IRFB4019PBF TO-220AB D Features G • Key Parameters Optimized for Class-D Audio Amplifier Applications S • Low RDSON for Improved Efficiency • Low QG and QSW for Better THD and Improved Efficiency Key Parameters • Low QRR for Better THD and Lower EMI • 175°C Operating Junction Temperature for Ruggedness • Can Deliver up to 200W per Channel into 8Ω Load in Half-Bridge Configuration Amplifier VDS 150 RDS(ON) typ. @ 10V 80 V m: Qg typ. 13 nC Qsw typ. 5.1 nC RG(int) typ. 2.4 Ω TJ max 175 °C Description This Digital Audio MOSFET is specifically designed for Class-D audio amplifier applications. This MOSFET utilizes the latest processing techniques to achieve low on-resistance per silicon area. Furthermore, Gate charge, body-diode reverse recovery and internal Gate resistance are optimized to improve key Class-D audio amplifier performance factors such as efficiency, THD and EMI. Additional features of this MOSFET are 175°C operating junction temperature and repetitive avalanche capability. These features combine to make this MOSFET a highly efficient, robust and reliable device for ClassD audio amplifier applications. Absolute Maximum Ratings Parameter Max. Units V VDS Drain-to-Source Voltage 150 VGS Gate-to-Source Voltage ±20 ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 17 ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 12 IDM Pulsed Drain Current c 51 PD @TC = 25°C Power Dissipation f 80 PD @TC = 100°C Power Dissipation f 40 TJ Linear Derating Factor Operating Junction and TSTG Storage Temperature Range A W W/°C °C 0.5 -55 to + 175 Soldering Temperature, for 10 seconds 300 (1.6mm from case) Mounting torque, 6-32 or M3 screw 10lbxin (1.1Nxm) Thermal Resistance Parameter Typ. Max. RθJC Junction-to-Case f ––– 1.88 RθCS Case-to-Sink, Flat, Greased Surface Junction-to-Ambient f 0.50 ––– ––– 62 RθJA 2014-8-13 1 Units °C/W www.kersemi.com IRFB4019PBF Electrical Characteristics @ T J = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units Conditions BV DSS Drain-to-Source Breakdown Voltage 150 ––– ––– ∆ΒV DSS/∆T J Breakdown Voltage Temp. Coefficient ––– 0.19 ––– V/°C Reference to 25°C, ID = 1mA R DS(on) Static Drain-to-Source On-Resistance ––– 80 95 mΩ V GS = 10V, ID = 10A V GS(th) Gate Threshold Voltage 3.0 ––– 4.9 V V DS = V GS, ID = 50µA ∆V GS(th)/∆T J Gate Threshold Voltage Coefficient ––– -13 ––– mV/°C IDSS Drain-to-Source Leakage Current ––– ––– 20 µA V DS = 150V, V GS = 0V ––– ––– 250 IGSS Gate-to-Source Forward Leakage ––– ––– 100 nA V GS = 20V Gate-to-Source Reverse Leakage ––– ––– -100 14 ––– ––– g fs Forward Transconductance Qg V V GS = 0V, ID = 250µA V DS = 150V, V GS = 0V, T J = 125°C V GS = -20V S V DS = 10V, ID = 10A Total Gate Charge ––– 13 20 Q gs1 Pre-Vth Gate-to-Source Charge ––– 3.3 ––– Q gs2 Post-Vth Gate-to-Source Charge ––– 0.95 ––– Q gd Gate-to-Drain Charge ––– 4.1 ––– ID = 10A Q godr See Fig. 6 and 19 Gate Charge Overdrive ––– 4.7 ––– Q sw Switch Charge (Q gs2 + Q gd) ––– 5.1 ––– e V DS = 75V nC V GS = 10V R G(int) Internal Gate Resistance ––– 2.4 ––– td(on) Turn-On Delay Time ––– 7.0 ––– tr Rise Time ––– 13 ––– td(off) Turn-Off Delay Time ––– 12 ––– tf Fall Time ––– 7.8 ––– C iss Input Capacitance ––– 800 ––– C oss Output Capacitance ––– 74 ––– C rss Reverse Transfer Capacitance ––– 19 ––– C oss Effective Output Capacitance ––– 99 ––– V GS = 0V, V DS = 0V to 120V LD Internal Drain Inductance ––– 4.5 ––– Between lead, LS Internal Source Inductance ––– 7.5 ––– Ω V DD = 75V, V GS = 10V e ID = 10A ns R G = 2.4Ω V GS = 0V pF V DS = 50V ƒ = 1.0MHz, nH See Fig.5 D 6mm (0.25in.) from package G S and center of die contact Avalanche Characteristics Parameter E AS Single Pulse Avalanche Energy IAR Avalanche Current E AR Repetitive Avalanche Energy g d Typ. Max. Units ––– 73 mJ See Fig. 14, 15, 17a, 17b g A mJ Diode Characteristics Parameter Min. IS @ T C = 25°C Continuous Source Current Typ. Max. Units ––– ––– 17 Conditions MOSFET symbol ISM (Body Diode) Pulsed Source Current ––– ––– 51 V SD (Body Diode) Diode Forward Voltage ––– ––– 1.3 trr Reverse Recovery Time ––– 64 96 ns T J = 25°C, IF = 10A Q rr Reverse Recovery Charge ––– 160 240 nC di/dt = 100A/µs 2014-8-13 A c 2 V showing the integral reverse p-n junction diode. T J = 25°C, IS = 10A, V GS = 0V e e www.kersemi.com IRFB4019PBF 100 100 10 BOTTOM 1 0.1 5.0V ≤ 60µs PULSE WIDTH Tj = 25°C 0.01 10 BOTTOM 5.0V 1 ≤ 60µs PULSE WIDTH Tj = 175°C 0.1 0.1 1 10 100 0.1 VDS , Drain-to-Source Voltage (V) 10 100 Fig 2. Typical Output Characteristics 3.0 RDS(on) , Drain-to-Source On Resistance 100.0 VDS = 25V ≤ 60µs PULSE WIDTH 10.0 TJ = 175°C 1.0 TJ = 25°C 0.1 2 4 6 8 ID = 10A VGS = 10V 2.5 (Normalized) ID, Drain-to-Source Current(Α) 1 VDS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 2.0 1.5 1.0 0.5 10 -60 -40 -20 VGS, Gate-to-Source Voltage (V) 10000 20 VGS, Gate-to-Source Voltage (V) Coss = Cds + Cgd Ciss Coss 100 20 40 60 80 100 120 140 160 180 Fig 4. Normalized On-Resistance vs. Temperature VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd 1000 0 TJ, Junction Temperature (°C) Fig 3. Typical Transfer Characteristics C, Capacitance (pF) VGS 15V 12V 10V 8.0V 7.0V 6.0V 5.5V 5.0V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 12V 10V 8.0V 7.0V 6.0V 5.5V 5.0V Crss ID= 10A VDS = 120V 16 VDS= 75V VDS= 30V 12 8 4 0 10 1 10 100 0 1000 10 15 20 QG Total Gate Charge (nC) VDS , Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs.Drain-to-Source Voltage 2014-8-13 5 3 Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage www.kersemi.com IRFB4019PBF 1000 10 ID, Drain-to-Source Current (A) ISD , Reverse Drain Current (A) 100 TJ = 175°C 1 TJ = 25°C OPERATION IN THIS AREA LIMITED BY R DS (on) 100 100µsec 1msec 10 10msec 1 Tc = 25°C Tj = 175°C Single Pulse VGS = 0V 0.1 0.1 0.0 0.5 1.0 1 1.5 10 100 1000 VDS , Drain-toSource Voltage (V) VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 5.0 VGS(th) Gate threshold Voltage (V) 20 16 ID , Drain Current (A) DC 12 8 4 4.0 ID = 50µA 3.0 2.0 1.0 0 25 50 75 100 125 150 -75 175 -50 -25 0 25 50 75 100 125 150 175 TJ , Temperature ( °C ) TJ , Junction Temperature (°C) Fig 10. Threshold Voltage vs. Temperature Fig 9. Maximum Drain Current vs. Case Temperature Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.05 0.1 τJ 0.02 0.01 R1 R1 τJ τ1 R2 R2 Ri (°C/W) τC τ2 τ1 Ci= τi/Ri Ci= τi/Ri 0.01 R3 R3 τ2 τ3 τ3 τ τι (sec) 0.535592 0.000222 0.913763 0.001027 0.432454 0.006058 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case 2014-8-13 4 www.kersemi.com 300 0.5 EAS, Single Pulse Avalanche Energy (mJ) RDS (on), Drain-to -Source On Resistance (Ω) IRFB4019PBF ID = 10A 0.4 0.3 0.2 TJ = 125°C 0.1 TJ = 25°C 0.0 4 6 8 10 12 14 ID 1.3A 2.3A BOTTOM 10A TOP 250 200 150 100 50 0 16 25 VGS, Gate-to-Source Voltage (V) 50 75 100 125 150 175 Starting TJ, Junction Temperature (°C) Fig 12. On-Resistance Vs. Gate Voltage Fig 13. Maximum Avalanche Energy Vs. Drain Current 100 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Tj = 150°C and Tstart =25°C (Single Pulse) Avalanche Current (A) Duty Cycle = Single Pulse 10 0.01 0.05 0.10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 80 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 10A 60 40 20 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature (°C) Fig 15. Maximum Avalanche Energy Vs. Temperature 2014-8-13 5 Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long as neither Tjmax nor Iav (max) is exceeded 3. Equation below based on circuit and waveforms shown in Figures 17a, 17b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav www.kersemi.com IRFB4019PBF Driver Gate Drive D.U.T - - - * RG • • • • *** D.U.T. ISD Waveform Reverse Recovery Current + dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + VDD ** Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage + - Body Diode VDD Forward Drop Inductor Curent ISD Ripple ≤ 5% * Use P-Channel Driver for P-Channel Measurements ** Reverse Polarity for P-Channel *** VGS = 5V for Logic Level Devices Fig 16. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs V(BR)DSS 15V DRIVER L VDS tp D.U.T RG + V - DD IAS VGS 20V A 0.01Ω tp I AS Fig 17b. Unclamped Inductive Waveforms Fig 17a. Unclamped Inductive Test Circuit LD VDS VDS 90% + VDD - 10% D.U.T VGS VGS Pulse Width < 1µs Duty Factor < 0.1% td(on) Fig 18a. Switching Time Test Circuit tr td(off) Fig 18b. Switching Time Waveforms Current Regulator Same Type as D.U.T. Id Vds Vgs 50KΩ 12V tf .2µF .3µF D.U.T. + V - DS Vgs(th) VGS 3mA IG ID Current Sampling Resistors Qgs1 Qgs2 Fig 19a. Gate Charge Test Circuit 2014-8-13 6 Qgd Qgodr Fig 19b Gate Charge Waveform www.kersemi.com IRFB4019PBF TO-220AB Package Outline (Dimensions are shown in millimeters (inches)) TO-220AB Part Marking Information EXAMPLE: T HIS IS AN IRF1010 LOT CODE 1789 AS SEMBLED ON WW 19, 2000 IN T HE AS S EMBLY LINE "C" INTERNATIONAL RECT IFIER LOGO Note: "P" in as s embly line pos ition indicates "Lead - Free" 2014-8-13 AS SEMBLY LOT CODE 7 PART NUMBER DAT E CODE YEAR 0 = 2000 WEEK 19 LINE C www.kersemi.com