AUTOMOTIVE MOSFET Typical Applications O O O PD - 95491 IRF2204SPbF IRF2204LPbF HEXFET® Power MOSFET Electric Power Steering 14 Volts Automotive Electrical Systems Lead-Free D VDSS = 40V Features O O O O O O Advanced Process Technology Ultra Low On-Resistance Dynamic dv/dt Rating 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax RDS(on) = 3.6mΩ G ID = 170A S Description Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the lastest processing techniques to achieve extremely low on-resistance per silicon area. Additional features to this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating. These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. D2 Pak IRF2204S TO-262 IRF2204L Absolute Maximum Ratings Parameter ID @ TC = 25°C ID @ TC = 100°C IDM PD @TC = 25°C VGS EAS IAR EAR TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting Torque, 6-32 or M3 screw Max. Units 170 120 850 200 1.3 ± 20 460 See Fig.12a, 12b, 15, 16 A W W/°C V mJ A mJ -55 to + 175 °C 300 (1.6mm from case ) 10 lbf•in (1.1N•m) Thermal Resistance Parameter RθJC RθJA www.irf.com Junction-to-Case Junction-to-Ambient Typ. Max. Units ––– ––– 0.75 40 °C/W 1 06/30/04 IRF2204S/LPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) RDS(on) VGS(th) gfs Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Qg Qgs Qgd td(on) tr td(off) tf Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Min. 40 ––– ––– 2.0 120 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– Typ. ––– 0.041 3.0 ––– ––– ––– ––– ––– ––– 130 35 39 15 140 62 110 IDSS Drain-to-Source Leakage Current LD Internal Drain Inductance ––– 4.5 LS Internal Source Inductance ––– 7.5 Ciss Coss Crss Coss Coss Coss eff. Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance ––– ––– ––– ––– ––– ––– 5890 1570 130 8000 1370 2380 V(BR)DSS ∆V(BR)DSS/∆TJ IGSS Max. Units Conditions ––– V VGS = 0V, ID = 250µA ––– V/°C Reference to 25°C, ID = 1mA 3.6 mΩ VGS = 10V, ID = 130A 4.0 V VDS = 10V, ID = 250µA ––– S VDS = 10V, ID = 130A 20 VDS = 40V, VGS = 0V µA 250 VDS = 32V, VGS = 0V, TJ = 150°C 200 VGS = 20V nA -200 VGS = -20V 200 ID = 130A 52 nC VDS = 32V 59 VGS = 10V ––– VDD = 20V ––– ID = 130A ns ––– RG = 2.5Ω ––– VGS = 10V D Between lead, ––– 6mm (0.25in.) nH G from package ––– and center of die contact S ––– VGS = 0V ––– pF VDS = 25V ––– ƒ = 1.0MHz, See Fig. 5 ––– VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 32V, ƒ = 1.0MHz ––– VGS = 0V, VDS = 0V to 32V Source-Drain Ratings and Characteristics IS ISM VSD trr Qrr ton 2 Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Forward Turn-On Time Min. Typ. Max. Units Conditions D MOSFET symbol ––– ––– 170 showing the A G integral reverse ––– ––– 850 S p-n junction diode. ––– ––– 1.3 V TJ = 25°C, IS = 130A, VGS = 0V ––– 68 100 ns TJ = 25°C, IF = 130A ––– 120 180 nC di/dt = 100A/µs Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.irf.com IRF2204S/LPbF TOP I D, Drain-to-Source Current (A) 1000 BOTTOM 10000 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V TOP 1000 I D, Drain-to-Source Current (A) 10000 100 4.5V 10 BOTTOM 100 4.5V 10 20µs PULSE WIDTH T J= 25 ° C 20µs PULSE WIDTH T J= 175 ° C 1 1 0.1 1 10 100 0.1 1 V DS, Drain-to-Source Voltage (V) 10 100 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000.00 2.5 I D = 210A ID , Drain-to-Source Current (Α ) T J = 175°C 100.00 T J = 25°C VDS = 25V 20µs PULSE WIDTH 10.00 4.0 5.0 6.0 7.0 8.0 9.0 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 10.0 (Normalized) RDS(on) , Drain-to-Source On Resistance 2.0 1.5 1.0 0.5 V GS = 10V 0.0 -60 -40 -20 0 20 40 60 80 TJ , Junction Temperature 100 120 140 160 180 ( ° C) Fig 4. Normalized On-Resistance Vs. Temperature 3 IRF2204S/LPbF 100000 I D = 130A VDS = 32V VDS = 20V 10 VGS , Gate-to-Source Voltage (V) Coss = Cds + Cgd 10000 C, Capacitance(pF) 12 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Ciss Coss 1000 Crss 100 8 6 4 2 10 0 1 10 0 100 30 VDS, Drain-to-Source Voltage (V) 120 150 10000 ID, Drain-to-Source Current (A) 1000 TJ = 175 ° C OPERATION IN THIS AREA LIMITED BY R DS(on) 1000 100 I SD , Reverse Drain Current (A) 90 Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 100 10 T J= 25 ° C 1 V GS = 0 V 0.0 0.5 1.0 1.5 2.0 V SD,Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 100µsec 1msec 10 10msec Tc = 25°C Tj = 175°C Single Pulse 1 0.1 4 60 QG, Total Gate Charge (nC) 2.5 1 10 100 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRF2204S/LPbF 175 150 VGS D.U.T. RG 125 ID , Drain Current (A) RD VDS LIMITED BY PACKAGE + -VDD 10V 100 Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % 75 Fig 10a. Switching Time Test Circuit 50 VDS 25 90% 0 25 50 75 100 125 150 175 TC , Case Temperature ( °C) 10% VGS Fig 9. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms Thermal Response (Z thJC ) 10 1 D = 0.50 0.20 0.1 P DM 0.10 t1 0.05 0.02 0.01 t2 Notes: SINGLE PULSE (THERMAL RESPONSE) 1. Duty factor D = 2. Peak T 0.01 0.00001 0.0001 0.001 0.01 t1 / t 2 J = P DM x Z thJC +TC 0.1 1 t 1, Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRF2204S/LPbF 900 ID 52A 91A 15V TOP 750 + V - DD IAS 20V 0.01Ω tp Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp A EAS , Single Pulse Avalanche Energy (mJ) D.U.T RG BOTTOM DRIVER L VDS 130A 600 450 300 150 0 25 50 75 100 125 150 175 ( ° C) Starting Tj, Junction Temperature I AS Fig 12c. Maximum Avalanche Energy Vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG 10 V QGD 4.0 VG Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 50KΩ 12V .2µF .3µF D.U.T. + V - DS VGS(th) Gate threshold Voltage (V) QGS 3.5 3.0 ID = 250µA 2.5 2.0 1.5 1.0 -75 -50 -25 VGS 0 25 50 75 100 125 150 175 200 T J , Temperature ( °C ) 3mA IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 6 Fig 14. Threshold Voltage Vs. Temperature www.irf.com IRF2204S/LPbF 1000 Duty Cycle = Single Pulse Avalanche Current (A) 0.01 Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses 100 0.05 0.10 10 1 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 500 TOP Single Pulse BOTTOM 10% Duty Cycle ID = 210A 400 300 200 100 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy Vs. Temperature www.irf.com Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). t av = Average time in avalanche. 175 D = Duty cycle in avalanche = t av ·f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 7 IRF2204S/LPbF Peak Diode Recovery dv/dt Test Circuit + D.U.T* Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + - - + RG • dv/dt controlled by RG • ISD controlled by Duty Factor "D" • D.U.T. - Device Under Test V GS * + - V DD Reverse Polarity of D.U.T for P-Channel Driver Gate Drive P.W. Period D= P.W. Period [VGS=10V ] *** D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode [VDD] Forward Drop Inductor Curent Ripple ≤ 5% [ISD] *** VGS = 5.0V for Logic Level and 3V Drive Devices Fig 17. For N-channel HEXFET® power MOSFETs 8 www.irf.com IRF2204S/LPbF D2Pak Package Outline Dimensions are shown in millimeters (inches) D2Pak Part Marking Information T HIS IS AN IRF530S WIT H LOT CODE 8024 AS SEMBLED ON WW 02, 2000 IN T HE AS SEMB LY LINE "L" INT ERNAT IONAL RECT IFIER LOGO Note: "P" in ass embly line pos ition indicates "Lead-Free" PART NUMB ER F530S AS S EMBLY L OT CODE DAT E CODE YEAR 0 = 2000 WEEK 02 LINE L OR INT ERNAT IONAL RE CT IFIE R LOGO AS S EMBLY LOT CODE www.irf.com PART NUMBE R F530S DAT E CODE P = DE S IGNAT E S LEAD-F REE PRODUCT (OPT IONAL) YE AR 0 = 2000 WEEK 02 A = AS S EMBLY S IT E CODE 9 IRF2204S/LPbF TO-262 Package Outline Dimensions are shown in millimeters (inches) TO-262 Part Marking Information EXAMPLE: T HIS IS AN IRL3103L LOT CODE 1789 AS S EMB L ED ON WW 19, 1997 IN T HE AS S EMB L Y LINE "C" Note: "P" in as s embly line pos ition indicates "Lead-F ree" INT ERNAT IONAL RECT IF IER LOGO AS S EMB LY L OT CODE PART NU MB ER DAT E CODE YE AR 7 = 1997 WEE K 19 LINE C OR INT ERNAT IONAL RE CT IF IER LOGO AS S EMB LY LOT CODE 10 PART NUMB ER DAT E CODE P = DES IGNAT ES LEAD-F REE PR ODU CT (OPT IONAL) YEAR 7 = 1997 WEE K 19 A = AS S EMB LY S IT E CODE www.irf.com IRF2204S/LPbF D2Pak Tape & Reel Information Dimensions are shown in millimeters (inches) TRR 1.60 (.063) 1.50 (.059) 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) FEED DIRECTION 1.85 (.073) 11.60 (.457) 11.40 (.449) 1.65 (.065) 0.368 (.0145) 0.342 (.0135) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 1.75 (.069) 1.25 (.049) 10.90 (.429) 10.70 (.421) 4.72 (.136) 4.52 (.178) 16.10 (.634) 15.90 (.626) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Notes: Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11). Starting TJ = 25°C, L = 0.06mH RG = 25Ω, IAS = 130A. (See Figure 12). ISD ≤ 130A, di/dt ≤ 170A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. Pulse width ≤ 400µs; duty cycle ≤ 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A. Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance. Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.06/04 www.irf.com 11 Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/