IRF IRG4BC30KPBF Insulated gate bipolar transistor Datasheet

PD - 95641
IRG4BC30KPbF
Short Circuit Rated
UltraFast IGBT
INSULATED GATE BIPOLAR TRANSISTOR
Features
• High short circuit rating optimized for motor control,
tsc =10µs, @360V VCE (start), TJ = 125°C,
VGE = 15V
• Combines low conduction losses with high
switching speed
• Latest generation design provides tighter parameter
distribution and higher efficiency than previous
generations
• Lead-Free
C
VCES = 600V
VCE(on) typ. = 2.21V
G
@VGE = 15V, IC = 16A
E
n-channel
Benefits
• As a Freewheeling Diode we recommend our
HEXFREDTM ultrafast, ultrasoft recovery diodes for
minimum EMI / Noise and switching losses in the
Diode and IGBT
• Latest generation 4 IGBTs offer highest power
density motor controls possible
• This part replaces the IRGBC30K and IRGBC30M
devices
TO-220AB
Absolute Maximum Ratings
Parameter
VCES
IC @ TC = 25°C
IC @ TC = 100°C
ICM
ILM
tsc
VGE
EARV
PD @ TC = 25°C
PD @ TC = 100°C
TJ
TSTG
Collector-to-Emitter Voltage
Continuous Collector Current
Continuous Collector Current
Pulsed Collector Current 
Clamped Inductive Load Current ‚
Short Circuit Withstand Time
Gate-to-Emitter Voltage
Reverse Voltage Avalanche Energy ƒ
Maximum Power Dissipation
Maximum Power Dissipation
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 sec.
Mounting torque, 6-32 or M3 screw.
Max.
Units
600
28
16
58
58
10
±20
260
100
42
-55 to +150
V
A
µs
V
mJ
W
°C
300 (0.063 in. (1.6mm) from case)
10 lbf•in (1.1N•m)
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
Wt
www.irf.com
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient, typical socket mount
Weight
Typ.
Max.
–––
0.5
–––
1.44
1.2
–––
80
–––
Units
°C/W
g
1
7/26/04
IRG4BC30KPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min. Typ.
Collector-to-Emitter Breakdown Voltage
600 —
Emitter-to-Collector Breakdown Voltage „ 18
—
∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage —
0.54
— 2.21
— 2.21
VCE(ON)
Collector-to-Emitter Saturation Voltage
— 2.88
— 2.36
VGE(th)
Gate Threshold Voltage
3.0
—
∆V GE(th)/∆TJ Temperature Coeff. of Threshold Voltage
—
-12
gfe
Forward Transconductance
5.4
8.1
—
—
ICES
Zero Gate Voltage Collector Current
—
—
—
—
IGES
Gate-to-Emitter Leakage Current
—
—
V(BR)CES
V(BR)ECS
Max. Units
Conditions
—
V
VGE = 0V, IC = 250µA
—
V
VGE = 0V, IC = 1.0A
—
V/°C VGE = 0V, IC = 1.0mA
—
IC = 14A
VGE = 15V
2.7
IC = 16A
V
—
IC = 28A
See Fig.2, 5
—
IC = 16A , TJ = 150°C
6.0
VCE = VGE, IC = 250µA
— mV/°C VCE = VGE, IC = 250µA
—
S
VCE = 100V, IC = 16A
250
VGE = 0V, VCE = 600V
2.0
µA VGE = 0V, VCE = 10V, TJ = 25°C
1100
VGE = 0V, VCE = 600V, TJ = 150°C
±100 n A VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
tsc
Parameter
Total Gate Charge (turn-on)
Gate - Emitter Charge (turn-on)
Gate - Collector Charge (turn-on)
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Short Circuit Withstand Time
td(on)
tr
td(off)
tf
Ets
Eon
Eoff
Ets
LE
Cies
Coes
Cres
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Total Switching Loss
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Details of note  through
2
Min.
—
—
—
—
—
—
—
—
—
—
10
Typ.
67
11
25
26
28
130
120
0.36
0.51
0.87
—
—
—
—
—
—
—
—
—
—
—
—
—
25
29
190
190
1.2
0.26
0.36
0.62
7.5
920
110
27
Max. Units
Conditions
100
IC = 16A
16
nC
VCC = 400V
See Fig.8
37
VGE = 15V
—
—
TJ = 25°C
ns
200
IC = 16A, VCC = 480V
170
VGE = 15V, RG = 23Ω
—
Energy losses include "tail"
—
mJ
See Fig. 9,10,14
1.3
—
µs
VCC = 400V, TJ = 125°C
VGE = 15V, RG = 23Ω , VCPK < 500V
—
TJ = 150°C,
—
IC = 16A, VCC = 480V
ns
—
VGE = 15V, RG = 23Ω
—
Energy losses include "tail"
—
mJ
See Fig. 11,14
—
TJ = 25°C, VGE = 15V, RG = 23Ω
—
IC = 14A, VCC = 480V
—
Energy losses include "tail"
—
nH
Measured 5mm from package
—
VGE = 0V
—
pF
VCC = 30V
See Fig. 7
—
ƒ = 1.0MHz
are on the last page
www.irf.com
IRG4BC30KPbF
35
For both:
30
Load Current ( A )
Triangular wave:
Duty cycle: 50%
TJ = 125°C
Tsink = 90°C
Gate drive as specified
25
I
Clamp voltage:
80% of rated
Power Dissipation = 21W
20
Square wave:
60% of rated
voltage
15
I
10
Ideal diodes
5
A
0
0.1
1
10
100
f, Frequency (kHz)
Fig. 1 - Typical Load Current vs. Frequency
(Load Current = IRMS of fundamental)
100
TJ = 25 o C
TJ = 150 o C
10
1
V GE = 15V
20µs PULSE WIDTH
0.1
1
10
VCE , Collector-to-Emitter Voltage (V)
Fig. 2 - Typical Output Characteristics
www.irf.com
I C, Collector-to-Emitter Current (A)
I C , Collector-to-Emitter Current (A)
100
TJ = 150 oC
10
TJ = 25 oC
1
V CC = 50V
5µs PULSE WIDTH
0.1
5
10
15
VGE , Gate-to-Emitter Voltage (V)
Fig. 3 - Typical Transfer Characteristics
3
IRG4BC30KPbF
4.0
VCE , Collector-to-Emitter Voltage(V)
Maximum DC Collector Current(A)
30
25
20
15
10
5
0
25
50
75
100
125
150
VGE = 15V
80 us PULSE WIDTH
IC = 32 A
3.0
IC = 16 A
IC = 8.0A
8A
2.0
1.0
-60 -40 -20
TC , Case Temperature ( ° C)
0
20
40
60
80 100 120 140 160
JunctionTemperature
Temperature
( °C)
TTJJ, ,Junction
( °C
)
Fig. 4 - Maximum Collector Current vs. Case
Temperature
Fig. 5 - Typical Collector-to-Emitter Voltage
vs. Junction Temperature
Thermal Response (Z thJC )
10
1
D = 0.50
0.20
PDM
0.10
0.1
0.01
0.00001
0.05
0.02
0.01
t1
t2
SINGLE PULSE
(THERMAL RESPONSE)
0.0001
Notes:
1. Duty factor D = t 1 / t 2
2. Peak TJ = PDM x Z thJC + TC
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
4
www.irf.com
IRG4BC30KPbF
1500
VGE , Gate-to-Emitter Voltage (V)
1200
C, Capacitance (pF)
20
VGE = 0V,
f = 1MHz
Cies = Cge + Cgc , Cce SHORTED
Cres = Cgc
Coes = Cce + Cgc
Cies
900
600
Coes
300
VCC = 400V
I C = 16A
16
12
8
4
Cres
0
1
10
0
100
0
VCE , Collector-to-Emitter Voltage (V)
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
10
V CC = 480V
V GE = 15V
TJ = 25 ° C
I C = 16A
1.0
0.5
0
10
20
30
40
RG , Gate Resistance (Ohm)
Ω
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
www.irf.com
40
60
80
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
Total Switching Losses (mJ)
Total Switching Losses (mJ)
1.5
20
QG , Total Gate Charge (nC)
50
RG = Ohm
23Ω
VGE = 15V
VCC = 480V
IC = 32 A
IC = 16 A
1
IC = 8.0A
8A
0.1
-60 -40 -20
0
20
40
60
80 100 120 140 160
TJ , Junction Temperature ( °C )
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
5
IRG4BC30KPbF
RG
TJ
VCC
3.2 VGE
100
Ω
= 23
Ohm
= 150° C
= 480V
= 15V
I C , Collector-to-Emitter Current (A)
Total Switching Losses (mJ)
4.0
2.4
1.6
0.8
VGE = 20V
T J = 125 oC
10
SAFE OPERATING AREA
1
0.0
0
8
16
24
32
I C , Collector-to-emitter Current (A)
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
6
40
1
10
100
1000
VCE , Collector-to-Emitter Voltage (V)
Fig. 12 - Turn-Off SOA
www.irf.com
IRG4BC30KPbF
L
D.U.T.
RL =
VC *
50V
0 - 480V
1000V
480V
4 X I C@25°C
480µF
960V
c
d
* Driver same type as D.U.T.; Vc = 80% of Vce(max)
* Note: Due to the 50V power supply, pulse width and inductor
will increase to obtain rated Id.
Fig. 13a - Clamped Inductive
Fig. 13b - Pulsed Collector
Load Test Circuit
Current Test Circuit
IC
L
Driver*
D.U.T.
Fig. 14a - Switching Loss
Test Circuit
VC
50V
1000V
c
d
e
* Driver same type
as D.U.T., VC = 480V
c
d
90%
e
VC
10%
90%
Fig. 14b - Switching Loss
t d(off)
10%
I C 5%
Waveforms
tf
tr
t d(on)
t=5µs
E on
E off
E ts = (Eon +Eoff )
www.irf.com
7
IRG4BC30KPbF
Notes:
 Repetitive rating; VGE = 20V, pulse width limited by
max. junction temperature. ( See fig. 13b )
‚ VCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 23Ω,
(See fig. 13a)
ƒ Repetitive rating; pulse width limited by maximum
junction temperature.
„ Pulse width ≤ 80µs; duty factor ≤ 0.1%.
Pulse width 5.0µs, single shot.
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
2.87 (.113)
2.62 (.103)
10.54 (.415)
10.29 (.405)
3.78 (.149)
3.54 (.139)
-A-
-B4.69 (.185)
4.20 (.165)
1.32 (.052)
1.22 (.048)
6.47 (.255)
6.10 (.240)
4
15.24 (.600)
14.84 (.584)
LEAD ASSIGNMENTS
1.15 (.045)
MIN
1
2
3
4- DRAIN
14.09 (.555)
13.47 (.530)
1.40 (.055)
1.15 (.045)
4- COLLECTOR
4.06 (.160)
3.55 (.140)
3X
3X
LEAD ASSIGNMENTS
IGBTs, CoPACK
1 - GATE
2 - DRAIN
1- GATE
1- GATE
3 - SOURCE 2- COLLECTOR
2- DRAIN
3- SOURCE
3- EMITTER
4 - DRAIN
HEXFET
0.93 (.037)
0.69 (.027)
0.36 (.014)
3X
M
B A M
0.55 (.022)
0.46 (.018)
2.92 (.115)
2.64 (.104)
2.54 (.100)
2X
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
2 CONTROLLING DIMENSION : INCH
4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
E XAMPL E : T HIS IS AN IR F 1010
L OT CODE 1789
AS S E MB L E D ON WW 19, 1997
IN T H E AS S E MB L Y L INE "C"
Note: "P" in assembly line
position indicates "Lead-Free"
INT E R NAT IONAL
R E CT IF IE R
L OGO
AS S E MB L Y
L OT CODE
PAR T NU MB E R
DAT E CODE
YE AR 7 = 1997
WE E K 19
L INE C
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 07/04
8
www.irf.com
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/
Similar pages