1 0 P7.7 (I/O) 7 1 X S2 P7.7/S1 0 0 1 P7.6 (I/O) P7.6/S2 1 0 X P7.5 (I/O) P7.5/S3 X S6 P7.4 (I/O) P7.4/S4 X I:0; O:1 DVSS P7.3 (I/O) P7.3/S5 LCD8..1 0 P7.2 (I/O) 2 P7SEL0.x I:0; O:1 S7 P7.2/S6 P7DIR.x N/A P7.1 (I/O) P7.1/S7 CONTROL BITS OR SIGNALS (1) N/A X X 1 I:0; O:1 0 0 0 1 0 DVSS 1 1 0 S1 X X 1 X = don't care Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 133 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Port P8, P8.0 Through P8.7, Input/Output With Schmitt Trigger (MSP430F677xIPEU Only) S24...S17 LCDS24...LCDS17 P8REN.x P8DIR.x DVSS 0 DVCC 1 0 1 P8OUT.x 0 DVSS 1 (MSP430F677xIPEU only) P8.0/S24 P8.1/S23 P8.2/S22 P8.3/S21 P8.4/S20 P8.5/S19 P8.6/S18 P8.7/S17 P8DS.x P8SEL0.x P8IN.x EN Not Used D Bus Keeper 134 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Table 91. Port P8 (P8.0 Through P8.7) Pin Functions (MSP430F677xIPEU Only) PIN NAME (P8.x) x FUNCTION P8.0 (I/O) P8.0/S24 0 1 0 0 1 0 DVSS 1 1 0 S24 X X 1 I:0; O:1 0 0 N/A 0 1 0 DVSS 1 1 0 N/A 3 4 5 6 (1) 0 1 0 1 I:0; O:1 0 0 0 1 0 N/A DVSS 1 1 0 S21 X X 1 I:0; O:1 0 0 N/A 0 1 0 DVSS 1 1 0 S20 X X 1 I:0; O:1 0 0 N/A 0 1 0 DVSS 1 1 0 S19 X X 1 I:0; O:1 0 0 N/A 0 1 0 DVSS 1 1 0 P8.7 (I/O) 7 1 X S18 P8.7/S17 0 0 1 P8.6 (I/O) P8.6/S18 1 0 X P8.5 (I/O) P8.5/S19 X S22 P8.4 (I/O) P8.4/S20 X I:0; O:1 DVSS P8.3 (I/O) P8.3/S21 LCD24..17 0 P8.2 (I/O) 2 P8SEL0.x I:0; O:1 S23 P8.2/S22 P8DIR.x N/A P8.1 (I/O) P8.1/S23 CONTROL BITS OR SIGNALS (1) N/A X X 1 I:0; O:1 0 0 0 1 0 DVSS 1 1 0 S17 X X 1 X = don't care Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 135 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Port P8, P8.0, Input/Output With Schmitt Trigger (MSP430F677xIPZ Only) S0 LCDS0 P8REN.x P8DIR.x DVSS 0 DVCC 1 0 1 P8OUT.x 0 DVSS 1 (MSP430F677xIPZ only) P8.0/S0 P8DS.x P8SEL0.x P8IN.x EN Not Used D Bus Keeper Table 92. Port P8 (P8.0) Pin Functions (MSP430F677xIPZ Only) PIN NAME (P8.x) x FUNCTION P8.0 (I/O) P8.0/S0 (1) 136 0 N/A CONTROL BITS OR SIGNALS (1) P8DIR.x P8SEL0.x LCD0 I:0; O:1 0 0 0 1 0 DVSS 1 1 0 S0 X X 1 X = don't care Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Port P8, P8.1, Input/Output With Schmitt Trigger (MSP430F677xIPZ Only) to Comparator_B CBPD.z P8REN.x DVSS 0 DVCC 1 0 P8DIR.x 1 P8OUT.x 0 RTCCLK 1 (MSP430F677xIPZ only) P8.1/TACLK/RTCCLK/CB3 P8DS.x P8SEL0.x P8IN.x EN to TACLK D Bus Keeper Table 93. Port P8 (P8.1) Pin Functions (MSP430F677xIPZ Only) PIN NAME (P8.x) x FUNCTION P8.1 (I/O) P8.1/TACLK/RTCCLK/ CB3 (1) 1 TACLK CONTROL BITS OR SIGNALS (1) P8DIR.x P8SEL0.x CBPD.z I:0; O:1 0 0 0 1 0 RTCCLK 1 1 0 CB3 X X 1 (z = 3) X = don't care Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 137 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Port P9, P9.0 Through P9.7, Input/Output With Schmitt Trigger (MSP430F677xIPEU Only) S16...S9 LCDS16...LCDS9 P9REN.x P9DIR.x DVSS 0 DVCC 1 0 1 P9OUT.x 0 DVSS 1 (MSP430F677xIPEU only) P9.0/S16 P9.1/S15 P9.2/S14 P9.3/S13 P9.4/S12 P9.5/S11 P9.6/S10 P9.7/S9 P9DS.x P9SEL0.x P9IN.x EN Not Used D Bus Keeper 138 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Table 94. Port P9 (P9.0 to P9.7) Pin Functions (MSP430F677xIPEU Only) PIN NAME (P9.x) x FUNCTION P9.0 (I/O) P9.0/S16 0 1 0 0 1 0 DVSS 1 1 0 S16 X X 1 I:0; O:1 0 0 N/A 0 1 0 DVSS 1 1 0 N/A 3 4 5 6 (1) 0 1 0 1 I:0; O:1 0 0 0 1 0 N/A DVSS 1 1 0 S13 X X 1 I:0; O:1 0 0 N/A 0 1 0 DVSS 1 1 0 S12 X X 1 I:0; O:1 0 0 N/A 0 1 0 DVSS 1 1 0 S11 X X 1 I:0; O:1 0 0 N/A 0 1 0 DVSS 1 1 0 P9.7 (I/O) 7 1 X S10 P9.7/S9 0 0 1 P9.6 (I/O) P9.6/S10 1 0 X P9.5 (I/O) P9.5/S11 X S14 P9.4 (I/O) P9.4/S12 X I:0; O:1 DVSS P9.3 (I/O) P9.3/S13 LCD16..9 0 P9.2 (I/O) 2 P9SEL0.x I:0; O:1 S15 P9.2/S14 P9DIR.x N/A P9.1 (I/O) P9.1/S15 CONTROL BITS OR SIGNALS (1) N/A X X 1 I:0; O:1 0 0 0 1 0 DVSS 1 1 0 S9 X X 1 X = don't care Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 139 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Port P10, P10.0 Through P10.7, Input/Output With Schmitt Trigger (MSP430F677xIPEU Only) S8...S1 LCDS8...LCDS1 P10REN.x P10DIR.x DVSS 0 DVCC 1 0 1 P10OUT.x 0 DVSS 1 (MSP430F677xIPEU only) P10.0/S8 P10.1/S7 P10.2/S6 P10.3/S5 P10.4/S4 P10.5/S3 P10.6/S2 P10.7/S1 P10DS.x P10SEL0.x P10IN.x EN Not Used D Bus Keeper 140 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Table 95. Port P10 (P10.0 Through P10.7) Pin Functions (MSP430F677xIPEU Only) PIN NAME (P10.x) x FUNCTION P10.0 (I/O) P10.0/S8 0 1 0 0 1 0 DVSS 1 1 0 S8 X X 1 I:0; O:1 0 0 N/A 0 1 0 DVSS 1 1 0 N/A 3 4 5 6 (1) 0 1 0 1 I:0; O:1 0 0 0 1 0 N/A DVSS 1 1 0 S5 X X 1 I:0; O:1 0 0 N/A 0 1 0 DVSS 1 1 0 S4 X X 1 I:0; O:1 0 0 N/A 0 1 0 DVSS 1 1 0 S3 X X 1 I:0; O:1 0 0 N/A 0 1 0 DVSS 1 1 0 P10.7 (I/O) 7 1 X S2 P10.7/S1 0 0 1 P10.6 (I/O) P10.6/S2 1 0 X P10.5 (I/O) P10.5/S3 X S6 P10.4 (I/O) P10.4/S4 X I:0; O:1 DVSS P10.3 (I/O) P10.3/S5 LCD8..1 0 P10.2 (I/O) 2 P10SEL0.x I:0; O:1 S7 P10.2/S6 P10DIR.x N/A P10.1 (I/O) P10.1/S7 CONTROL BITS OR SIGNALS (1) N/A X X 1 I:0; O:1 0 0 0 1 0 DVSS 1 1 0 S1 X X 1 X = don't care Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 141 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Port P11, P11.0, Input/Output With Schmitt Trigger (MSP430F677xIPEU Only) S0 LCDS0 P11REN.x P11DIR.x DVSS 0 DVCC 1 0 1 P11OUT.x 0 DVSS 1 (MSP430F677xIPEU only) P11.0/S0 P11DS.x P11SEL0.x P11IN.x EN Not Used D Bus Keeper Table 96. Port P11 (P11.0) Pin Functions (MSP430F677xIPEU Only) PIN NAME (P11.x) x FUNCTION P11.0 (I/O) P11.0/S0 (1) 142 0 N/A CONTROL BITS OR SIGNALS (1) P11DIR.x P11SEL0.x LCD0 I:0; O:1 0 0 0 1 0 DVSS 1 1 0 S0 X X 1 X = don't care Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Port P11, P11.1, Input/Output With Schmitt Trigger (MSP430F677xIPEU Only) to Comparator_B CBPD.z P11REN.x DVSS 0 DVCC 1 0 P11DIR.x 1 P11OUT.x 0 from Timer_A 1 (MSP430F677xIPEU only) P11.1/TA3.1/CB3 P11DS.x P11SEL0.x P11IN.x EN to Timer_A D Bus Keeper Table 97. Port P11 (P11.1) Pin Functions (MSP430F677xIPEU Only) PIN NAME (P11.x) P11.1/TA3.1/CB3 (1) x 1 FUNCTION CONTROL BITS OR SIGNALS (1) P11DIR.x P11SEL0.x CBPD.z P11.1 (I/O) I:0; O:1 0 0 TA3.CCI1A 0 1 0 TA3.1 1 1 0 CB3 X X 1 X = don't care Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 143 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Port P11, P11.2 and P11.3, Input/Output With Schmitt Trigger (MSP430F677xIPEU Only) P11REN.x DVSS 0 DVCC 1 0 P11DIR.x 1 0 P11OUT.x 1 from Timer_A (MSP430F677xIPEU only) P11.2/TA1.1 P11.3/TA2.1 P11DS.x P11SEL0.x P11IN.x EN to Timer_A D Bus Keeper Table 98. Port P11 (P11.2 and P11.3) Pin Functions (MSP430F677xIPEU Only) PIN NAME (P11.x) P11.2/TA1.1 x 2 FUNCTION P11DIR.x P11SEL0.x P11.2 (I/O) I:0; O:1 0 TA1.CCI1A 0 1 TA1.1 P11.3/TA2.1 144 3 CONTROL BITS OR SIGNALS 1 1 P11.3 (I/O) I:0; O:1 0 TA2.CCI1A 0 1 TA2.1 1 1 Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Port P11, P11.4 and P11.5, Input/Output With Schmitt Trigger (MSP430F677xIPEU Only) P11REN.x DVSS 0 DVCC 1 0 P11DIR.x 1 P11OUT.x 0 from Comparator_B RTCCLK 1 (MSP430F677xIPEU only) P11.4/CBOUT P11.5/TACLK/RTCCLK P11DS.x P11SEL0.x P11IN.x EN to TACLK D Bus Keeper Table 99. Port P11 (P11.4 and P11.5) Pin Functions (MSP430F677xIPEU Only) PIN NAME (P11.x) x FUNCTION P11.4 (I/O) P11.4/CBOUT 4 N/A CBOUT 5 P11DIR.x P11SEL0.x I:0; O:1 0 0 1 1 1 I:0; O:1 0 TACLK 0 1 RTCCLK 1 1 P11.5 (I/O) P11.5/TACLK/RTCCLK CONTROL BITS OR SIGNALS Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 145 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Port J, J.0, JTAG pin TDO, Input/Output With Schmitt Trigger or Output Pad Logic PJREN.x PJDIR.x 0 DVCC 1 PJOUT.x 00 From JTAG 01 SMCLK 10 DVSS 0 DVCC 1 1 PJ.0/SMCLK/TDO PJDS.0 0: Low drive 1: High drive 11 PJSEL.x From JTAG PJIN.x Bus Holder EN D Port J, J.1 to J.3, JTAG Pins TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger or Output Pad Logic PJREN.x PJDIR.x DVSS DVSS 0 DVCC 1 1 0 1 PJOUT.x 00 From JTAG 01 MCLK/ADC10CLK/ACLK 10 PJDS.x 0: Low drive 1: High drive 11 PJ.1/MCLK/TDI/TCLK PJ.2/ADC10CLK/TMS PJ.3/ACLK/TCK PJSEL.x From JTAG PJIN.x EN To JTAG 146 Bus Holder D Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Table 100. Port PJ (PJ.0 to PJ.3) Pin Functions CONTROL BITS OR SIGNALS (1) PIN NAME (PJ.x) PJ.0/SMCLK/TDO PJ.1/MCLK/TDI/TCLK x 0 1 FUNCTION PJ.0 (I/O) (2) PJ.3/ACLK/TCK 3 0 0 1 1 0 TDO (3) x x 1 I: 0; O: 1 0 0 1 1 0 x x 1 PJ.1 (I/O) (2) PJ.2 (I/O) (2) (4) I: 0; O: 1 0 0 ADC10CLK 1 1 0 TMS (3) x x 1 I: 0; O: 1 0 0 1 1 0 x x 1 (4) PJ.3 (I/O) (2) ACLK TCK (3) (1) (2) (3) (4) JTAG MODE I: 0; O: 1 TDI/TCLK (3) 2 PJSEL.x SMCLK MCLK PJ.2/ADC10CLK/TMS PJDIR.x (4) X = don't care Default condition The pin direction is controlled by the JTAG module. In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are don't care. Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 147 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Device Descriptors (TLV) list the complete contents of the device descriptor tag-length-value (TLV) structure for each device type. Table 101. F677x1 Device Descriptor Table Info Block Die Record ADC10 Calibration 148 F67791IPEU F67791IPZ F67781IPEU F67781IPZ F67771IPEU F67771IPZ F67761IPEU F67761IPZ F67751IPEU F67751IPZ Value Value Value Value Value 06h 06h 06h 06h 06h 1 06h 06h 06h 06h 06h 1A02h 2 Per Unit Per Unit Per Unit Per Unit Per Unit Device ID 1A04h 2 81A5h 81A4h 81A3h 81A2h 81A1h Hardware Revision 1A06h 1 Per Unit Per Unit Per Unit Per Unit Per Unit Firmware Revision 1A07h 1 Per Unit Per Unit Per Unit Per Unit Per Unit Die Record Tag 1A08h 1 08h 08h 08h 08h 08h Die Record Length 1A09h 1 0Ah 0Ah 0Ah 0Ah 0Ah Lot ID 1A0Ah 4 Per Unit Per Unit Per Unit Per Unit Per Unit X Position 1A0Eh 2 Per Unit Per Unit Per Unit Per Unit Per Unit Y Position 1A10h 2 Per Unit Per Unit Per Unit Per Unit Per Unit Test Record CP 1A12h 1 Per Unit Per Unit Per Unit Per Unit Per Unit Test Record FT 1A13h 1 Per Unit Per Unit Per Unit Per Unit Per Unit ADC Calibration Tag 1A14h 1 13h 13h 13h 13h 13h ADC Calibration Length 1A15h 1 10h 10h 10h 10h 10h ADC Gain Factor 1A16h 2 Per Unit Per Unit Per Unit Per Unit Per Unit Description Address Size in bytes Info Length 1A00h 1 CRC Length 1A01h CRC Value ADC Offset 1A18h 2 Per Unit Per Unit Per Unit Per Unit Per Unit ADC 15T30 1A1Ah 2 Per Unit Per Unit Per Unit Per Unit Per Unit ADC 15T85 1A1Ch 2 Per Unit Per Unit Per Unit Per Unit Per Unit ADC 20T30 1A1Eh 2 Per Unit Per Unit Per Unit Per Unit Per Unit ADC 20T85 1A20h 2 Per Unit Per Unit Per Unit Per Unit Per Unit ADC 25T30 1A22h 2 Per Unit Per Unit Per Unit Per Unit Per Unit ADC 25T85 1A24h 2 Per Unit Per Unit Per Unit Per Unit Per Unit Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 Table 102. F676x1 Device Descriptor Table Info Block Die Record ADC10 Calibration F6769I1PEU F6769I1PZ F67681IPEU F67681IPZ F67671IPEU F67671IPZ F67661IPEU F67661IPZ F67651IPEU F67651IPZ Value Value Value Value Value 06h 06h 06h 06h 06h 1 06h 06h 06h 06h 06h 1A02h 2 Per Unit Per Unit Per Unit Per Unit Per Unit Device ID 1A04h 2 81A0h 819Fh 819Eh 819Dh 819Ch Hardware Revision 1A06h 1 Per Unit Per Unit Per Unit Per Unit Per Unit Firmware Revision 1A07h 1 Per Unit Per Unit Per Unit Per Unit Per Unit Die Record Tag 1A08h 1 08h 08h 08h 08h 08h Die Record Length 1A09h 1 0Ah 0Ah 0Ah 0Ah 0Ah Lot ID 1A0Ah 4 Per Unit Per Unit Per Unit Per Unit Per Unit X Position 1A0Eh 2 Per Unit Per Unit Per Unit Per Unit Per Unit Y Position 1A10h 2 Per Unit Per Unit Per Unit Per Unit Per Unit Test Record CP 1A12h 1 Per Unit Per Unit Per Unit Per Unit Per Unit Test Record FT 1A13h 1 Per Unit Per Unit Per Unit Per Unit Per Unit ADC Calibration Tag 1A14h 1 13h 13h 13h 13h 13h ADC Calibration Length 1A15h 1 10h 10h 10h 10h 10h ADC Gain Factor 1A16h 2 Per Unit Per Unit Per Unit Per Unit Per Unit Description Address Size in bytes Info Length 1A00h 1 CRC Length 1A01h CRC Value ADC Offset 1A18h 2 Per Unit Per Unit Per Unit Per Unit Per Unit ADC 15T30 1A1Ah 2 Per Unit Per Unit Per Unit Per Unit Per Unit ADC 15T85 1A1Ch 2 Per Unit Per Unit Per Unit Per Unit Per Unit ADC 20T30 1A1Eh 2 Per Unit Per Unit Per Unit Per Unit Per Unit ADC 20T85 1A20h 2 Per Unit Per Unit Per Unit Per Unit Per Unit ADC 25T30 1A22h 2 Per Unit Per Unit Per Unit Per Unit Per Unit ADC 25T85 1A24h 2 Per Unit Per Unit Per Unit Per Unit Per Unit Table 103. F674x1 Device Descriptor Table Info Block Die Record F67491IPEU F67491IPZ F67481IPEU F67481IPZ F67471IPEU F67471IPZ F67461IPEU F67461IPZ F67451IPEU F67451IPZ Value Value Value Value Value 06h 06h 06h 06h 06h 1 06h 06h 06h 06h 06h 1A02h 2 Per Unit Per Unit Per Unit Per Unit Per Unit Device ID 1A04h 2 819Bh 819Ah 8199h 8198h 8197h Hardware Revision 1A06h 1 Per Unit Per Unit Per Unit Per Unit Per Unit Firmware Revision 1A07h 1 Per Unit Per Unit Per Unit Per Unit Per Unit Die Record Tag 1A08h 1 08h 08h 08h 08h 08h Die Record Length 1A09h 1 0Ah 0Ah 0Ah 0Ah 0Ah Description Address Size in bytes Info Length 1A00h 1 CRC Length 1A01h CRC Value Lot ID 1A0Ah 4 Per Unit Per Unit Per Unit Per Unit Per Unit X Position 1A0Eh 2 Per Unit Per Unit Per Unit Per Unit Per Unit Y Position 1A10h 2 Per Unit Per Unit Per Unit Per Unit Per Unit Test Record CP 1A12h 1 Per Unit Per Unit Per Unit Per Unit Per Unit Test Record FT 1A13h 1 Per Unit Per Unit Per Unit Per Unit Per Unit Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 149 MSP430F677x1, MSP430F676x1, MSP430F674x1 SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 www.ti.com Table 103. F674x1 Device Descriptor Table (continued) ADC10 Calibration 150 ADC Calibration Tag 1A14h 1 13h 13h 13h 13h 13h ADC Calibration Length 1A15h 1 10h 10h 10h 10h 10h ADC Gain Factor 1A16h 2 Per Unit Per Unit Per Unit Per Unit Per Unit ADC Offset 1A18h 2 Per Unit Per Unit Per Unit Per Unit Per Unit ADC 15T30 1A1Ah 2 Per Unit Per Unit Per Unit Per Unit Per Unit ADC 15T85 1A1Ch 2 Per Unit Per Unit Per Unit Per Unit Per Unit ADC 20T30 1A1Eh 2 Per Unit Per Unit Per Unit Per Unit Per Unit ADC 20T85 1A20h 2 Per Unit Per Unit Per Unit Per Unit Per Unit ADC 25T30 1A22h 2 Per Unit Per Unit Per Unit Per Unit Per Unit ADC 25T85 1A24h 2 Per Unit Per Unit Per Unit Per Unit Per Unit Submit Documentation Feedback Copyright © 2012–2013, Texas Instruments Incorporated MSP430F677x1, MSP430F676x1, MSP430F674x1 www.ti.com SLAS815C – NOVEMBER 2012 – REVISED DECEMBER 2013 REVISION HISTORY REVISION SLAS815 DESCRIPTION Production Data release SLAS815A Made editorial changes to Features. Recommended Operating Conditions, Added TYP test conditions. Active Mode Supply Current Into VCC Excluding External Current, Updated current values. Auxiliary Supplies - AUX3 (Backup Subsystem) Currents, Changed IAUX3,RTCoff at 85°C. DCO Frequency, Added note (1). Flash Memory, Updated Flash program and erase currents. SLAS815B Table 5, Corrected pin number for P2.6/PM_UCB0SIMO/PM_UCB0SDA/R03. 10-Bit ADC External Reference, Note (1), changed "12-bit accuracy" to "10-bit accuracy". SLAS815C Features, Removed mention of encryption (does not apply to these devices). Added Applications. Removed Ordering Information table (see PACKAGE OPTION ADDENDUM at end of data sheet). Table 4 and Table 5, Added note to RST/NMI/SBWTDIO pin. Added Development Tools Support and Device and Development Tool Nomenclature. Schmitt-Trigger Inputs – General Purpose I/O, Added note to RPull. Comparator_B, Corrected test conditions for IAVCC_REF. Copyright © 2012–2013, Texas Instruments Incorporated Submit Documentation Feedback 151 PACKAGE OPTION ADDENDUM www.ti.com 24-May-2014 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) MSP430F67451IPEU ACTIVE LQFP PEU 128 72 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67451 MSP430F67451IPEUR ACTIVE LQFP PEU 128 750 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67451 MSP430F67451IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67451 MSP430F67451IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67451 MSP430F67461IPEU ACTIVE LQFP PEU 128 72 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67461 MSP430F67461IPEUR ACTIVE LQFP PEU 128 750 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67461 MSP430F67461IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67461 MSP430F67461IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67461 MSP430F67471IPEU ACTIVE LQFP PEU 128 72 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67471 MSP430F67471IPEUR ACTIVE LQFP PEU 128 750 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67471 MSP430F67471IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67471 MSP430F67471IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67471 MSP430F67481IPEU ACTIVE LQFP PEU 128 72 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67481 MSP430F67481IPEUR ACTIVE LQFP PEU 128 750 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67481 MSP430F67481IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67481 MSP430F67481IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67481 MSP430F67491IPEU ACTIVE LQFP PEU 128 72 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67491 Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 24-May-2014 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) MSP430F67491IPEUR ACTIVE LQFP PEU 128 750 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67491 MSP430F67491IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67491 MSP430F67491IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67491 MSP430F67651IPEU ACTIVE LQFP PEU 128 72 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67651 MSP430F67651IPEUR ACTIVE LQFP PEU 128 750 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67651 MSP430F67651IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67651 MSP430F67651IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67651 MSP430F67661IPEU ACTIVE LQFP PEU 128 72 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67661 MSP430F67661IPEUR ACTIVE LQFP PEU 128 750 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67661 MSP430F67661IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67661 MSP430F67661IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67661 MSP430F67671IPEU ACTIVE LQFP PEU 128 72 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67671 MSP430F67671IPEUR ACTIVE LQFP PEU 128 750 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67671 MSP430F67671IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67671 MSP430F67671IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67671 MSP430F67681IPEU ACTIVE LQFP PEU 128 72 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67681 MSP430F67681IPEUR ACTIVE LQFP PEU 128 750 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67681 MSP430F67681IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67681 Addendum-Page 2 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 24-May-2014 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) MSP430F67681IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67681 MSP430F67691IPEU ACTIVE LQFP PEU 128 72 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67691 MSP430F67691IPEUR ACTIVE LQFP PEU 128 750 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67691 MSP430F67691IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67691 MSP430F67691IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67691 MSP430F67751IPEU ACTIVE LQFP PEU 128 72 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67751 MSP430F67751IPEUR ACTIVE LQFP PEU 128 750 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67751 MSP430F67751IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67751 MSP430F67751IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67751 MSP430F67761IPEU ACTIVE LQFP PEU 128 72 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67761 MSP430F67761IPEUR ACTIVE LQFP PEU 128 750 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67761 MSP430F67761IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67761 MSP430F67761IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67761 MSP430F67771IPEU ACTIVE LQFP PEU 128 72 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67771 MSP430F67771IPEUR ACTIVE LQFP PEU 128 750 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67771 MSP430F67771IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67771 MSP430F67771IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67771 MSP430F67781IPEU ACTIVE LQFP PEU 128 72 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67781 Addendum-Page 3 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 24-May-2014 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) MSP430F67781IPEUR ACTIVE LQFP PEU 128 750 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67781 MSP430F67781IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67781 MSP430F67781IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67781 MSP430F67791IPEU ACTIVE LQFP PEU 128 72 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67791 MSP430F67791IPEUR ACTIVE LQFP PEU 128 750 TBD Call TI Call TI F67791 MSP430F67791IPZ ACTIVE LQFP PZ 100 90 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67791 MSP430F67791IPZR ACTIVE LQFP PZ 100 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-3-260C-168 HR F67791 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. Addendum-Page 4 Samples PACKAGE OPTION ADDENDUM www.ti.com 24-May-2014 (6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 5 PACKAGE MATERIALS INFORMATION www.ti.com 23-May-2014 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant MSP430F67451IPZR LQFP PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 MSP430F67461IPZR LQFP PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 MSP430F67471IPZR LQFP PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 MSP430F67481IPZR LQFP PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 MSP430F67651IPEUR LQFP PEU 128 750 330.0 44.4 17.0 23.0 2.25 24.0 44.0 Q1 MSP430F67651IPZR LQFP PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 MSP430F67661IPEUR LQFP PEU 128 750 330.0 44.4 17.0 23.0 2.25 24.0 44.0 Q1 MSP430F67661IPZR LQFP PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 MSP430F67671IPEUR LQFP PEU 128 750 330.0 44.4 17.0 23.0 2.25 24.0 44.0 Q1 MSP430F67671IPZR LQFP PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 MSP430F67681IPEUR LQFP PEU 128 750 330.0 44.4 17.0 23.0 2.25 24.0 44.0 Q1 MSP430F67681IPZR LQFP PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 MSP430F67691IPEUR LQFP PEU 128 750 330.0 44.4 17.0 23.0 2.25 24.0 44.0 Q1 MSP430F67691IPZR LQFP PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 MSP430F67751IPEUR LQFP PEU 128 750 330.0 44.4 17.0 23.0 2.25 24.0 44.0 Q1 MSP430F67751IPZR LQFP PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 MSP430F67761IPEUR LQFP PEU 128 750 330.0 44.4 17.0 23.0 2.25 24.0 44.0 Q1 MSP430F67761IPZR LQFP PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 23-May-2014 Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant MSP430F67771IPEUR LQFP PEU 128 750 330.0 44.4 17.0 23.0 2.25 24.0 44.0 Q1 MSP430F67771IPZR LQFP PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 MSP430F67781IPEUR LQFP PEU 128 750 330.0 44.4 17.0 23.0 2.25 24.0 44.0 Q1 MSP430F67781IPZR LQFP PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 MSP430F67791IPZR LQFP PZ 100 1000 330.0 24.4 17.0 17.0 2.1 20.0 24.0 Q2 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) MSP430F67451IPZR LQFP PZ 100 1000 367.0 367.0 45.0 MSP430F67461IPZR LQFP PZ 100 1000 367.0 367.0 45.0 MSP430F67471IPZR LQFP PZ 100 1000 367.0 367.0 45.0 MSP430F67481IPZR LQFP PZ 100 1000 367.0 367.0 45.0 MSP430F67651IPEUR LQFP PEU 128 750 367.0 367.0 67.0 MSP430F67651IPZR LQFP PZ 100 1000 367.0 367.0 45.0 MSP430F67661IPEUR LQFP PEU 128 750 367.0 367.0 67.0 MSP430F67661IPZR LQFP PZ 100 1000 367.0 367.0 45.0 MSP430F67671IPEUR LQFP PEU 128 750 367.0 367.0 67.0 MSP430F67671IPZR LQFP PZ 100 1000 367.0 367.0 45.0 MSP430F67681IPEUR LQFP PEU 128 750 367.0 367.0 67.0 MSP430F67681IPZR LQFP PZ 100 1000 367.0 367.0 45.0 Pack Materials-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 23-May-2014 Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) MSP430F67691IPEUR LQFP PEU 128 750 367.0 367.0 67.0 MSP430F67691IPZR LQFP PZ 100 1000 367.0 367.0 45.0 MSP430F67751IPEUR LQFP PEU 128 750 367.0 367.0 67.0 MSP430F67751IPZR LQFP PZ 100 1000 367.0 367.0 45.0 MSP430F67761IPEUR LQFP PEU 128 750 367.0 367.0 67.0 MSP430F67761IPZR LQFP PZ 100 1000 367.0 367.0 45.0 MSP430F67771IPEUR LQFP PEU 128 750 367.0 367.0 67.0 MSP430F67771IPZR LQFP PZ 100 1000 367.0 367.0 45.0 MSP430F67781IPEUR LQFP PEU 128 750 367.0 367.0 67.0 MSP430F67781IPZR LQFP PZ 100 1000 367.0 367.0 45.0 MSP430F67791IPZR LQFP PZ 100 1000 367.0 367.0 45.0 Pack Materials-Page 3 MECHANICAL DATA MTQF013A – OCTOBER 1994 – REVISED DECEMBER 1996 PZ (S-PQFP-G100) PLASTIC QUAD FLATPACK 0,27 0,17 0,50 75 0,08 M 51 76 50 100 26 1 0,13 NOM 25 12,00 TYP Gage Plane 14,20 SQ 13,80 16,20 SQ 15,80 0,05 MIN 1,45 1,35 0,25 0°– 7° 0,75 0,45 Seating Plane 0,08 1,60 MAX 4040149 /B 11/96 NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Falls within JEDEC MS-026 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2014, Texas Instruments Incorporated Mouser Electronics Authorized Distributor Click to View Pricing, Inventory, Delivery & Lifecycle Information: Texas Instruments: MSP430F67761IPZR MSP430F67781IPEU MSP430F67461IPEU MSP430F67791IPZ MSP430F67661IPZR MSP430F67651IPEUR MSP430F67481IPEU MSP430F67751IPEUR MSP430F67671IPZ MSP430F67471IPEU MSP430F67771IPZ MSP430F67761IPEU MSP430F67471IPZR MSP430F67491IPZ MSP430F67671IPEU MSP430F67651IPZR MSP430F67681IPZR MSP430F67651IPEU MSP430F67691IPEU MSP430F67681IPZ MSP430F67661IPZ MSP430F67771IPEU MSP430F67771IPZR MSP430F67751IPZR MSP430F67791IPZR MSP430F67761IPZ MSP430F67791IPEU MSP430F67691IPZ MSP430F67451IPZ MSP430F67471IPZ MSP430F67651IPZ MSP430F67661IPEU MSP430F67751IPEU MSP430F67681IPEU MSP430F67781IPZ MSP430F67481IPZ MSP430F67461IPZ MSP430F67771IPEUR MSP430F67461IPZR MSP430F67791IPEUR MSP430F67681IPEUR MSP430F67661IPEUR MSP430F67451IPZR MSP430F67781IPZR MSP430F67481IPZR MSP430F67691IPZR MSP430F67671IPZR MSP430F67671IPEUR MSP430F67691IPEUR MSP430F67451IPEU MSP430F67781IPEUR MSP430F67761IPEUR MSP430F67751IPZ MSP430F67491IPEU MSP430F67491IPZR MSP430F67491IPEUR MSP430F67481IPEUR MSP430F67451IPEUR MSP430F67471IPEUR MSP430F67461IPEUR