Kersemi IRFB4019PBF Key parameters optimized for class-d audio amplifier application Datasheet

IRFB4019PBF
TO-220AB
D
Features
G
• Key Parameters Optimized for Class-D Audio
Amplifier Applications
S
• Low RDSON for Improved Efficiency
• Low QG and QSW for Better THD and Improved
Efficiency
Key Parameters
• Low QRR for Better THD and Lower EMI
• 175°C Operating Junction Temperature for
Ruggedness
• Can Deliver up to 200W per Channel into 8Ω Load in
Half-Bridge Configuration Amplifier
VDS
150
RDS(ON) typ. @ 10V
80
V
m:
Qg typ.
13
nC
Qsw typ.
5.1
nC
RG(int) typ.
2.4
Ω
TJ max
175
°C
Description
This Digital Audio MOSFET is specifically designed for Class-D audio amplifier applications. This MOSFET utilizes
the latest processing techniques to achieve low on-resistance per silicon area. Furthermore, Gate charge, body-diode
reverse recovery and internal Gate resistance are optimized to improve key Class-D audio amplifier performance
factors such as efficiency, THD and EMI. Additional features of this MOSFET are 175°C operating junction
temperature and repetitive avalanche capability. These features combine to make this MOSFET a highly efficient,
robust and reliable device for ClassD audio amplifier applications.
Absolute Maximum Ratings
Parameter
Max.
Units
V
VDS
Drain-to-Source Voltage
150
VGS
Gate-to-Source Voltage
±20
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V
17
ID @ TC = 100°C
Continuous Drain Current, VGS @ 10V
12
IDM
Pulsed Drain Current c
51
PD @TC = 25°C
Power Dissipation f
80
PD @TC = 100°C
Power Dissipation f
40
TJ
Linear Derating Factor
Operating Junction and
TSTG
Storage Temperature Range
A
W
W/°C
°C
0.5
-55 to + 175
Soldering Temperature, for 10 seconds
300
(1.6mm from case)
Mounting torque, 6-32 or M3 screw
10lbxin (1.1Nxm)
Thermal Resistance
Parameter
Typ.
Max.
RθJC
Junction-to-Case f
–––
1.88
RθCS
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient f
0.50
–––
–––
62
RθJA
2014-8-13
1
Units
°C/W
www.kersemi.com
IRFB4019PBF
Electrical Characteristics @ T J = 25°C (unless otherwise specified)
Parameter
Min.
Typ. Max. Units
Conditions
BV DSS
Drain-to-Source Breakdown Voltage
150
–––
–––
∆ΒV DSS/∆T J
Breakdown Voltage Temp. Coefficient
–––
0.19
–––
V/°C Reference to 25°C, ID = 1mA
R DS(on)
Static Drain-to-Source On-Resistance
–––
80
95
mΩ
V GS = 10V, ID = 10A
V GS(th)
Gate Threshold Voltage
3.0
–––
4.9
V
V DS = V GS, ID = 50µA
∆V GS(th)/∆T J
Gate Threshold Voltage Coefficient
–––
-13
–––
mV/°C
IDSS
Drain-to-Source Leakage Current
–––
–––
20
µA
V DS = 150V, V GS = 0V
–––
–––
250
IGSS
Gate-to-Source Forward Leakage
–––
–––
100
nA
V GS = 20V
Gate-to-Source Reverse Leakage
–––
–––
-100
14
–––
–––
g fs
Forward Transconductance
Qg
V
V GS = 0V, ID = 250µA
V DS = 150V, V GS = 0V, T J = 125°C
V GS = -20V
S
V DS = 10V, ID = 10A
Total Gate Charge
–––
13
20
Q gs1
Pre-Vth Gate-to-Source Charge
–––
3.3
–––
Q gs2
Post-Vth Gate-to-Source Charge
–––
0.95
–––
Q gd
Gate-to-Drain Charge
–––
4.1
–––
ID = 10A
Q godr
See Fig. 6 and 19
Gate Charge Overdrive
–––
4.7
–––
Q sw
Switch Charge (Q gs2 + Q gd)
–––
5.1
–––
e
V DS = 75V
nC
V GS = 10V
R G(int)
Internal Gate Resistance
–––
2.4
–––
td(on)
Turn-On Delay Time
–––
7.0
–––
tr
Rise Time
–––
13
–––
td(off)
Turn-Off Delay Time
–––
12
–––
tf
Fall Time
–––
7.8
–––
C iss
Input Capacitance
–––
800
–––
C oss
Output Capacitance
–––
74
–––
C rss
Reverse Transfer Capacitance
–––
19
–––
C oss
Effective Output Capacitance
–––
99
–––
V GS = 0V, V DS = 0V to 120V
LD
Internal Drain Inductance
–––
4.5
–––
Between lead,
LS
Internal Source Inductance
–––
7.5
–––
Ω
V DD = 75V, V GS = 10V
e
ID = 10A
ns
R G = 2.4Ω
V GS = 0V
pF
V DS = 50V
ƒ = 1.0MHz,
nH
See Fig.5
D
6mm (0.25in.)
from package
G
S
and center of die contact
Avalanche Characteristics
Parameter
E AS
Single Pulse Avalanche Energy
IAR
Avalanche Current
E AR
Repetitive Avalanche Energy
g
d
Typ.
Max.
Units
–––
73
mJ
See Fig. 14, 15, 17a, 17b
g
A
mJ
Diode Characteristics
Parameter
Min.
IS @ T C = 25°C Continuous Source Current
Typ. Max. Units
–––
–––
17
Conditions
MOSFET symbol
ISM
(Body Diode)
Pulsed Source Current
–––
–––
51
V SD
(Body Diode)
Diode Forward Voltage
–––
–––
1.3
trr
Reverse Recovery Time
–––
64
96
ns
T J = 25°C, IF = 10A
Q rr
Reverse Recovery Charge
–––
160
240
nC
di/dt = 100A/µs
2014-8-13
A
c
2
V
showing the
integral reverse
p-n junction diode.
T J = 25°C, IS = 10A, V GS = 0V
e
e
www.kersemi.com
IRFB4019PBF
100
100
10
BOTTOM
1
0.1
5.0V
≤ 60µs PULSE WIDTH
Tj = 25°C
0.01
10
BOTTOM
5.0V
1
≤ 60µs PULSE WIDTH
Tj = 175°C
0.1
0.1
1
10
100
0.1
VDS , Drain-to-Source Voltage (V)
10
100
Fig 2. Typical Output Characteristics
3.0
RDS(on) , Drain-to-Source On Resistance
100.0
VDS = 25V
≤ 60µs PULSE WIDTH
10.0
TJ = 175°C
1.0
TJ = 25°C
0.1
2
4
6
8
ID = 10A
VGS = 10V
2.5
(Normalized)
ID, Drain-to-Source Current(Α)
1
VDS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
2.0
1.5
1.0
0.5
10
-60 -40 -20
VGS, Gate-to-Source Voltage (V)
10000
20
VGS, Gate-to-Source Voltage (V)
Coss = Cds + Cgd
Ciss
Coss
100
20 40 60 80 100 120 140 160 180
Fig 4. Normalized On-Resistance vs. Temperature
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
1000
0
TJ, Junction Temperature (°C)
Fig 3. Typical Transfer Characteristics
C, Capacitance (pF)
VGS
15V
12V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
12V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
Crss
ID= 10A
VDS = 120V
16
VDS= 75V
VDS= 30V
12
8
4
0
10
1
10
100
0
1000
10
15
20
QG Total Gate Charge (nC)
VDS , Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs.Drain-to-Source Voltage
2014-8-13
5
3
Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage
www.kersemi.com
IRFB4019PBF
1000
10
ID, Drain-to-Source Current (A)
ISD , Reverse Drain Current (A)
100
TJ = 175°C
1
TJ = 25°C
OPERATION IN THIS AREA
LIMITED BY R DS (on)
100
100µsec
1msec
10
10msec
1
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
0.1
0.1
0.0
0.5
1.0
1
1.5
10
100
1000
VDS , Drain-toSource Voltage (V)
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
5.0
VGS(th) Gate threshold Voltage (V)
20
16
ID , Drain Current (A)
DC
12
8
4
4.0
ID = 50µA
3.0
2.0
1.0
0
25
50
75
100
125
150
-75
175
-50 -25
0
25
50
75
100 125 150 175
TJ , Temperature ( °C )
TJ , Junction Temperature (°C)
Fig 10. Threshold Voltage vs. Temperature
Fig 9. Maximum Drain Current vs. Case Temperature
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.05
0.1
τJ
0.02
0.01
R1
R1
τJ
τ1
R2
R2
Ri (°C/W)
τC
τ2
τ1
Ci= τi/Ri
Ci= τi/Ri
0.01
R3
R3
τ2
τ3
τ3
τ
τι (sec)
0.535592 0.000222
0.913763 0.001027
0.432454 0.006058
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
2014-8-13
4
www.kersemi.com
300
0.5
EAS, Single Pulse Avalanche Energy (mJ)
RDS (on), Drain-to -Source On Resistance (Ω)
IRFB4019PBF
ID = 10A
0.4
0.3
0.2
TJ = 125°C
0.1
TJ = 25°C
0.0
4
6
8
10
12
14
ID
1.3A
2.3A
BOTTOM 10A
TOP
250
200
150
100
50
0
16
25
VGS, Gate-to-Source Voltage (V)
50
75
100
125
150
175
Starting TJ, Junction Temperature (°C)
Fig 12. On-Resistance Vs. Gate Voltage
Fig 13. Maximum Avalanche Energy Vs. Drain Current
100
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Tj = 150°C and
Tstart =25°C (Single Pulse)
Avalanche Current (A)
Duty Cycle = Single Pulse
10
0.01
0.05
0.10
1
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming ∆Τ j = 25°C and
Tstart = 150°C.
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current Vs.Pulsewidth
EAR , Avalanche Energy (mJ)
80
TOP
Single Pulse
BOTTOM 1% Duty Cycle
ID = 10A
60
40
20
0
25
50
75
100
125
150
175
Starting TJ , Junction Temperature (°C)
Fig 15. Maximum Avalanche Energy Vs. Temperature
2014-8-13
5
Notes on Repetitive Avalanche Curves , Figures 14, 15:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long as neither
Tjmax nor Iav (max) is exceeded
3. Equation below based on circuit and waveforms shown in
Figures 17a, 17b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ∆T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
www.kersemi.com
IRFB4019PBF
Driver Gate Drive
D.U.T
ƒ
-
‚
-
-

*
RG
•
•
•
•
„
***
D.U.T. ISD Waveform
Reverse
Recovery
Current
+
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D=
Period
P.W.
+
VDD
**
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
+
-
Body Diode
VDD
Forward Drop
Inductor Curent
ISD
Ripple ≤ 5%
* Use P-Channel Driver for P-Channel Measurements
** Reverse Polarity for P-Channel
*** VGS = 5V for Logic Level Devices
Fig 16. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs
V(BR)DSS
15V
DRIVER
L
VDS
tp
D.U.T
RG
+
V
- DD
IAS
VGS
20V
A
0.01Ω
tp
I AS
Fig 17b. Unclamped Inductive Waveforms
Fig 17a. Unclamped Inductive Test Circuit
LD
VDS
VDS
90%
+
VDD -
10%
D.U.T
VGS
VGS
Pulse Width < 1µs
Duty Factor < 0.1%
td(on)
Fig 18a. Switching Time Test Circuit
tr
td(off)
Fig 18b. Switching Time Waveforms
Current Regulator
Same Type as D.U.T.
Id
Vds
Vgs
50KΩ
12V
tf
.2µF
.3µF
D.U.T.
+
V
- DS
Vgs(th)
VGS
3mA
IG
ID
Current Sampling Resistors
Qgs1 Qgs2
Fig 19a. Gate Charge Test Circuit
2014-8-13
6
Qgd
Qgodr
Fig 19b Gate Charge Waveform
www.kersemi.com
IRFB4019PBF
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))
TO-220AB Part Marking Information
EXAMPLE: T HIS IS AN IRF1010
LOT CODE 1789
AS SEMBLED ON WW 19, 2000
IN T HE AS S EMBLY LINE "C"
INTERNATIONAL
RECT IFIER
LOGO
Note: "P" in as s embly line pos ition
indicates "Lead - Free"
2014-8-13
AS SEMBLY
LOT CODE
7
PART NUMBER
DAT E CODE
YEAR 0 = 2000
WEEK 19
LINE C
www.kersemi.com
Similar pages