AOSMD AON7240 40v n-channel mosfet Datasheet

AON7240
40V N-Channel MOSFET
General Description
Product Summary
The AON7240 uses trench MOSFET technology that is
uniquely optimized to provide the most efficient high
frequency switching performance.Power losses are
minimized due to an extremely low combination of
RDS(ON) and Crss.In addition,switching behavior is well
controlled with a "Schottky style" soft recovery body diode.
VDS
ID (at VGS=10V)
40V
40A
RDS(ON) (at VGS=10V)
< 5.1mΩ
RDS(ON) (at VGS = 4.5V)
< 7mΩ
100% UIS Tested
100% Rg Tested
Top View
DFN 3x3 EP
Bottom View
D
Top View
1
8
2
7
3
6
4
5
G
Pin 1
S
Absolute Maximum Ratings TA=25°C unless otherwise noted
Parameter
Symbol
Drain-Source Voltage
VDS
Gate-Source Voltage
VGS
TC=25°C
Continuous Drain
Current G
Pulsed Drain Current
C
V
A
144
19
IDSM
TA=70°C
±20
31
IDM
TA=25°C
Continuous Drain
Current
Units
V
40
ID
TC=100°C
Maximum
40
A
15
Avalanche Current C
IAS, IAR
40
A
Avalanche energy L=0.1mH C
TC=25°C
EAS, EAR
80
mJ
Power Dissipation
B
TC=100°C
TA=25°C
Power Dissipation A
Junction and Storage Temperature Range
Rev 2: Mar. 2011
3.1
Steady-State
Steady-State
RθJA
RθJC
www.aosmd.com
W
2
TJ, TSTG
Symbol
t ≤ 10s
W
14
PDSM
TA=70°C
Thermal Characteristics
Parameter
Maximum Junction-to-Ambient A
Maximum Junction-to-Ambient A D
Maximum Junction-to-Case
36.7
PD
-55 to 150
Typ
30
60
2.8
°C
Max
40
75
3.4
Units
°C/W
°C/W
°C/W
Page 1 of 6
Electrical Characteristics (TJ=25°C unless otherwise noted)
Symbol
Parameter
STATIC PARAMETERS
BVDSS
Drain-Source Breakdown Voltage
Min
Conditions
ID=250µA, VGS=0V
Typ
40
1
Zero Gate Voltage Drain Current
IGSS
Gate-Body leakage current
VGS(th)
Gate Threshold Voltage
VDS=VGS ID=250µA
1.4
ID(ON)
On state drain current
VGS=10V, VDS=5V
144
TJ=55°C
µA
5
VDS=0V, VGS= ±20V
100
VGS=10V, ID=20A
1.9
2.4
4.2
5.1
6.3
7.6
VGS=4.5V, ID=15A
5.6
7
VDS=5V, ID=20A
67
Static Drain-Source On-Resistance
gFS
Forward Transconductance
VSD
Diode Forward Voltage
IS=1A,VGS=0V
0.7
Maximum Body-Diode Continuous Current
G
DYNAMIC PARAMETERS
Ciss
Input Capacitance
nA
V
A
RDS(ON)
TJ=125°C
Units
V
VDS=40V, VGS=0V
IDSS
IS
Max
mΩ
mΩ
S
1
V
40
A
pF
1460
1830
2200
365
521
680
pF
20
43
73
pF
0.4
0.8
1.2
Ω
SWITCHING PARAMETERS
Qg(10V) Total Gate Charge
22
27.8
35
nC
Qg(4.5V) Total Gate Charge
10
12.8
15
nC
3
3.9
5
nC
6
10
nC
Coss
Output Capacitance
Crss
Reverse Transfer Capacitance
Rg
Gate resistance
Qgs
Gate Source Charge
Qgd
Gate Drain Charge
tD(on)
Turn-On DelayTime
tr
Turn-On Rise Time
tD(off)
Turn-Off DelayTime
tf
Turn-Off Fall Time
trr
Qrr
VGS=0V, VDS=20V, f=1MHz
VGS=0V, VDS=0V, f=1MHz
VGS=10V, VDS=20V, ID=20A
2
VGS=10V, VDS=20V, RL=1Ω,
RGEN=3Ω
IF=20A, dI/dt=500A/µs
Body Diode Reverse Recovery Time
Body Diode Reverse Recovery Charge IF=20A, dI/dt=500A/µs
7.2
ns
3
ns
23
ns
3.5
ns
11
16.5
21
28
40
52
ns
nC
A. The value of RθJA is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with TA =25°C. The
Power dissipation PDSM is based on R θJA t ≤ 10s value and the maximum allowed junction temperature of 150°C. The value in any given
application depends on the user's specific board design, and the maximum temperature of 150°C may be u sed if the PCB allows it.
B. The power dissipation PD is based on TJ(MAX)=150°C, using junction-to-case thermal resistance, and is more useful in setting the upper
dissipation limit for cases where additional heatsinking is used.
C. Repetitive rating, pulse width limited by junction temperature TJ(MAX)=150°C. Ratings are based on low frequency and duty cycles to keep
initial TJ =25°C.
D. The RθJA is the sum of the thermal impedence from junction to case RθJC and case to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.
F. These curves are based on the junction-to-case thermal impedence which is measured with the device mounted to a large heatsink,
assuming a maximum junction temperature of TJ(MAX)=150°C. The SOA curve provides a single pulse ratin g.
G. The maximum current rating is package limited.
H. These tests are performed with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with TA=25°C.
THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL
COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING
OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN,
FUNCTIONS AND RELIABILITY WITHOUT NOTICE.
Rev 2: Mar. 2011
www.aosmd.com
Page 2 of 6
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
100
80
10V
VDS=5V
4.5
80
60
3.5V
6V
ID(A)
ID (A)
60
40
125°C
40
VGS=3V
20
20
25°C
0
0
0
1
2
3
4
1
5
1.5
2.5
3
3.5
4
VGS(Volts)
Figure 2: Transfer Characteristics (Note E)
VDS (Volts)
Fig 1: On-Region Characteristics (Note E)
8
Normalized On-Resistance
1.8
7
RDS(ON) (mΩ )
2
VGS=4.5V
6
5
4
VGS=10V
3
2
VGS=10V
ID=20A
1.6
1.4
17
5
2
VGS=4.5V
10
1.2
ID=15A
1
0.8
0
5
10
15
20
25
30
ID (A)
Figure 3: On-Resistance vs. Drain Current and Gate
Voltage (Note E)
0
25
50
75
100
125
150
175
0
Temperature (°C)
Figure 4: On-Resistance vs. Junction Temperature
18
(Note E)
1.0E+02
15
ID=20A
1.0E+01
12
40
9
125°C
IS (A)
RDS(ON) (mΩ )
1.0E+00
6
125°C
1.0E-01
1.0E-02
25°C
3
1.0E-03
25°C
1.0E-04
0
2
4
6
8
10
1.0E-05
VGS (Volts)
Figure 5: On-Resistance vs. Gate-Source Voltage
(Note E)
Rev 2: Mar. 2011
www.aosmd.com
0.0
0.2
0.4
0.6
0.8
1.0
1.2
VSD (Volts)
Figure 6: Body-Diode Characteristics (Note E)
Page 3 of 6
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
2500
10
VDS=20V
ID=20A
Capacitance (pF)
VGS (Volts)
Ciss
2000
8
6
4
2
1500
1000
Coss
500
Crss
0
0
0
5
10
15
20
25
Qg (nC)
Figure 7: Gate-Charge Characteristics
30
0
10µs
100µs
1ms
10ms
DC
1.0
TJ(Max)=150°C
TC=25°C
0.1
160
10µs
RDS(ON)
limited
Power (W)
100.0
ID (Amps)
20
30
VDS (Volts)
Figure 8: Capacitance Characteristics
40
200
1000.0
10.0
10
TJ(Max)=150°C
TC=25°C
17
5
2
10
120
80
40
0.0
0
0.01
0.1
1
VDS (Volts)
10
100
0.0001
0.001
0.01
0.1
1
0
10
Pulse Width (s)
18
Figure 10: Single Pulse Power Rating Junction-toCase (Note F)
Figure 9: Maximum Forward Biased Safe
Operating Area (Note F)
Zθ JC Normalized Transient
Thermal Resistance
10
D=Ton/T
TJ,PK=TC+PDM.ZθJC.RθJC
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
40
RθJC=3.4°C/W
1
PD
0.1
Ton
T
Single Pulse
0.01
0.00001
0.0001
0.001
0.01
0.1
1
10
100
Pulse Width (s)
Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)
Rev 2: Mar. 2011
www.aosmd.com
Page 4 of 6
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS
40
35
TA=25°C
100
TA=100°C
TA=150°C
TA=125°C
Power Dissipation (W)
IAR (A) Peak Avalanche Current
1000
30
25
20
15
10
5
10
0
1
10
100
1000
µs)
Time in avalanche, tA (µ
Figure 12: Single Pulse Avalanche capability
(Note C)
0
25
50
75
100
125
150
TCASE (°C)
Figure 13: Power De-rating (Note F)
50
10000
40
1000
Power (W)
Current rating ID(A)
TA=25°C
30
20
17
5
2
10
100
10
10
1
0.00001
0
0
25
50
75
100
125
TCASE (°C)
Figure 14: Current De-rating (Note F)
Zθ JA Normalized Transient
Thermal Resistance
10
1
0.001
0.1
10
1000
0
18
150
Pulse Width (s)
Figure 15: Single Pulse Power Rating Junction-toAmbient (Note H)
D=Ton/T
TJ,PK=TA+PDM.ZθJA.RθJA
In descending order
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse
RθJA=75°C/W
40
0.1
PD
0.01
Single Pulse
Ton
T
0.001
0.0001
0.001
0.01
0.1
1
10
100
1000
Pulse Width (s)
Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)
Rev 2: Mar. 2011
www.aosmd.com
Page 5 of 6
Gate Charge Test Circuit & Waveform
Vgs
Qg
10V
+
+ Vds
VDC
-
Qgs
Qgd
VDC
-
DUT
Vgs
Ig
Charge
Resistive Switching Test Circuit & Waveforms
RL
Vds
Vds
90%
+ Vdd
DUT
Vgs
VDC
-
Rg
10%
Vgs
Vgs
t d(on)
tr
t d(off)
t on
tf
toff
Unclamped Inductive Switching (UIS) Test Circuit & Waveforms
L
2
E AR = 1/2 LIAR
Vds
BVDSS
Vds
Id
+ Vdd
Vgs
Vgs
I AR
VDC
-
Rg
Id
DUT
Vgs
Vgs
Diode Recovery Test Circuit & Waveforms
Q rr = - Idt
Vds +
DUT
Vds Isd
Vgs
Ig
Rev 2: Mar. 2011
Vgs
L
Isd
+ Vdd
t rr
dI/dt
I RM
Vdd
VDC
-
IF
Vds
www.aosmd.com
Page 6 of 6
Similar pages