AVAGO ACPL-M51L Communications interface Datasheet

ACPL-M51L
1MBd Low Supply Voltage Digital Optocoupler
Data Sheet
Lead (Pb) Free
RoHS 6 fully
compliant
RoHS 6 fully compliant options available;
-xxxE denotes a lead-free product
Description
Features
The ACPL-M51L (single-channel in SO-5 footprint), is low
power, low supply voltage 1MBd digital optocoupler, configurable as a 4pin device.
• Wide supply voltage VCC: 2.25V to 24V
This digital optocoupler use an insulating layer between
the light emitting diode and an integrated photon detector to provide electrical insulation between input and output.
ACPL-M51L has an increased common mode transient immunity of 15kV/µs minimum at VCM = 1500V.
The current transfer ratio (CTR) is 140% typical for ACPLM51L at IF = 3.0mA. This digital optocoupler can be use in
any TTL/CMOS, TTL/LSTTL or analog applications.
• Low Drive Current : 3.0mA
• Open-Collector Output
• TTL compatible (5-pin configuration)
• Compact SO-5 package
• 15 kV/μs High Common-Mode Rejection at VCM =
1500 V
• Guaranteed performance within temperature range:
-40°C to +105°C
• Low Propagation Delay: 1μs max at 5V
(5pin configuration)
• Worldwide Safety Approval:
Functional Diagram
- UL1577 recognized, 3750Vrms/1min
- CSA Approval
6 VCC
- IEC/EN/DIN EN 60747-5-5 Approval for Reinforced
Insulation
Anode 1
5 VO
Applications
Cathode 3
• Communications Interface
4 GND
• Digital Signal Isolation
• MCU Interface
6
• Feedback Elements in Switching Power Supplies
VCC
• Digital isolation for A/D, D/A conversion Digital field
Anode 1
5
Cathode 3
4 GND
Truth Table
LED
Vo
ON
LOW
OFF
HIGH
A 0.1μF bypass capacitor must be connected between pins VCC and GND.
4-pin configuration : Pins 5 and 6 are externally shorted
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this
component to prevent damage and/or degradation which may be induced by ESD. The components
featured in this datasheet are not to be used in military or aerospace applications or environments.
Ordering Information
ACPL-M51L is UL Recognized with 3750 Vrms for 1 minute per UL1577.
Options
Part Number
RoHS Compliant
Package
Surface
Mount
ACPL-M51L
-000E
SO-5
X
Tape
& Reel
IEC/EN/DIN EN
60747-5-5
Quantity
100 per tube
-060E
X
X
-500E
X
X
-560E
X
X
100 per tube
1500 per reel
X
1500 per reel
To order, choose a part number from the part number column and combine with the desired option from the option
column to form an order entry.
Example 1:
ACPL-M51L-560E to order product of Small Outline SO-5 package in Tape and Reel packaging with
IEC/EN/DIN EN 60747-5-5 Safety Approval in RoHS compliant.
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.
Package Outline Drawings
ACPL-M51L Small Outline SO-5 Package (JEDEC MO-155)
4.4
(0.17)
DATE CODE
M51L
YWW
XXX
4.4 ± 0.1
(0.173 ± 0.004)
7.0 ± 0.2
(0.276 ± 0.008)
2.5
(0.10)
LOT ID
1.8
(0.072)
0.4 ± 0.05
(0.016 ± 0.002)
3.6 ± 0.1*
(0.142 ± 0.004)
2.5 ± 0.1
(0.098 ± 0.004)
1.27 BSC
(0.050)
0.102 ± 0.102
(0.004 ± 0.004)
0.64
(0.025)
8.27
(0.325)
0.216 ± 0.038
(0.0085 ± 0.0015)
7° MAX.
0.71
(0.028) MIN
Dimensions in Millimeters (Inches)
* Maximum mold flash on each side is 0.15 mm (0.006)
Note: Floating lead protrusion is 0.15 mm (6 mils) max.
2
1.3
(0.05)
MAX. LEAD COPLANARITY
= 0.102 (0.004)
Solder Reflow Profile
Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision). Non-Halide Flux should be used.
Regulatory Information
The ACPL-M51L is approved by the following organizations:
UL
Approval under UL 1577, component recognition program up to VISO = 3750 VRMS File E55361.
CSA
Approval under CSA Component Acceptance Notice #5, File CA 88324.
IEC/EN/DIN EN 60747-5-5 (Option 060E only)
Insulation and Safety Related Specifications
Parameter
Symbol
ACPL-M51L
Units
Conditions
Minimum External
Air Gap (Clearance)
L(101)
5
mm
Measured from input terminals to output terminals, shortest distance
through air.
Minimum External
Tracking (Creepage)
L(102)
5
mm
Measured from input terminals to output terminals, shortest distance
path along body.
0.08
mm
Through insulation distance conductor to conductor, usually the
straight line distance thickness between the emitter and detector.
175
V
Minimum Internal
Plastic Gap
(Internal Clearance)
Tracking Resistance
(Comparative Tracking
Index)
CTI
Isolation Group
IIIa
DIN IEC 112/VDE 0303 Part 1
Material Group (DIN VDE 0110, 1/89, Table 1)
IEC/EN/DIN EN 60747-5-5 Insulation Characteristics* (Option 060E)
Symbol
Description
Characteristic
Unit
ACPL-M51L
Installation classification per DIN VDE 0110/39, Table 1
for rated mains voltage ≤ 150 Vrms
for rated mains voltage ≤ 300 Vrms
for rated mains voltage ≤ 600 Vrms
I – IV
I – III
I – II
Climatic Classification
55/105/21
Pollution Degree (DIN VDE 0110/39)
2
Maximum Working Insulation Voltage
VIORM
567
Vpeak
Input to Output Test Voltage, Method b*
VIORM x 1.875 = VPR, 100% Production Test with tm = 1 sec, Partial discharge < 5 pC
VPR
1050
Vpeak
Input to Output Test Voltage, Method a*
VIORM x 1.6 = VPR, Type and Sample Test, tm = 10 sec, Partial discharge < 5 pC
VPR
896
Vpeak
Highest Allowable Overvoltage (Transient Overvoltage tini = 60 sec)
VIOTM
6000
Vpeak
Safety-limiting values – maximum values allowed in the event of a failure.
Case Temperature
Input Current**
Output Power**
TS
IS, INPUT
PS, OUTPUT
150
150
600
°C
mA
mW
Insulation Resistance at TS, VIO = 500 V
RS
>109
Ω
*
Refer to the optocoupler section of the Isolation and Control Components Designer’s Catalog, under Product Safety Regulations section,
(IEC/EN/DIN EN 60747-5-5) for a detailed description of Method a and Method b partial discharge test profiles.
** Refer to the following figure for dependence of PS and IS on ambient temperature.
3
Absolute Maximum Ratings
Parameter
Symbol
Min.
Max.
Units
Storage Temperature
TS
-55
125
°C
Operating Temperature
TA
-40
105
°C
260
°C
Lead Soldering Cycle
Temperature
10
s
Average Forward Input Current[1]
Time
IF(avg)
20
mA
Peak Forward Input Current[2]
(50% duty cycle, 1ms pulse width)
IF(peak)
40
mA
Peak Transient Input Current
(≤1µs pulse width, 300ps)
IF(trans)
1
A
Reversed Input Voltage
VR
5
V
Input Power Dissipation[3]
PIN
36
mW
Output Power Dissipation[4]
PO
45
mW
Average Output Current
IO(AVG)
8
mA
Peak Output Current
IO(PEAK)
16
mA
Supply Voltage
VCC
-0.5
30
V
Output Voltage
VO
-0.5
24
V
Solder Reflow Temperature Profile
See Package Outline Drawings section
Notes:
1. Derate linearly above 85°C free-air temperature at a rate of 0.5 mA/°C.
2. Derate linearly above 85°C free-air temperature at a rate of 1.0 mA/°C.
3. Derate linearly above 85°C free-air temperature at a rate of 0.9 mW/°C.
4. Derate linearly above 85°C free-air temperature at a rate of 1.2 mW/°C.
Recommended Operating Conditions
Parameter
Symbol
Min.
Max.
Units
Supply Voltage
VCC
2.25 [1]
24
V
Input Current, High Level [1]
IFH
3.0
10
mA
Operating Temperature
TA
-40
105
°C
Forward Input Voltage (OFF)
VF(OFF)
0.8
V
Notes:
1. 5-pin configuration
4
Electrical Specifications (DC)
Over recommended operating TA = -40°C to 105°C, supply voltage (2.25V ≤ VCC ≤ 24V) and unless otherwise specified.
All typicals are at TA = 25°C
Parameter
Sym.
Min.
Typ.
Max.
Units
Conditions
Current Transfer
Ratio
CTR[1]
80
140
200
%
TA = 25°C
Logic Low
Output Voltage
VOL
0.2
0.4
V
0.2
0.5
V
Logic High
Output Current
IOH
0.003
0.5
µA
0.01
1
VO=VCC=24V
80
VO=VCC=24V
60
%
Fig.
VO=0.4V
VO=0.5V
TA = 25°C
TA = 25°C
IO=3mA
IO=1.6mA
VCC= 2.5V or 3.3V
or 5V, IF=3mA
VO=VCC=5.5V
IF=0mA
Logic Low
Supply Current
per Channel
ICCL
36
100
µA
IF=3mA,
VO=open,
VCC=24V
Logic High
Supply Current
per Channel
ICCH
0.02
2
µA
IF=0mA,
VO=open,
VCC=24V
Input Forward
Voltage
VF
1.5
1.8
V
1.5
1.95
V
IF=3mA
Input Reversed
Breakdown Voltage
BVR
V
IR=10µA
Temperature
Coefficient of
Forward Voltage
∆VF/
∆TA
-1.6
mV/°C
IF=3mA
Input Capacitance
CIN
77
pF
F = 1MHz,
VF = 0
5
5
TA=25°C
VCC= 2.5V or 3.3V
or 5V, IF=3mA
IF=3mA
2a, 2b, 3
4, 5
1
Switching Specifications
Over recommended operating (TA = -40°C to 105°C), IF = 3mA, (2.25V ≤ VCC ≤ 24V), unless otherwise specified.
Parameter
Symbol
Propagation Delay Time
to Logic Low at Output
tPHL
Propagation Delay Time
to Logic High at Output
Pulse Width Distortion [2]
Min
tPLH
PWD
Typ
Max
Units
Test Conditions
Fig.
0.2
0.5
ms
TA=25°C
VCC = 2.5 V, RL= 560Ω
14
0.2
1
ms
0.2
0.5
ms
TA=25°C
VCC = 3.3 V, RL= 1.2kΩ
0.2
1
ms
0.22
0.5
ms
0.22
1
ms
0.33
0.7
ms
0.33
1.3
ms
0.38
0.8
ms
0.38
1.2
ms
0.38
0.8
ms
0.38
1.2
ms
0.31
0.7
ms
0.31
1
ms
0.3
0.7
ms
0.3
1
ms
0.18
0.8
ms
0.18
1.2
ms
0.18
0.8
ms
0.18
1.2
ms
0.1
0.7
ms
0.1
1
ms
0.1
0.7
ms
0.1
1
ms
0.18
0.7
ms
TA=25°C
VCC = 2.5 V , RL = 560Ω
14
0.18
0.7
ms
TA=25°C
VCC = 3.3 V , RL = 1.2kΩ
14
0.1
0.6
ms
TA=25°C
VCC = 5.0V, RL = 1.9kΩ
14
0.1
0.6
ms
TA=25°C
6a, 14
14
6b, 14
TA=25°C
VCC = 5.0 V, RL= 1.9kΩ
14
7, 14
TA=25°C
VCC = 24V, RL= 10kΩ
14
8, 14
TA=25°C
VCC = 2.5 V, RL = 560Ω
14
6a, 14
TA=25°C
VCC = 3.3 V, RL = 1.2kΩ
TA=25°C
VCC = 5.0 V, RL = 1.9kΩ
14
6b, 14
14
7, 14
TA=25°C
VCC = 24V, RL = 10kΩ
14
8, 14
TA=25°C
VCC = 2.5 V, RL = 560Ω
14
14
TA=25°C
VCC = 3.3 V, RL = 1.2kΩ
14
14
TA=25°C
VCC = 5.0V, RL = 1.9kΩ
14
14
TA=25°C
VCC = 24V, RL = 10kΩ
14
14
Propagation Delay
Difference Between
Any two Parts [3]
tpsk
VCC = 24V, RL = 10kΩ
14
Common Mode
Transient Immunity at
Logic High Output [4]
|CMH|
15
25
kV/ms TA=25°C
VCM = 1500V, IF = 0mA, RL = 560Ω,
1.2kΩ or 1.9kΩ, VCC = 2.5 V or 3.3V or
5V
15
Common Mode
Transient Immunity at
Logic Low Output [5]
|CML|
15
20
kV/ms TA=25°C
VCM = 1500V, IF = 3mA, RL = 1.2kΩ, VCC 15
= 5V
10
15
kV/ms TA=25°C
VCM = 1500V, IF = 3mA, RL = 560Ω or
1.2kΩ, VCC = 2.5V or 3.3V
15
Notes:
1. CURRENT TRANSFER RATIO in percent is defined as the ratio of output collector current, IO, to the forward LED input current, IF, times 100%.
2. Pulse Width Distortion (PWD) is defined as |tPHL - tPLH| for any given device.
3. The difference between tPLH and tPHL between any two parts under the same test condition. (See IPM Dead Time and Propagation Delay
Specifications section.)
4. Common transient immunity in a Logic High level is the maximum tolerable (positive) dVCM/dt on the rising edge of the common mode pulse, VCM,
to assure that the output will remain in a Logic High state (i.e., VO > 2.0 V).
5. Common mode transient immunity in a Logic Low level is the maximum tolerable (negative) dVCM/dt on the falling edge of the common mode
pulse signal, VCM to assure that the output will remain in a Logic Low state (i.e., VO < 0.8 V).
6
Electrical Specifications (DC) for 4-Pin Configuration
Applicable for VCC = VO. Over recommended operating TA = -40°C to 105°C and unless otherwise specified. All typicals
are at TA = 25°C
Parameter
Sym.
Current Transfer
Ratio
CTR [1]
Current Transfer
Ratio
CTR [1]
(Sat)
Logic Low Output
Voltage
VOL
Off-State Current
Min.
20
Typ.
Max.
Units
140
%
70
%
TA = 25°C
100
I(CEO)
Conditions
Fig.
IF= 3mA, VO=VCC=5V
20
IF=10mA
21
VO=VCC=0.5V
IF = 3mA
0.1
0.2
V
0.1
0.2
V
0.5
5
0.0001
TA = 25°C
IO=0.6mA
IF= 10mA
V
IO=2.4mA
IF= 3mA
mA
IF = 0mA, VO=VCC=15V
Switching Specifications for 4-Pin Configuration
Over recommended operating (TA = -40°C to 105°C), IF = 3mA, unless otherwise specified.
Parameter
Symbol
Propagation Delay Time to Logic
Low at Output
tPHL
Min
Typ
Max
Units
Test Conditions
Fig.
8
50
ms
Pulse: f = 1kHz, VCC = 5.0V, RL= 8.2kΩ
18
5
50
ms
Pulse: f = 1kHz, VCC = 5.0V, RL= 1.9kΩ
8
50
ms
Pulse: f = 500Hz, VCC = 24.0V, RL= 39kΩ
35
100
ms
Pulse: f = 1kHz, VCC = 5.0V, RL = 8.2kΩ
10
50
ms
Pulse: f = 1kHz, VCC = 5.0V, RL = 1.9kΩ
35
100
Propagation Delay Time to Logic
High at Output
tPLH
18
ms
Pulse: f = 500Hz, VCC = 24.0 V, RL = 39kΩ
Common Mode Transient
Immunity at Logic High Output [2]
|CMH|
15
25
kV/ms
TA=25°C
VCM = 1500V, IF = 0mA,
RL = 8.2kΩ, VCC = 5V
19
Common Mode Transient
Immunity at Logic Low Output [3]
|CML|
10
15
kV/ms
TA=25°C
VCM = 1500V, IF = 3mA,
RL = 8.2kΩ, VCC = 5V
19
Notes:
1. CURRENT TRANSFER RATIO in percent is defined as the ratio of output collector current, IO, to the forward LED input current, IF, times 100%.
2. Common transient immunity in a Logic High level is the maximum tolerable (positive) dVCM/dt on the rising edge of the common mode pulse, VCM,
to assure that the output will remain in a Logic High state (i.e., VO > 2.0 V).
3. Common mode transient immunity in a Logic Low level is the maximum tolerable (negative) dVCM/dt on the falling edge of the common mode
pulse signal, VCM to assure that the output will remain in a Logic Low state (i.e., VO < 0.8 V).
Package Characteristics
All Typical at TA = 25°C.
Parameter
Symbol
Min.
Input-Output Momentary
Withstand Voltage [1,2]
VISO
3750
Input-Output Resistance [1]
RI-O
Input-Output Capacitance [1]
CI-O
Typ.
Max.
Units
Test Conditions
Vrms
RH ≤ 50%, t = 1 min.,
TA = 25°C
1014
W
VI-O = 500 Vdc
0.6
pF
f = 1 MHz, TA = 25°C
Notes:
1. Device considered a two terminal device: pins 1 and 3 shorted together and pins 4, 5 and 6 shorted together
2. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 4500 VRMS for 1 second. (leakage detection
current limit, II-O ≤ 5 μA).
7
TA = 25°C
10
1
0.1
IF
0.01
VF
0.001
0.0001
1.3
1.4
1.5
VF - FORWARD VOLTAGE - V
Figure 1. Input Current vs. Forward Voltage
1.1
1.2
1.6
1.7
1.1
1
0.9
0.8
0.7
0.6
-50
Normalized
IF = 3 mA
VO = 4.0 V
VCC = 3.3 V
-25
0
25
50
75
TA - TEMPERATURE - °C
100
125
Figure 2b. Typical Current Transfer Ratio vs. Temperature (VCC = 3.3 V)
IOH - LOGIC HIGH OUTPUT CURRENT - nA
IOH - LOGIC HIGH OUTPUT CURRENT - nA
1
0.1
-40
-20
0
20
40
60
TA - TEMPERATURE - °C
80
Figure 4 Typical Logic High Output Current vs. Temperature
8
0.9
0.8
0.7
0.6
-50
Normalized
IF = 3 mA
VO = 4.0 V
VCC = 2.5 V
-25
0
25
50
75
TA - TEMPERATURE - °C
100
125
1.1
1
0.9
0.8
0.7
0.6
-50
Normalized
IF = 3 mA
VO = 4.0 V
VCC = 5.0 V
-25
0
25
50
75
TA - TEMPERATURE - °C
100
125
1000
IF = 0 mA
VO = VCC = 2.5V/3.3V
10
0.01
-60
1
Figure 3. Typical Current Transfer Ratio vs. Temperature (VCC = 5.0 V)
1000
100
1.1
Figure 2a. Typical Current Transfer Ratio vs. Temperature (VCC = 2.5 V)
NORMALIZED CURRENT TRANSFER RATIO
NORMALIZED CURRENT TRANSFER RATIO
NORMALIZED CURRENT TRANSFER RATIO
IF - FORWARD CURRENT - mA
100
100
120
100
IF = 0 mA
VO = VCC = 5 V
10
1
0.1
0.01
-60
-40
-20
0
20
40
60
TA - TEMPERATURE - °C
80
Figure 5. Typical Logic High Output Current vs. Temperature
100
120
700
600
700
IF = 3 mA, VCC = 2.5 V
RL = 1.2 kΩ
RL = 560 Ω
tp - PROPAGGATION DELAYY - ns
tp - PROPAGGATION DELAYY - ns
800
tPLH
500
400
300
tPHL
200
100
0
-60
-40
-20
0
20
40
60
TA - TEMPERATURE - °C
80
100
Figure 6a. Typical Propagation Delay vs. Temperature (VCC = 2.5 V)
600
500
IF = 3 mA, VCC = 5 V
RL = 4.1 kΩ
RL = 1.9 kΩ
tPLH
400
tPHL
200
100
0
-60
-40
-20
0
20
40
60
TA - TEMPERATURE - °C
80
Figure 7. Typical Propagation Delay vs. Temperature (VCC = 5.0 V)
9
400
tPHL
300
200
100
-60
600
300
100
tPLH
-40
-20
0
20
40
60
TA - TEMPERATURE - °C
80
100
120
Figure 6b. Typical Propagation Delay vs. Temperature (VCC = 3.3 V)
tp - PROPAGGATION DELAYY - ns
tp - PROPAGGATION DELAYY - ns
700
500
0
120
IF = 3 mA, VCC = 3.3 V
RL = 1.9 kΩ
RL = 1.2 kΩ
600
120
500
IF = 3 mA, VCC = 24 V
RL = 20 kΩ
RL = 10 kΩ
tPLH
400
300
tPHL
200
100
0
-60
-40
-20
0
20
40
60
TA - TEMPERATURE - °C
80
Figure 8. Typical Propagation Delay vs. Temperature (VCC = 24 V)
100
120
1400
VCC = 2.5 V
IF = 10 mA
IF = 3 mA
tp - PROPAGATION DELAY - ns
tp - PROPAGATION DELAY - ns
2200
2000
1800
1600
1400
1200
1000
800
600
400
200
0
tPLH
tPHL
0.5
500
tp - PROPAGATION DELAY - ns
tp - PROPAGATION DELAY - ns
600
tPLH
400
300
tPHL
200
100
0
1
10
RL - LOAD RESISTANCE - kΩ
Figure 10. Typical Propagation Delay vs. Load Resistance (VCC = 5.0 V)
IF = 3 mA
RL = 10 kΩ
TA = 25°C
2000
tp - PROPAGATION DELAY - ns
tp - PROPAGATION DELAY - ns
tPHL
200
1
10
RL - LOAD RESISTANCE - kΩ
2600
2400
2200
2000
1800
1600
1400
1200
1000
800
600
400
200
0
IF = 3 mA, VCC = 24 V
RL = 10 kΩ, TA = 25°C
tPLH
0
100
tPHL
200
300
400
CL - LOAD CAPACITANCE - pF
500
600
1500
1000
tPLH
500
tPHL
8
10
12
14
20
16
18
VCC - SUPPLY VOLTAGE - V
Figure 12. Typical Propagation Delay vs. Supply Voltage
10
400
Figure 11. Typical Propagation delay vs. Load Capacitance
2500
0
tPLH
600
Figure 9b. Typical Propagation Delay vs. Load Resistance (VCC = 3.3 V)
VCC = 5.0 V
IF = 10 mA
IF = 3 mA
700
800
0
Figure 9a. Typical Propagation Delay vs. Load Resistance (VCC = 2.5 V)
800
1000
5
RL - LOAD RESISTANCE - kΩ
VCC = 3.3 V
IF = 10 mA
IF = 3 mA
1200
22
24
VCC = 24 V
RL = 10 kΩ
TA = 25°C
500
400
300
tPLH
200
tPHL
100
0
0
5
10
15
IF - FORWARD LED CURRENT - mA
Figure 13. Typical Propagation Delay vs. Supply Current
20
IF
PULSE
GEN.
Z O = 50 Ω
t r = 5 ns
0
V CC
VO
V THHL
1
V CC
6
RL
VO
5
PULSE: f = 10kHz
Duty Cycle = 50%
V THLH
V OL
t PHL
IF
0.1µF
3
IF MONITOR
4
CL = 15 pF
RM
t PLH
Figure 14. Switching Test Circuits
10 V
V CM
0V
10%
90%
IF
90%
10%
tr
tf
VO
B
1
RL
VO
SWITCH AT B: IF = 3 mA
VO
5
0.1µF
V CC
SWITCH AT A: I F = 0 mA
V CC
6
A
3
V FF
4
CL = 15 pF
V OL
V CM
+
–
PULSE GEN.
Figure 15. Test Circuit for Transient Immunity and typical waveforms
40
200
VO = 0.4 V
VCC = 5 V
150
100
50
0
0
5
10
15
IF - FORWARD CURRENT - mA
Figure 16. Current Transfer Ratio versus Input Current
11
IO - OUTPUT CURRENT - mA
CTR - CURRENT TRANSFER RATIO - %
250
20
25
TA = 25 oC
VCC = 5 V
30
20
10
-
0
4
8
12
16
VO - OUTPUT VOLTAGE - V
Figure 17. DC Pulse Transfer Characteristic
IF = 20 mA
IF = 15 mA
IF = 10 mA
IF = 5 mA
20
24
+5V
IF
PULSE
GEN.
Z O = 50 Ω
t r = 5 ns
0
V CC
VO
RL
IF
1
6
V THHL
V THLH
V OL
t PHL
VO
5
Duty Cycle = 50%
3
IF MONITOR
4
CL = 15 pF
RM
t PLH
Figure 18. Switching Test Circuits (4-pin configuration)
IF
1500 V
V CM
0V
10%
90%
B
90%
10%
tr
6
RL
A
tf
VO
V CC
1
VO
5
V FF
V CC
3
SWITCH AT A: I F = 0 mA
4
CL = 15 pF
VO
V OL
SWITCH AT B: IF = 3 mA
V CM
+
–
PULSE GEN.
Figure 19. Test Circuit for Transient Immunity and typical waveforms (4-pin configuration)
20
30
IO - OUTPUT CURRENT - mA
IO - OUTPUT CURRENT - mA
25
IF = 10mA
20
15
IF = 5mA
10
IF = 3mA
5
0
18
IF = 20mA
IF = 1 mA
0
5
10
VO - OUTPUT VOLTAGE - V
Figure 20. Output Current vs Output Voltage (4-pin configuration)
IF = 20mA
16
IF = 10mA
14
12
IF = 5mA
10
IF = 3mA
8
6
4
IF = 1 mA
2
15
0
0
0.2
0.4
0.6
0.8
1
1.2 1.4 1.6
VO - OUTPUT VOLTAGE - V
1.8
2
Figure 21. Low level Output Current vs Output Voltage (4-pin configuration)
For product information and a complete list of distributors, please go to our web site: www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2015 Avago Technologies. All rights reserved.
AV02-4816EN - May 13, 2015
Similar pages