Microsemi APT35GN120S Utilizing the latest non-punch through (npt) field stop technology Datasheet

TYPICAL PERFORMANCE CURVES
APT35GN120B APT35GN120B_S(G)
APT35GN120S
APT35GN120BG APT35GN120SG
1200V
*G Denotes RoHS Compliant, Pb Free Terminal Finish.
Utilizing the latest Non-Punch Through (NPT) Field Stop technology, these IGBT’s
have a very short, low amplitude tail current and low Eoff. The Trench Gate design
results in superior VCE(on) performance. Easy paralleling results from very tight
parameter distribution and slightly positive VCE(on) temperature coefficient. Built-in
gate resistance ensures ultra-reliable operation. Low gate charge simplifies gate drive
design and minimizes losses.
(B)
TO
D3PAK
47
(S)
C
G
G
• 1200V NPT Field Stop
•
•
•
•
-2
C
E
E
Trench Gate: Low VCE(on)
Easy Paralleling
10µs Short Circuit Capability
Intergrated Gate Resistor: Low EMI, High Reliability
C
G
E
Applications: Welding, Inductive Heating, Solar Inverters, SMPS, Motor drives, UPS
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT35GN120B_S(G)
VCES
Collector-Emitter Voltage
1200
VGE
Gate-Emitter Voltage
±30
I C1
Continuous Collector Current @ TC = 25°C
94
I C2
Continuous Collector Current @ TC = 110°C
46
I CM
SSOA
PD
TJ,TSTG
TL
Pulsed Collector Current
1
@ TC = 150°C
UNIT
Volts
Amps
105
Switching Safe Operating Area @ TJ = 150°C
105A @ 1200V
Total Power Dissipation
Watts
379
Operating and Storage Junction Temperature Range
-55 to 150
°C
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
300
STATIC ELECTRICAL CHARACTERISTICS
V(BR)CES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA)
VGE(TH)
Gate Threshold Voltage
VCE(ON)
MIN
(VCE = VGE, I C = 1mA, Tj = 25°C)
Gate-Emitter Leakage Current (VGE = ±20V)
RGINT
Intergrated Gate Resistor
5.8
6.5
1.4
1.7
2.1
1.9
2
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C)
I GES
5
Units
Volts
Collector-Emitter On Voltage (VGE = 15V, I C = 35A, Tj = 25°C)
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C)
MAX
1200
Collector-Emitter On Voltage (VGE = 15V, I C = 35A, Tj = 125°C)
I CES
TYP
100
2
600
6
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
Microsemi Website - http://www.microsemi.com
µA
TBD
nA
Ω
Rev D 7-2009
Characteristic / Test Conditions
050-7601
Symbol
APT35GN120B_S(G)
DYNAMIC CHARACTERISTICS
Symbol
Test Conditions
Characteristic
Cies
Input Capacitance
Coes
Output Capacitance
Cres
Reverse Transfer Capacitance
VGEP
Gate-to-Emitter Plateau Voltage
Total Gate Charge
Qge
Gate-Emitter Charge
2500
VGE = 0V, VCE = 25V
150
f = 1 MHz
120
Gate Charge
9.5
VGE = 15V
220
VCE = 600V
15
130
Qgc
Gate-Collector ("Miller ") Charge
I C = 35A
SSOA
Switching Safe Operating Area
TJ = 150°C, R G = 2.2Ω 7, VGE =
SCSOA
15V, L = 100µH,VCE = 1200V
Short Circuit Safe Operating Area
TYP
Capacitance
3
Qg
MIN
VCC = 960V, VGE = 15V,
TJ = 125°C, R G = 2.2Ω 7
tr
Current Rise Time
VCC = 800V
22
Turn-off Delay Time
VGE = 15V
300
I C = 35A
55
RG = 2.2Ω 7
TBD
TJ = +25°C
2395
Eon1
Eon2
Turn-on Switching Energy
Turn-on Switching Energy (Diode)
5
Eoff
Turn-off Switching Energy
td(on)
Turn-on Delay Time
Inductive Switching (125°C)
24
tr
Current Rise Time
VCC = 800V
22
Turn-off Delay Time
VGE = 15V
365
I C = 35A
RG = 2.2Ω 7
100
TBD
TJ = +125°C
3745
td(off)
tf
6
44
Turn-on Switching Energy
Eon2
Turn-on Switching Energy (Diode)
Eoff
Turn-off Switching Energy
ns
µJ
2315
Current Fall Time
Eon1
nC
µs
24
4
V
10
Inductive Switching (25°C)
Current Fall Time
pF
A
Turn-on Delay Time
tf
UNIT
105
td(on)
td(off)
MAX
55
66
ns
µJ
3435
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RθJC
Junction to Case (IGBT)
.33
RθJC
Junction to Case (DIODE)
N/A
WT
Package Weight
5.9
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clam ped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
050-7601
Rev D 7-2009
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
7 RG is external gate resistance, not including RGint nor gate driver impedance. (MIC4452)
Microsemi Reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
APT35GN120B_S(G)
120
120
15V
12V
80
11V
60
10V
40
9V
20
100
12V
80
11V
60
10V
40
9V
20
8V
8V
7V
7V
0
2
4
6
8
10
12
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
0
0
FIGURE 1, Output Characteristics(TJ = 25°C)
80
TJ = 125°C
TJ = 25°C
TJ = -55°C
40
20
0
0
J
VCE = 240V
12
VCE = 600V
10
VCE = 960V
8
6
4
2
0
2
4
6
8
10
12
14
VGE, GATE-TO-EMITTER VOLTAGE (V)
I = 35A
C
T = 25°C
14
0
50
3.5
IC = 70A
3
2.5
IC = 35A
2
1.5
IC = 17.5A
1.0
0.5
0
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
8
1.05
1.00
0.95
0.90
-50
-25
0
25
50
75
100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
3
IC = 70A
2.5
2
IC = 35A
1.5
IC = 17.5A
1
0.5
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
-50
-25
0
25
50
75 100 125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
140
1.10
IC, DC COLLECTOR CURRENT(A)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
250
FIGURE 4, Gate Charge
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
4
100
150
200
GATE CHARGE (nC)
120
100
80
Lead Temperature
Limited
60
40
20
0
-50
-25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
Rev D 7-2009
250µs PULSE
TEST<0.5 % DUTY
CYCLE
60
FIGURE 2, Output Characteristics (TJ = 125°C)
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
IC, COLLECTOR CURRENT (A)
100
0
2
4
6
8
10
12
14
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
050-7601
IC, COLLECTOR CURRENT (A)
IC, COLLECTOR CURRENT (A)
15V
100
APT35GN120B_S(G)
450
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
30
25
VGE = 15V
20
15
10
VCE = 800V
5 T = 25°C, T =125°C
J
J
RG = 2.2Ω
L = 100 µH
0
350
300
VGE =15V,TJ=125°C
250
VGE =15V,TJ=25°C
200
150
100
VCE = 800V
RG = 2.2Ω
L = 100 µH
50
0
10
20
30
40
50
60
70
80
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
10
20
30
40
50
60
70
80
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
80
150
RG = 2.2Ω, L = 100µH, VCE = 800V
70
RG = 2.2Ω, L = 100µH, VCE = 800V
125
50
40
30
TJ = 25 or 125°C,VGE = 15V
20
tf, FALL TIME (ns)
tr, RISE TIME (ns)
60
TJ = 125°C, VGE = 15V
100
75
TJ = 25°C, VGE = 15V
50
25
10
0
0
10
20
30
40
50
60
70
80
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
8000
V
= 800V
CE
V
= +15V
GE
R = 2.2Ω
EOFF, TURN OFF ENERGY LOSS (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
12000
G
10000
10
20
30
40
50
60
70
80
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
TJ = 125°C,VGE =15V
8000
6000
4000
2000
TJ = 25°C,VGE =15V
10
20
30
40
50
60
70
80
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
J
15000
Eoff,70A
10000
Eon2,35A
Eoff,35A
Eon2,17.5A
0
TJ = 125°C, VGE = 15V
6000
5000
4000
3000
2000
TJ = 25°C, VGE = 15V
1000
10
20
30
40
50
60
70
80
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
Eoff,17.5A
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
SWITCHING ENERGY LOSSES (µJ)
SWITCHING ENERGY LOSSES (µJ)
Rev D 7-2009
050-7601
Eon2,70A
20000
0
G
12000
V
= 800V
CE
V
= +15V
GE
T = 125°C
5000
7000
0
0
25000
V
= 800V
CE
V
= +15V
GE
R = 2.2Ω
V
= 800V
CE
V
= +15V
GE
R = 2.2Ω
G
10000
Eon2,70A
8000
Eoff,70A
6000
Eon2,35A
4000
Eoff,17.5A
2000
0
Eoff,35A
Eon2,17.5A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
APT35GN120B_S(G)
IC, COLLECTOR CURRENT (A)
4,000
Cies
P
C, CAPACITANCE ( F)
1,000
500
C0es
100
Cres
50
120
100
80
60
40
20
10
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
0
200 400 600 800 1000 1200 1400
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18,Minimim Switching Safe Operating Area
0.30
0.9
0.25
0.7
0.20
0.5
0.15
PDM
Note:
0.3
0.10
t1
t2
0.05
SINGLE PULSE
0.1
0.05
0
10-5
10-4
t
Duty Factor D = 1/t2
Peak TJ = PDM x ZθJC + TC
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
140
F max = min (f max, f max2)
0.05
f max1 =
t d(on) + tr + td(off) + tf
10
1
T = 125°C
J
T = 75°C
C
D = 50 %
V
= 800V
CE
R = 2.2Ω
f max2 =
Pdiss - P cond
E on2 + E off
Pdiss =
TJ - T C
R θJC
G
20
30
40
50
60
70
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
Rev D 7-2009
10
050-7601
FMAX, OPERATING FREQUENCY (kHz)
ZθJC, THERMAL IMPEDANCE (°C/W)
0.35
APT35GN120B_S(G)
APT40DQ120
Gate Voltage
10%
TJ = 125°C
td(on)
V CE
IC
V CC
Collector Current
90%
tr
A
5%
5%
10%
D.U.T.
CollectorVoltage
Switching Energy
Figure 21, Inductive Switching Test Circuit
Figure 22, Turn-on Switching Waveforms and Definitions
VTEST
90%
*DRIVER SAME TYPE AS D.U.T.
Gate Voltage
TJ = 125°C
A
td(off)
CollectorVoltage
V CE
90%
IC
100uH
V CLAMP
tf
10%
A
0
Collector Current
Figure 24, EON1 Test Circuit
Figure 23, Turn-off Switching Waveforms and Definitions
3
TO-247 Package Outline
D PAK Package Outline
e1 SAC: Tin, Silver, Copper
Collector
5.38 (.212)
6.20 (.244)
Collector
(Heat Sink)
e3 SAC: Tin, Silver, Copper
15.49 (.610)
16.26 (.640)
6.15 (.242) BSC
D.U.T.
DRIVER*
Switching Energy
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
4.98 (.196)
5.08 (.200)
1.47 (.058)
1.57 (.062)
15.95 (.628)
16.05(.632)
Revised
4/18/95
20.80 (.819)
21.46 (.845)
1.04 (.041)
1.15(.045)
13.79 (.543)
13.99(.551)
4.50 (.177) Max.
0.40 (.016)
0.79 (.031)
2.21 (.087)
2.59 (.102)
2.87 (.113)
3.12 (.123)
1.65 (.065)
2.13 (.084)
19.81 (.780)
20.32 (.800)
1.01 (.040)
1.40 (.055)
Rev D 7-2009
13.41 (.528)
13.51(.532)
Revised
8/29/97
11.51 (.453)
11.61 (.457)
3.50 (.138)
3.81 (.150)
0.46 (.018)
0.56 (.022) {3 Plcs}
050-7601
B
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
Gate
Collector
Emitter
0.020 (.001)
0.178 (.007)
2.67 (.105)
2.84 (.112)
1.27 (.050)
1.40 (.055)
1.22 (.048)
1.32 (.052)
1.98 (.078)
2.08 (.082)
5.45 (.215) BSC
{2 Plcs.}
3.81 (.150)
4.06 (.160)
(Base of Lead)
Heat Sink (Collector)
and Leads are Plated
Emitter
Collector
Gate
Dimensions in Millimeters (Inches)
Microsemi’s products are covered by one or more of U.S. patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583
4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 6,939,743, 7,352,045 5,283,201 5,801,417 5,648,283 7,196,634 6,664,594 7,157,886 6,939,743 7,342,262
and foreign patents. US and Foreign patents pending. All Rights Reserved.
Similar pages